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Abstract: This study presents a genetic algorithm for spectrum allocation and power control, both with constraints, 

in cognitive radio networks. The models for spectrum allocation and power control with constraints are formulated 

in a partially distributed manner, then the scheme based on genetic algorithms is presented. Simulation results 

demonstrate that the proposed genetic algorithm-based scheme is efficient for spectrum allocation and power control 

in cognitive radio networks. 
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INTRODUCTION 
 

Cognitive radio is a promising technique for 
overcoming the apparent spectrum scarcity problem, as 
well as improving communication efficiency. An ideal 
cognitive radio can be defined as a wireless system with 
the capability for sensing, perceiving, orienting, 
planning, decision making and autonomous learning 
(Mitola and Maguire, 1999) about radio status in 
surroundings. Therefore, a cognitive radio needs to 
continuously observe and learn the environmental 
parameters, identify the primary requirements and 
objectives of the user and appropriately decide upon the 
transmission parameters in order to improve the overall 
efficiency of the radio communications.  

In this study, we consider how a CRN (Cognitive 
Radio Network) in a dynamic spectrum environment 
can utilize the available spectrum efficiently through 
applying Genetic Algorithm (GA) to channel allocation 
and power control problems. This study is inspired 
from the study of (Zhao et al., 2009). They have 
presented a genetic algorithm for sharing the available 
spectrum bands which are detected unoccupied by 
primary nodes among the coexisting cognitive radios. 
In this study, we extend the problem scope to 
incorporate power control and develop a distributed 
formulation for the spectrum allocation and power 
control problem.  

In this study, we deal with constraints on both 
power control and spectrum allocation; thus we are 
facing a constrained optimization problem. We 
proposed to use the genetic algorithm for solving the 

latter. Our choice of genetic algorithm is because; it has 
demonstrated success with a large number   of  difficult 
problems  (Haupt and Haupt, 2004), also by its 
flexibility in solving a wide variety of computationally 
challenging problems. 

 

LITERATURE REVIEW 

 
In this section, we review some of the works that 

are closely related to our study in terms of applying 
optimization and heuristic algorithms to the channel 
allocation-power control problem in the context of  
CRNs. Shi and Hou (2007) developed a mathematical 
formulation for the cross layer power control, 
scheduling and flow routing problem to support a 
predefined set of user communication sessions in the 
network. Then they applied a solution procedure based 
on the branch-and-bound technique and convex hull 
relaxation on their model. Using this solution 
procedure, they guarantee a (1-xi) optimal solution, 
where xi reflects the accuracy required. Hoang and 
Liang (2006 a, b) proposed two different solutions to 
improve the network throughput of CRNs through 
channel and power allocation. First, they proposed a 
heuristic channel allocation-power control algorithm to 
maximize the spectrum utilization of a CRN by 
constructing a dynamic interference graph. They 
formulated a control framework that guarantees the 
primary nodes’ interference protection. They provided a 
realistic interference model based on Signal-to-
Interference plus Noise Ratio (SINR). Second, they 
proposed  a  Two-Phase  Resource  Allocation  (TPRA)  
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Fig. 1: The general layout of the cognitive radio network considered in this work 

 
scheme to improve network throughput. In the first 
phase of their scheme, channels and power are allocated 
to base stations. Then in the second phase, each base 
station allocates channels within its cell. 

Ma and Tsang (2007) presented a cross layer 
design including   channel   allocation  and power 
control. They developed a binary integer linear 
programming formulation for the cross layer problem. 
They simplified their formulation by assuming that all 
nodes transmit at the same power level. However, 
assuming a common transmission power to all nodes 
not only simplifies the formulation, but also limits its 
efficiency. In general, most of the previous study use 
centralized algorithms and still use the cellular 
networks model. In contrast, we apply a distributed 
algorithm and provide a model for spectrum allocation 
and power control for using the genetic algorithm. 
Genetic algorithm has been successfully applied to 
channel allocation problem. Chakraborty and 
Chakraborty (1999) used a centralized GA to compute a 
fixed channel allocation. Matsui et al. (2005) applied a 
distributed GA to a fixed channel allocation problem. 
Fu et al. (2006) combined a greedy algorithm with a 
centralized GA to perform dynamic channel allocation. 
However, all of these applications are for cellular 
networks. 

