
Research Journal of Applied Sciences, Engineering and Technology 6(19): 3495-3505, 2013 

DOI:10.19026/rjaset.6.3552 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2013 Maxwell Scientific Publication Corp. 

Submitted: August 15, 2012                        Accepted: September 12, 2012 Published: October 20, 2013 

 
Corresponding Author: J.E. Jam, Composite Materials and Technology Center, MUT, Tehran, Iran 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

3495 

 

Research Article 
Buckling and Free Vibrations of Cylindrical Stiffened Composite Shells with 

 Internal Liquid 
 

J.E. Jam and M.A. Nikjoo
 

Composite Materials and Technology Center, MUT, Tehran, Iran 
 

Abstract: The free vibration and buckling of cylindrical composite shell with internal liquid is studied in this study. 
The shell composed of several composite layers and stiffeners which are rings and stringers. The first order shear 
theory was used for shell and stiffeners. Stiffeners were used in equations as discrete elements. The effects of axial 
force, internal pressure and shell rotation about cylinder axis, were calculated. The Reily-Ritz method was used for 
solving the problem. The potential and kinetic energy of shell and each stiffeners and kinetic energy of liquid are 
substituted in the functional of energy. The natural frequencies and the critical axial forces in each mode is obtained. 
The section shape of each stiffener is rectangle. The stringers can have variable height in their length (a parabolic 
shape for example) and its effect is studied for shell with and without liquid. Also Stiffened composite shell with 
different internal pressure, different axial forces and different rotation speeds is studied. The liquid is ideal and 
sloshing was neglected.  
 
Keywords: Buckling, cylindrical shell, ring, stiffener, stringer  

 
INTRODUCTION 

 
Dynamics of thin-walled cylindrical shells has 

been widely studied in recent decades. In the past years, 
these studies have been based on the classic theory of 
shells. Many of the engineering applications, including 
petrochemical industries, chemical process equipments, 
energy production devices, water transmission lines and 
etc. need tanks and pipes for storage and transportation 
of fluids, hence hereby the importance of studying the 
rotary or fixed cylindrical tanks and shells is stressed 
for these applications.  

In the past, the classical theory of plates and shells 
was used, but by the introduction and application of 
composite materials in industrial scales, it was 
perceived that the application of classical theory for 
plates and shells composed of composite materials 
might be accompanied by very erroneous results. The 
above stated problems made the researchers use the first 
order and other higher order theories. In this research, 
the first order theory has been used. In comparison to 
the classic theory and higher order theories, the first 
order shear theory is a combination of more accuracy 
with respect to the classic theory and also needs less 
computation than higher order theories.  

One of the other problems considered these days, is 
achievement of the best vibration and buckling state in 
shells, i.e., finding the optimum state for a certain 
desired design. Hence, different optimization methods 
were developed, wherein the genetic algorithm was a 
simple, but effective method and considerable attention 

is paid to it in terms of optimization, thanks to the speed 
of advanced computers now commercially available. 

Zhi et al. (2008) have investigated the free 

vibrations of a cylindrical shell reinforced with rings, 

under arbitrary boundary conditions. Jafari and Bagheri 

(2006) studied the free vibrations of a thin cylindrical 

shell reinforced with rings, in which the distances 

between the rings and also their offsets were variable. 

In the same year, Rong-Tyai and Zung-Xian (2006) 

studied the vibrations of a composite cylindrical shell 

reinforced with rings, wherein the rings were 

homogenous and the distances were equal, but the first 

order shear theory was used then. Ramezani and 

Ahmadian (2009) studied all boundary conditions in 

free vibration of rotary cylindrical shell with combining 

the layer wise and wave propagation methods. 

Bagheri and Jafari (2011) studied the free 

vibrations of a cylindrical shell reinforced with rings, 

having unequal distances and offsets; in order to reach 

the best optimized vibration state. Amabili (1997) 

studied the vibrations of a vessel with internal non-

viscous incompressible fluid, where the effects of 

vibrations of the free surface of the fluid and the 

hydrostatic pressure were ignored and Reily-Ritz 

method was used to calculate the mode shapes. 

In this study, buckling and free vibration of            

a stiffened cylindrical composite shell with and    

without liquid and with different rotation speed, internal         

pressure    and   axial   load is investigated. 



