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Research Article 
Nonlinear Responses of a Two Dimensional Vehicle-pavement System 

 

Shaohua Li and Haoyu Li 
Mechanical Engineering School, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 

 

Abstract: The vehicle and pavement are usually investigated separately in vehicle dynamics and pavement 
dynamics. In this work, a new research scheme is proposed to link the vehicle and pavement model by tire loads and 
compute the nonlinear dynamic responses by analytical methods. A two-DOF nonlinear vehicle and a Bernoulli-
Euler beam on a nonlinear elastic foundation with two simply supported ends compose the nonlinear vehicle-
pavement system. The nonlinear tire loads are analytically gained using the averaging method. Then the nonlinear 
vibration equation of the pavement is obtained using Galerkin method and solved using the multiple scales method. 
The theoretical solutions are verified by numerical results and the effects of system parameters on pavement 
vibration are also studied. It is found that the pavement responses excited by tire loads attenuate quickly and small 
pavement mass, large foundation damping or foundation stiffness may decrease the pavement vibration. 
 
Keywords: Beam on nonlinear elastic foundation, method of multiple scales, nonlinear dynamic, tire loads, vehicle-

pavement system 

 
INTRODUCTION 

 
In vehicle dynamics, the responses of vehicles with 

nonlinear suspensions were widely studied. Stensson et 
al. (1994) analyzed nonlinear phenomena in a vehicle 
suspension, including multi-solutions, sub-resonance 
and the system’s   sensitivity  in  numerical  integral. Li 
et al. (2004) investigated chaos in a hysteretic nonlinear 
vehicle suspension both by Melnikov method and many 
numerical methods. Georgios et al. (2008) studied the 
semi-active control based on a nonlinear vehicle with 
MRF damper. Raghavendra and Pravin (2009) 
researched the chaotic motion of a one degree of 
freedom quarter-car model with nonsymmetric 
potential. However, these researches didn’t consider 
responses of pavement induced by the tire load of a 
nonlinear vehicle.  

In pavement dynamics, responses of a beam or a 
plate on a nonlinear elastic foundation under moving 
load was attracted much attention. The moving load is 
often a constant load or a harmonic load with a fixed 
frequency. Kargarnovin et al. (2005) obtained response 
of infinite beams supported by nonlinear visco-elastic 
foundations subjected to harmonic moving loads using 
a perturbation method and investigated influences of 
the load speed and frequency on the beam responses. 
Santee investigated the stability of a beam on nonlinear 
elastic foundation and obtained the critical boundary of 
system instability with the method of Melnikov (Santee 
and Gonalves, 2006). Yang et al. (2006) studied 
nonlinear vibration and singularities of a rectangular 
thin plate on nonlinear elastic foundation. Xiao et al. 

(2008) investigated bifurcation and chaos of rectangular 
moderately thick cracked plates on an elastic 
foundation subjected to periodic load. However the tire 
load acting on pavement is consist of several 
frequencies and depends on vehicle suspension 
vibration. The tire load obtained from vehicle dynamic 
responses are seldom considered in present studies on 
pavement dynamics.  

In this study, a nonlinear vehicle-pavement system 
is modeled by a two-DOF nonlinear vehicle and a 
Bernoulli-Euler beam on the nonlinear elastic 
foundation. The analytical solutions of wheel and 
vehicle body displacement are obtained by the 
averaging method. Then the tire loads of the nonlinear 
vehicle are gained. Subjected to this tire load, a 
nonlinear ordinary differential equation of the pavement 
is obtained using Galerkin method. Then the analytical 
pavement displacement is gained using the multiple 
scales method. Effects of system parameters on 
pavement vibration are also studied, including 
pavement elastic module, foundation damping, linear 
foundation stiffness and nonlinear foundation stiffness. 
 

MATHEMATIC MODEL 

 

A nonlinear vehicle-pavement system is modeled 

by a two-DOF nonlinear vehicle and a Bernoulli-Euler 

beam on a nonlinear elastic foundation with two simply 

supported ends, as shown in Fig. 1. It is assumed that 

the vehicle runs at a constant speed from the midpoint 

of the beam to right direction.  
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Fig. 1: The nonlinear vehicle-pavement model 

 

The vehicle’s equations of motion are expressed by: 

 

1 1 2 1 2 c 1 1 0 1 1 0

2 2 2 2 1

" ( ) ( ) ( ' ') 0

" ( ) 0c

m y K y y F K y y C y y

m y K y y F

+ − − + − + − =


+ − + =

  (1) 

 

where, m1, m2  are the masses of vehicle body and 

wheel respectively; y2, y1 are the body and wheel’s 

vertical displacements respectively; K1, K2 are stiffness 

of tire and suspension, respectively; C1 is tire’s 

damping coefficient.  