A distributed bargaining and voting approach to 
solve spectrum assignment was proposed (Cao and 
Zheng, 2005), in addition to a distributed optimization 
algorithm for multi-hop routing and scheduling (Shi 
and Hou, 2008). The latter employed both a 
conservative approach and an aggressive approach for 
the optimization of network resource utilization. 
Finally, a distributed channel assignment mechanism 
designed  for   multi-radio   multi-hop   networks     was  

proposed (Ko et al., 2007), where each node is 
equipped with multiple IEEE 802.11 wireless 

transceivers. 

 

Spectrum allocation and power control models: The 
general layout of the architecture of the cognitive radio 

network considered in this study is shown in Fig. 1. 
We have used the concept of supernode to help 

doing the distributed optimization in an ad-hoc 
cognitive radio network. We consider a primary 

network which can be centralized or distributed, a 
supernode which will collect the information about the 

primary system and perform the channel assignment 
optimization for cognitive users (secondary nodes). 

For the power control, we consider a distributed 
optimization, where each node possesses its own 

optimization engine. 
The supernode will provide the assigned channels 

for every node and each node will allocate a power for 

each of his assigned channel. 
We adopt the approach using the “supernode”, in 

order to decrease the overheads between the multiple 
nodes, since the supernode will send one packet to each 

node, instead of exchanging information between one 
another. It will also decrease the complexity of 

computing for the nodes, as it will do the task of the 
channel allocation.  

 
Spectrum allocation model: Consider a cognitive 

network consisting of a collection of N cognitive nodes 
competing for M licensed channels indexed from 1 to M 

which are non-overlapping orthogonal. We assume that 
the cognitive nodes are capable of operating on multiple 

channels simultaneously.  
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The general spectrum allocation model comprises a 
channel availability matrix L, a channel reward matrix 

B, an interference constraint matrix C and a conflict 

free channel assignment matrix A.  

 

Channel availability matrix: L = {li,m|li,mÎ{0,1}}N×M is 

a N by M binary matrix representing the channel 

availability. If li,m = 1, channel m is available for user i; 

li,m = 0, channel m is occupied by primary nodes and not 

available for cognitive user I. 

 

Interference constraint matrix: C = {ci, j|ci, jÎ{0, 

1}}N×N is a N by N binary matrix representing the 
interference between two cognitive users when they 

occupy the same channel. ci, j = 1, if user i and j would 

interfere with each other if they use the same channel 

simultaneously. Otherwise, ci, j = 0. 

 

Channel rewards matrix: B = {bi, m|bi, m>0}N×M is a N 

by M matrix representing the rewards that can be 

obtained by user i when using channel m. 

 
Channel assignment matrix: A = {ai,m|ai,mÎ{0, 1}}N×M 
is a N by M binary matrix. If ai, m = 1, channel m is 
assigned to cognitive node n, otherwise ai,m = 0. The 
assignment matrix must meet the interference 
constraint, i.e., two cognitive users that interfere with 
each other can’t share the same channel, as shown in 
Eq. (1): 
 
ai,m aj,m = 0, if ci, j = 1, ∀i,j 𝜖(1,…,N), ∀M𝜖(1,…,M) (1) 
 

Our aim in the spectrum allocation is to maximize 
the network utilization under the condition of no 
conflict between users, for that we choose the system 
objective function as the product of channel assignment 
matrix A and channel rewards matrix B, as follows: 

 

fc  = ∑ ∑ 𝑎𝑖,𝑚 
𝑀
𝑚=1

𝑁
𝑖=1 𝑏𝑖,𝑚                                      (2)  

 

Hence, given the model above, the spectrum 

allocation problem can be defined as the following 
optimization problem: 

 

A* = max
𝛬

𝑓𝑐 = max
𝛬

∑ ∑ 𝑎𝑖,𝑚 𝑏𝑖,𝑚 
𝑀
𝑚=1

𝑁
𝑖=1              (3) 

 

where, L is the set of feasible assignment strategies that 

satisfy Eq. (1) and A* is the desired spectrum 

assignment. 
 
Power control model: The objective of the power 
control is to minimize the power usage of the cognitive 
user, while subject to a minimum power at the receiver 
necessary for a successful reception of the transmitted 
signal. 

This function is a crucial component in the 

optimization when considering portable devices, whose 

energy supply is limited. 