Res. J. Appl. Sci. Eng. Technol.,

MATERIALS AND METHODS

 

Shell energy: Displacement equations of a composite 

cylindrical shell have been derived, using the first order 

shear theory. In this theory, the displacement of the 

middle surface of the shell is taken as reference and the 

displacements of the other points are related to the 

middle surface as follows: 

 

( ) ( )0 ,  , ,xu u x z xθ ψ θ= +
 

 

( ) ( )0 , , ,v v x z xθθ ψ θ= +
                            

    

( )0
,w w x θ=

 
 

 

We can see displacement variables in Fig. 1. In 

relation 1, u0, 
v0 and w0 are displacements of the middle 

surface along the x, θ and z directions, respectively. 

and ψθ 
are the rotations of the middle surface around 

and θ directions. Also, z is the distance of each point of 

the shell from the middle surface. 

Using the equations of displacement

cylindrical coordinate system and ignoring the second 

order terms, the following relations are achieved, 

wherein R is the radius of the middle surface of the 

shell: 
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Also, based on the thickness variable, 

the strains can be stated:  

 

{ } { } { }0 1zε ε ε∗= +
                                       

 

Strain vector is considered as: 

 

{ 0 0 0 0 0T

x x x x z xzk k kθ θ θ θ θε ε ε γ γ γ=

 

In the above relations,
 
��

� and ��
�  

the mid-surface, kx, �� 
 and   ���  are the curvedness of 

mid-surface and ��	

  and ��	


  are the transverse shear 

values. By substituting relation 1 in relations 2, the 

strain matrix components can be achieved as following:
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displacements of the other points are related to the 
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We can see displacement variables in Fig. 1. In 

are displacements of the middle 

directions, respectively. ψx 

are the rotations of the middle surface around x 

is the distance of each point of 

Using the equations of displacement-strain in 

cylindrical coordinate system and ignoring the second 

order terms, the following relations are achieved, 

is the radius of the middle surface of the 

                           (2) 

on the thickness variable,                         

                                       (3) 
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 are the strains of 

are the curvedness of 

are the transverse shear 

values. By substituting relation 1 in relations 2, the 

strain matrix components can be achieved as following: 

 
Fig. 1: A schematic of the cylindrical shell and 

variables 
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Generally, the stiffness matrix for an orthotropic 

material is: 
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where, zk and zk-1 show the distances of the middle 
surface from the outer and inner surfaces of the 
layer,  as indicated  in Fig. 2.  N indicates the number of 

 

A schematic of the cylindrical shell and displacement 
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show the distances of the middle 
surface from the outer and inner surfaces of the k-th 

indicates the number of  
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Fig. 2: Number of layers and their distance from the mid-

surface 

 

layers and  �
�  is the transformed stiffness matrix for 

the k-th layer. Also, k0 is the shear correction factor.  

�
�   is defined as: 

 

[ ] [ ][ ]1 T
Q T Q T

− −  =                 (8) 

 

where, 

Q   = The reduced stiffness matrix for the orthotropic 

material 

T    = The rotation matrix 

  

Eventually, the potential energy of the shell is 

calculated from the following relation: 
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where,  

l = The length of the cylinder 
�    =   The strain vector 

S    =   The stiffness matrix  
 

Potential strain energy due to rotation is: 
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where � �,� is: 
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Fig. 3: Cylindrical reinforced shell 

 

Potential energy due to axial force (Na): 
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Kinematic energy of the shell is also found by: 
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The potential energies of inside pressure given by: 
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where P is internal pressure. 

 

Calculation of the energy of stiffeners: In Fig. 3, the 

cylindrical reinforced shell is shown. The offset of 

stiffeners, which is the distance of the middle surface of 

the shell from the middle surface of the stiffener, have 

been shown by �� and ��  , which indicate stringer and 

ring, respectively. The stiffeners used in the present 

research are all of rectangular cross-section and their 

height and thickness are shown by d and b, respectively 

(Fig. 4). These values with the subscript of r indicate 

rings    and   with   the  subscript of s indicate  stringers.  
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Fig. 4: A section of the stiffeners 

 
Energy of the rings: First, the following are defined: 
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In relation 12, the index ri indicates the i-th ring. 