The harmonic road roughness y0 is expressed by: 

 

0 0
siny B t= Ω                                                      (2) 

 

where, B0 is the amplitude of road surface roughness, Ω 

= 2 πv/ L0, v and L0 are the vehicle running speed and 

the wavelength of road roughness relatively. 

Fc is the nonlinear skyhook damping control force 

of vehicle suspension. A revised Bingham model is 

applied here (Yang and Li, 2005):  

 

2 2 2 0' sgn( ' )c yF C y F y V= + m                                  (3) 

 

Here C2 is the viscous damping coefficient, Fy is 

controlling force and V0 is the velocity when MRF 

damping force is zero. 

The vertical vibration equation of the pavement 

under the moving vehicle loads can be obtained as 

follows: 

 
4 2

3

3 44 2
( / 2 )r r r

r r

y y y
EI K y K y C m F x L vt

x t t
δ

∂ ∂ ∂
+ + + + = − −

∂ ∂ ∂
       (4a) 

 

where E, I, x, yr, K3, K4, C, L are the modulus of 

elasticity, cross-sectional moment of inertia, vehicle’s 

position in running direction, beam’s vertical 

displacement, linear foundation stiffness, nonlinear 

foundation stiffness, foundation damping and the 

beam’s length respectively. 

Tire load of the nonlinear vehicle: Letting 

dimensionless displacement x1 = y1/B0 , x2 = y2/B0 and 

dimensionless time τ = Ωt, one gets the dimensionless 

vehicle system: 
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Since the coefficients B23 are much smaller than 

other coefficients, the system (4) is weak nonlinear and 

may be investigated by the averaging method. Letting: 
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                                                    (5) 

 

where, φi = τ – θi, i = 1, 2. 

The averaging equations can be derived as follows: 
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where, 
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(a) S1 

 

 
 

(b) S2 

 

 
 

(c) S3 

 
Fig. 2: Function S1, S2 and S3 
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In order to obtain the second term of P2 and R2, the 

following techniques are applied. Letting

20221 sin xaS &−−= ϕ , 20222 sin xaS &+−= ϕ , 

)sinsgn( 2022233 xaBS &mϕ−= . Functions S1, S2 

and S3 are shown in Fig. 2. 

According to – α2 sin φ2 + ��20 = 0, α is gained: 

 

)/arcsin( 220 ax&=α                                              (7) 

 

The value of φ2 is 0, α, π – α, π + α,  and 2π  - α at 

point 1~5 respectively. The four angles divide a period 

of 0~2π into five parts. Thus the second term of P2 and 

R2 can be derived: 
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Letting  �� 1 = �� 2 = ��1 = ��2 = 0 , the stable solution 

equation of system (6)  is obtained: 
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Eliminating θ1 – θ2 from Eq. (9c) and (9d) yields: 
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                                                                                  (10) 

From Eq. (9c) and Eq. (9d) one has: 
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Moving the terms including sin θ1 or cosθ1 from 

the left hand of Eq. (9a) and (9b) to the right hand, 
eliminating θ1-θ2  from the two equations and 
considering Eq. (11), one get: 
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                                                                                   (12) 
 
 From Eq. (10) and Eq. (12) one may get a1 and a2. 
Substituting a1 and a2 into Eq. (10) leads to θ1 and θ2. 
Thus the analytical displacements of wheel and vehicle 
body are ascertained: 

 

)cos(),cos( 222111 θτθτ −=−= axax           (13) 

 
The analytical tire load acting on pavement can be 

expressed as: 
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Responses of the nonlinear pavement: Letting yr = 
U(t) sin πx / L, a nonlinear ordinary equation can be 
gained as follows: 
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Substituting the tire load Eq. (14) into Eq. (3), 

letting dimensionless displacement xr = U/ B0 and 
dimensionless time τ = Ωt, one get the dimensionless 
system: 
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                                                        (16) 
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Here 
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2

5 1 2 0( sin( ) sin ) / ( )F F B Mα φ θ θ= + − Ω  

Due to the weak nonlinearity of system (16), the 
responses can be gained by the multiple scale method. 
Since the excitation frequency is much smaller than the 
inherence frequency of system (16), only the non-
resonance condition is considered. 

One may express the solution in terms of different 
time scales as: 

 

0 0 1 1 0 1
( ) ( , ) ( , )

r r r
x t x T T x T Tε= +                             (17) 

 
where, T0 = τ, T1 = ετ. 