We assume that a transmission from user i to its 
receiver is considered successful only if the received 

power at the receiver exceeds a certain threshold, say 

Prth. So the objective function for each node is defined 

as maximizing the following function, satisfying the 

constraint on the power received: 

 

Maximize: fp(pi) = 1-
∑ 𝑝𝑖,𝑚 

𝑀
𝑚=1

𝑀 × 𝑃𝑚𝑎𝑥
 

Subject to: 𝑝𝑖
𝑟𝑒𝑐  ≥ prth                                                               (4) 

 

where, pi,m is the transmitted power of user i in channel 

m. Pmax is the maximum power that any node can 

transmit. It may depend on node capabilities or battery 

level. 
pi

rec is the power received at receiver i. It is 

calculated as Eq. (5): 

 

                                                 (5) 

 

where, 

gi : Is the channel gain from a transmitting node i to its 

receiving node. 

We define gi = di
-g where di is the distance between 

transmitting node i and its receiving node. γ is the 

path loss index.  

σ: The ambient noise on each channel (assumed to be 

the same on all channels) 

 

The function fp minimize the power consumption, 

therefore the larger the transmission power, the lower 

the fp. 

 

Spectrum allocation and power control based on 

genetic algorithm: In this section, we first introduce 

genetic algorithm. Then we present the details of how 

we implement and apply the GA to the channel 

allocation and power control problems developed in the 

previous section. 

 

Genetic algorithm: A genetic algorithm is a 

biologically inspired heuristic search technique that 

performs well in problems with large search spaces and 

problems that contain many local maxima. This is due 

to the fact that GA works on a population of solutions 

in parallel instead of processing a single solution at a 

time. This technique allows GA to explore several parts 

of the solution space in parallel (Holland, 1992). 

GA is rooted in the mechanisms of evolution and 

natural genetics. A solution to a given problem is 

represented in the form of a string called 

‘chromosome’, consisting of ‘genes’ which hold a set 

of values for the optimization variables (Goldberg, 

1989). 
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Fig. 2: Chromosome structure in spectrum allocation based genetic algorithm 

 

Standard GA techniques begin with a randomly 

selected population of chromosomes and evolve over 

several generations. In each generation, the fitness of 

individual chromosome is evaluated and checked 

against stopping criteria. The stopping criteria can be an 

adequate fitness to be achieved or a time criteria. After 

the stopping criteria have been met, the GA sends the 
appropriate set of transmission parameters to the radio. 

If the stopping criteria are not met, multiple 

chromosomes are selected from the current population 

in order to form a new generation. The selection 

process chooses chromosomes based upon their fitness 

scores, where higher scoring chromosomes have a 

better chance to be selected. There exist different ways 

for chromosome selection, in this study we used the 

method called Roulette wheel (Goldberg, 1989). Once 

the system has selected the chromosomes, the next 

generation is created through two different 

 mechanisms. The first mechanism uses crossover 
techniques. These techniques combine two 

chromosomes with the goal of creating a chromosome 

with  a greater fitness. The second mechanism is 

mutation. The mutation  is  done  randomly  which 

simply  flips  a  bit  in the chromosome to allow the 

system to be more diverse in the exploration of the 

search space.  

 

Spectrum allocation based on genetic algorithm: We 

follow the proposed GA-based spectrum allocation 

scheme of Zhao et al. (2009). In Zhao et al. (2009), it is 
required to perform the constraints-free procedure 

(which will be defined below) as long as the population 

of genetic algorithm is updated. As the update of the 

population is the  most  important  part in the  evolution  

of genetic algorithm, and it is performed repeatedly, 

thus it would bring extra computational complexity. In 

order to reduce the computational complexity, we 

propose to do the constraint-free procedure just to the 

half of the population. 

The steps of the genetic spectrum allocation 

algorithm are as follows: 

 
Encoding: Chromosomes indicate a possible conflict 

free channel assignment.  

As the corresponding elements of conflict free 

assignment matrix A should value 0 when the 

corresponding elements of channel availability matrix L 

value 0, if one bit is used to encode every element in A, 

there will be a lot of redundancy in the chromosome. 

Therefore, only the elements of L that value 1 are 

encoded here. Figure 2 shows an example of the 

structure of a chromosome, where N = 5 and M = 6. 

 

Initializing the population: We determine the size of 

population according to the number of cognitive nodes. 
Then, the population is divided into sets of feasible 

solutions and randomly updated solutions. Feasible 

solutions are the assignment strategies that satisfy the 

interference constraints of spectrum assignment 

problem. In this study, the constraints-free procedure is 

done to the half of chromosomes from the population. 