Ixri , lzri are the second moments of the ring cross-section 

around axes, passing through the center of the ring 

cross-section, respectively, which are parallel with the x 

and z axes. Ari is the area of the cross-section and Jri is 

the flexural stiffness of the ring. Eventually, ��
 is the 

offset of the ring, whose value is positive for the 

external ring and negative for the internal ring. The 

potential energy of the ring is achieved from the 

following relation: 
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The  kinetic  energy of the ring is calculated as follows: 
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Potential energy of the rings due to rotation: 
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where Nθ,r is: 
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where ρr is the density of K-th ring. 

 

Energy of the stringers: First, the following must be 

defined: 
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In relations 16, the index sj indicates the j-th 

stringer.  Iysj , lzsj are the second moments of the cross-

section around the two axes perpendicular to each 

other, respectively. Asj (x) is the area of the cross-

section and Jsj (x) is the flexural stiffness of the stringer. 

Eventually, ���(�) is the offset of the stringer, whose 

value is positive for the external stringer and negative 

for the internal stringer. 

The potential strain energy of the stringer              

is achieved as follows: 
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Potential energy of stringers due to axial force (Na): 
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The kinetic energy of the stringer is achieved as 

follows: 
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Investigation of the effect of internal fluid on 

vibrations of cylindrical shell: In order to investigate 

the effect of internal fluid on vibrations of the 

cylindrical shell, one should analyze the interaction 

between the solid and fluid states at their interface, 

using a mathematical model. Assumptions of the 

mathematical model are as follows: 

 

• Flow of the fluid is a potential flow. 

• Fluid is ideal, i.e. is non-viscous and 
incompressible. 

• Displacements are small, so that the linear theory 
can be used. 

• Velocity of the fluid along the cylinder axis is zero. 

• Effects of the surface waves are ignored. 
 

Regarding the first assumption of potential flow, 
the potential flow function in the cylindrical coordinate 
system can be written as: 
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Where in, Φ is the velocity potential function of 
the fluid and x, θ and r are axial, circumferential and 
radial components in the cylindrical coordinate system, 
respectively. 

Components of the velocity of fluid flow are 
determined as follows: 
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�� , �� , ��  are components of fluid velocity along the 

axial, circumferential and radial directions, 

respectively. In order to find the effects of the fluid, one 

should consider the boundary conditions caused by the 

interaction between fluid and solid and apply them in 

the differential equations of the fluid. Hence, regarding 

the fact that the fluid does not penetrate into the shell, 

there is always a constant touch between the outer fluid 

layer and the internal wall of the shell and the radial 

velocity component of the fluid is the same constant as 

that of the shell at their interface. These assumptions 

can be defined through the following equation: 

 

r Rr r R

r R

w
V

r t
==

=

∂Φ ∂ = =  ∂ ∂                         (28)

 

 

In order to solve the differential equation of the 

velocity potential function, the method of separation of 
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the variables can be used. Therefore, the velocity 

potential is considered as the product of the two 

functions, as below: 

 

( ), , , ( ) ( , , )x r t R r S x tθ θΦ =
                         (29)

 

 

So as to solve find the ( , , )S x tθ  function, one can 

apply the boundary conditions of relation 28. By 

application of boundary conditions and substituting the 

above relation into the boundary condition relation, Eq. 

(30) will be achieved: 

 

( ) ( ) ( , , )
, , ,

( )

r R

R r w x t
x r t

R r t

r

θ
θ

=

∂
Φ =

∂ ∂ 
 ∂                          (30)

 

 

where, w is the displacement of the shell in its radial 
direction. 

Substituting relation 30 in the flow potential 

function (relation 26) and performing the mathematical 

simplifications, the homogenous Bessel function is 

resulted as follows: 

 
2

2 2 2 2 2

2

( ) ( )
( )[ ] 0

r

d R r dR r
r r R r i k r n

drdr
+ + − =

               (31)

 

 
Where in, kr  is the number of radial half waves, i.e.: 

 
22

2

r
f

m
k

l c

π ω  = −   
                                        (32)

 

 

For a shell exposed to an internal fluid, the factor 

of R(r) is always negative in relation 31; therefore, the 

general answer of Eq. (31) is expressed as: 

 

( ) ( ) ( )
n r n r

R r AJ ik r BY ik r= +
                        (33) 

 

where, Jn is the type one Bessel function and Yn is 

Bessel function of n- order and r  is the radial 

component in cylindrical coordinate system. For a 

cylinder filled up with fluid, the constant B must be set 

to zero, because the function is singular at the center of 

the cylinder (r = 0). 