Substituting Eq. (17) into Eq. (16) and equating 
coefficients of like powers of ε leads to: 
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                                                        (18) 
 

The solution for the first line of Eq.(18) is given 
the form: 
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where, cc denotes the complex conjugate of the 
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Substituting  Eq. (19) into  the   second  line  of  

Eq. (18) leads to the condition for eliminating the 
secular term: 
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Separating the real and imaginary parts of Eq. (20), 
one obtains: 
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From Eq. (21), one can get the first order 

approximate solution of the dimensionless system (16):  
 

xr (t)= α cos (ωr τ + β) + B1 cos (γ1τ + θ1) + B2 cos 
(γ2 τ +  θ1) + B3 cos (γτ)                                      (22) 

 
where, 
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Thus the analytical pavement displacement under 

the moving vehicle loads is gained: 
 

0 ( )sin /r ry B x t x Lπ=
              (23)
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Fig. 3: Numerical verification of the analytical tire load 
  

 

Fig. 4: The theoretical solution and numerical solution of 

pavement displacement 

 

Numerical simulation: Parameters of the nonlinear 

vehicle-pavement system (Wang et al., 2005; Deng, 

2000) are m2 = 10109 kg, m1 = 190 kg, K1 = 2060000 

N/m, C1 = 900 Ns
2
/m, K2 = 75000 N/m, C2 = 9000 

Ns
2
/m, C3 = 1000 Ns

2
/m, v0 = 0.1, Fy = 1000 N, B0 = 0.5 

m, Ω = 2Hz, L0 = 20 m, E = 1.6×10
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2
,  I = 5×10

-

4
m

4
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6
 N/m

2
, K4 = -4.8×10

6
 N/m

2
, C = 

0.3×10
5
 Ns/m

2
, M = 1500 Kg, L = 120 m. 

To verify the analytical tire load from averaging 

method, the numerical tire load is obtained by the 

Rugga-Kutta method according to Eq. (1), as shown in 

the dashed line in Fig. 3. The solid line is the analytical  

 

tire load calculated by Eq. (14). From Fig. 3 it can be 

seen that the analytical tire load is very near to the 

numerical one. Thus the analytical tire load can be used 

to investigate the pavement response. 

The solid line in Fig. 4 shows the analytical 

solution of the  pavement  displacement  obtained by 

Eq. (23).  The dashed line From Fig. 4 in Fig. 4 is the 

numerical pavement displacement obtained by 

integrating Eq. (16) numerically. It can be found that 

the pavement response excited by vehicle loads 

attenuates quickly and the analytical pavement 

displacement is very near to the numerical one. Thus 

the verification of the analytical  pavement response 

Eq. (23) is tested. 

Varying the road excitation frequency Ω from 0.5 

rad/s to 22 rad/s, the amplitude frequency response 

curve  of  pavement  displacement  is   gained  from  

Eq. (23), as shown in Fig. 5. It can be seen from Fig. 5 

that with the rise of the road excitation frequency, two 

peaks occur in the pavement response which is 

associate with the inherence frequency of the vehicle 

body and the tire. Letting L0 = 10 m, these two peak 

will occur at the running speed 14km/h and 100 km/h. 

Thus it can be concluded that as the running speed 

increases, the increase in road vibration is not 

monotonous. In other words, the heavy vehicle running 

at low speed may lead to more severe road vibration 

than that running at high speed. 

Figure 6 shows the effects of six system parameters 

on pavement vibration, including pavement length, 

pavement mass, elastic modulus, foundation damping, 

linear foundation stiffness and nonlinear foundation 

stiffness. It can be seen that 

 

• With the rise of pavement length or pavement 

mass, the amplitude of pavement displacement 

increases. Large elastic modulus, foundation 

damping or foundation stiffness will reduce 

pavement vibration. 

 
 

Fig. 5: The amplitude frequency response curve of pavement displacement 
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 (a) The effect of pavement length (b) The effect of pavement mass 

 

 
 

         (c) The effect of elastic modulus                                     (d) The effect of foundation damping, 

 

     

 
                              (e) The effect of foundation stiffness                    (f) The effect of nonlinear foundation stiffness 

 
Fig. 6: The effect of system parameters on pavement vibration  
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• The effect of pavement mass, foundation damping 

and foundation stiffness is greater than that of the 

other three parameters. 

 

CONCLUSION 

 

Nonlinear dynamics of a vehicle-pavement system 

is investigated with the method of averaging, Galerkin 

and multiple scales. Some numerical results are 

presented as well. It can be concluded from this work 

that:  

 

• The analytical solutions of nonlinear vehicle using 

averaging method can be used to compute the tire 

load acting on pavement with enough accuracy. 

• The pavement response excited by vehicle loads 

attenuate quickly and the heavy vehicle running at 

low speed may lead to more severe vibration than 

that running at high speed. 

• Small pavement mass, large foundation damping or 

foundation stiffness may decrease the amplitude of 

pavement vibration. 
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