No additional procedure needs to be done to the 

randomly updated chromosomes from population. 

Although the feasibility randomly updated 

chromosomes is uncertain, but the diversity of the 

chromosomes is guaranteed by the genetic operators. 

 
Constraints free procedure: The value of every bit in 

the chromosome is randomly generated at the initial 

population, thus it may not satisfy the interference 

constraints defined by C. The following process ensure 

that the chromosome satisfies the interference 

constraints:  

 

 For all m (1≤m≤M), search all (I, j) that satisfies ci, j 

=1  

 Check whether both of the two bits corresponding 

to the element in the ith line and mth column of A 
and the element in the jth line and mth column of A 

are equal to 1; if so, randomly set one of them to 0. 

 
Evaluation of the fitness function: We use the 
objective function defined in Eq. (2) as the fitness 
function. 

In order to evaluate the fitness of chromosomes, we 
need to map the chromosome to the channel assignment 
matrix, as the arrows shown in Fig. 2. 

 

Genetic operators: Perform roulette wheel selection 

scheme, crossover scheme and the mutation operation. 
 

Stop criteria: The stop criteria of genetic algorithm are 

checked at each cycle. The number of maximum 

iteration and the difference of fitness value are used as 

the criteria to determine the termination of the genetic 

algorithm.  
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Fig. 3: Flow chart of the genetic spectrum allocation 

algorithm 

 
Figure 3 shows the flow chart of the steps of the 

genetic spectrum allocation algorithm presented above. 

 

Genetic distributed power control algorithm: After 

the interference free channel allocation, the supernode 

will send to each node its assigned channels. Once the 

node receives its assigned channels, the node will 

perform power control using the proposed genetic 

algorithm to decide at which power it will transmit.  

The first step in applying genetic algorithms is to 

define the structure of the chromosomes and the fitness 
function  that   is  used  to  evaluate   the  fitness  of  the 

chromosomes. Hence, we start by defining the 

chromosomes and the fitness function proposed in this 

study: 

 

Chromosomes: The chromosome is defined as the 

power in each channel mÎ (1,..., M). If a channel is not 

assigned to the node, the node will assign a zero power 

to this channel, which means no power. Thus, the 

power control will just be done on the assigned 
channels.  

Transmission power of a radio is discredited into a 

finite number of levels. Let qi represents the number of 

transmission power levels to which node ni can adjust 

its transmitter. Let qi = {0, 1, 2, . . ., Q} be the set of 

transmission power levels at node ni and Q be the total 

number of power levels. 

We determine the number of bits needed to 

represent the power level in each channel as log2(Q). 

Hence the length of the chromosome (Lc) is the 

product of the number of bits needed for the power 

level and the total number of channels M. 
 

Lc= log2(Q).M               (6) 

 

Figure 4 shows an example of the chromosome 

structure, where Q = 8 and M = 6. 

 

Fitness function: According to the power control 

optimization described above, we define the fitness 

function as Eq. (7): 

 

fp(pi) = { 1 −
∑ 𝑝𝑖,𝑚 

𝑀
𝑚=1

𝑀 × 𝑃𝑚𝑎𝑥

          0       𝑒𝑙𝑠𝑒 
𝑖𝑓 𝑝𝑖

𝑟𝑒𝑐 ≥  𝑝𝑟𝑡ℎ              (7) 

We express the constraint on the power received by 
assigning 0 to the chromosomes that do not fulfill the 

minimum received power required for successful 

reception. By doing the latter, we decrease the chance 

of those chromosomes to breed. 

Calculate pi from the power level extracted from 

the chromosomes as Eq. (8): 

 

pi = qi. Pmax/Q               (8) 

 

The remained steps are resumed following the flow 

chart shown in Fig. 5. 
 

SIMULATION SETTINGS AND RESULTS 
 

Simulation settings: In our simulation, primary nodes 

are fixed uniformly within an area of 1000´1000 m 

region and the M channels are randomly occupied by 

the primary nodes.  

The secondary nodes are randomly distributed 

within the same area. The channel availability matrix L 

and interference matrix C are calculated according to 

locations of the primary nodes and secondary nodes.  
 

 
 
Fig. 4: Chromosome structure in power control based genetic algorithm 

0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6
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Fig. 5: Flow chart of the proposed genetic power control 

algorithm 

 

 
 
Fig. 6: The average fitness of the proposed genetic spectrum 

allocation under different number of available 

(licensed) channels 

 

Here the values of channel reward matrix are 

normalized to 1.  

For GA, the population size is set to 10. The 

crossover probability and the mutation probability are 

set to 0.95 and 0.03, respectively.  

In the genetic algorithm for power control, the 

maxim power that a node can use is set to 1 mw (Pmax = 

1 mW), the number of power levels Q = 4, the power 

threshold is set to 10-2 mW, s = 1 and the path loss 

index γ is set to 2.  

 
 
Fig. 7: The average fitness of the proposed genetic spectrum 

allocation under different number of secondary nodes 

 

Because that GA is a randomized algorithm, the 

results of running the GA on the same network may 

differ from one run to another. Thus, results are 

presented as the average of 10 runs rather than a single 

run. 

To show the effectiveness of the proposed 

spectrum allocation and power control algorithms, we 

also apply another kind of genetic algorithms, named 

quantum genetic algorithm. Quantum genetic algorithm 

is the combination  of   quantum   computation   and 

 genetic algorithm, for details in this algorithm the 

reader can refer to (Han and Kim, 2000). 

 

Performance study of GA based spectrum 

allocation: In the following, we study the performance 

of the proposed genetic spectrum allocation algorithm. 

Figure 6 shows the values of the average fitness 

function of proposed genetic spectrum allocation 

algorithm with increased number of secondary nodes. 

Figure 7 shows the simulation results of the average 

fitness function with various available licensed 

channels.  

It can be concluded from Fig. 6 and 7 that the 

genetic spectrum allocation model proposed in this 

study, with the consideration of interference constraints 

between secondary nodes, can achieve good 

performance since the average fitness increase with the 

increase in the number of secondary nodes and the 

number of available licensed channels. By applying the 

quantum genetic algorithm in the spectrum allocation 

model, we get nearly the same performance with 

different number of licensed channels, but we have 

almost better performance with different number of 

secondary nodes. 

 

Performance study of GA based power control: In 

the following subsection, we study the performance of 

the proposed genetic power control algorithm. The 

number of primary nodes is set to 6 and the licensed 

channels M is set to 6. 
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Fig. 8: Fitness function evolution of one node 
 

 
 
Fig. 9: The average fitness of the proposed genetic power 

control under different number of secondary nodes 
 

Figure 8 shows the evolution of the fitness function 

for one user. We can see that after some generations, 

the fitness function stabilizes, which means that the GA 

has converged. The oscillations period is due to the 

chromosomes that can’t satisfy the power constrained 

model, but as the generations increases the algorithm 

will eliminate these latter and keep the best 

chromosomes, i.e. the ones that satisfied the power 

control objective. 

Figure 9 shows the average fitness function of the 
proposed genetic power control algorithm with 

increased number of secondary nodes. We can conclude 

that the proposed algorithm performs well with 

different number of secondary nodes. Additionally, 

conventional genetic algorithm and quantum genetic 

algorithm have almost the same performance  

 

The effect of power constraint: Power control gives 

each node the option to adjust its transmission power so 

as to compromise between minimizing the power 

consumption and achieving a successful reception. In 
this subsection, we show that the proposed genetic 

constrained power control algorithm, effectively 

achieve this goal. We perform simulations with and 

without power constraint.  

Figure 10 and 11 show the power received for 10 

secondary nodes, with and without the power received 

constraint, respectively. 

 
 
Fig. 10: Power received with power constraint 
 

 
 
Fig. 11: Power received without power constraint 

 

Figure 10 shows that with proposed genetic power 

control algorithm all the nodes can get a received power 

more than the threshold. Figure 11 shows that, without 

constraint in the power received, just two nodes could 

achieve a successful reception and that each node is 

minimizing the power as much as it can, this is why 

some of the nodes have zero power transmission. 

 

CONCLUSION 

 

The spectrum allocation and power control are two 

of the main tasks in resource allocation in cognitive 

radio networks. The optimization of these two tasks is 

of great challenges in the distributed systems especially 

in the case of constraints, as most optimization 

algorithms need a central entity (e.g., graph theory). In 

this study we presented models for the power control 

and spectrum allocation based genetic algorithm. 

Simulation results show that it converges and that it 

gives good performances. Simulation results also 

shown that the constraint improves the power control as 

it enables minimizing the power consumption while 

maintaining a successful reception. Furthermore, 

simulations show that the quantum genetic algorithm 

performs the same as the conventional genetic 

algorithm in the proposed power model. 
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