Kinetic energy of the fluid which is resulted from 

the movement of the internal fluid due to the shell 

displacement is derived as follows: 

 

 
2

2

0 0 0

1

2

R l

f l f l
T rv dxd dr

π

ρ θ= ∫ ∫ ∫
                            (34) 

 
Where, v is velocity and  Pfl  is the fluid density. 

The square of fluid velocity is equal to the sum of 

the squares of the velocity components in the axial, 

circumferential and radial directions, as follows: 

 
2 2 2 2

x r
v v v vθ= + +

                                               (35)
 

 

By considering the fluid as incompressible and 

neglecting the effects of surface waves, the potential 

energy of the fluid is equal to zero. 

The following functions are adopted to separate the 

spatial variable x, θ and the time variable t: 
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(36)

 
 

Formation of the potential energy function: Now, 

having the potential and kinetic energies of the shell, 

fluid and stiffeners, one can form the potential energy 

function as follows, where n is the number of rings and 

m is the number of stringers (Jafari and Bagheri, 2006): 

 

,1

,1
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fl shell shell h Na P

n

ri ri h ri
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sj sj Nasj

F T U T U U U

T U U

T U U

=

=

= − + + + + +

− − +

− −

∑
∑

                             (37)
 

 

where,  

Tfl   =  The kinetic energy of the fluid 

Ushell  =  The potential strain energy of the shell 

Uh
       

=  The potential energy of the shell due to 

rotation 

UNa     =  Potential energy of shell due to axial force 

UP      =  The potential energy due to pressure 

Tshell   =  The kinetic energy of the shell 

Tri        =  The kinetic energy of one ring 

Uri     =  The potential strain energy of one ring 

Uh,r     =  The potential energy of the ring due to 

rotation 

Tsj        =  The kinetic energy of one stringer 

Usj     =  The potential strain energy of one stringer 

UNa,s  =  The potential energy of the                 

stringer             due             to     axial   force 

 
Problem solving: Reily-Ritz method has been used to 
solve the problem. This method is based on the 
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minimum potential energy method. According to Reily-
Ritz method, in order for the potential energy which is a 
function of A, B, C, D and E to be a minimum, the 
differentiation of the total energy with respect to the 
factors applied in the displacement field, must go zero. 
Therefore, a differentiation is taken from the total 
energy of the system with respect to the stated factors 
and is set to zero. Then, a 5 Eq. (5) unknown 
differential set of equations is arrived at, wherein the A, 
B, C, D and E are its unknowns.  

By reordering the terms, the following matrix 
relation is achieved: 
 

[ ] [ ]2 0

A

B

K M C

D

E

ω

 
 
   − =  
 
 
                                             

(38) 

 
Where in, K and M are the stiffness and mass 

matrices of the structure, respectively. The components 
of the matrix K involve the geometrical dimensions and 
the physical specifications of the structure. In order to 
determine the non- evident answers of the relation (37), 
a generalized eigenvalue problem has to be solved. In 
order for the Eq. (37) to have a non- evident answer, the 
determinant of the factors must be set to zero:  
 

2 0K Mω− =
                                                     (39)

 

 
From the above, the natural frequencies for each of 

the (m, n) modes are achieved. 
 

RESULTS AND DISCUSSION 
 

Comparison of the results for the isotropic shell 
reinforced with ring and stringer: In Table 1 
geometrical specifications of the shell and stiffeners is 
presented. In Table 2, the natural frequencies of the 
present research are compared with those of an 
experimental research and also those of an analytical 
research.  

As it is seen in Table  2, there is a good 
convergence between the reference frequencies and the 
frequency achieved from the present research.  
 
Table  1: Geometrical specifications of the shell and stiffeners 

Characteristic Size 

Number of stringer/ring 13/20 
Radius 0.203 m 
Thickness 0.00204 m 
Length 0.813 m 
Height of stringer/ring 0.006/0.006 m 
Width of stringer/ring 0.004/0.008 m 

E 207 GPa 
ν 0.3 

ρ 7430 kg/m3 

Table  2: Comparison of the results of an isotropic shell reinforced 
with ring, and stringer without internal fluid 

Present research Mustafa and 
Ali (1989) 

Experimental 
(ESDU, 1982) n m 

929 942 938 1 1 
430 439 443 2 1 
334 337 348 3 1 
485 482 492 4 1 
739 740 745 5 1 

 
Table 3: Geometrical specifications of the shell and fluid 

Characteristic Size 

Radius 0.9 
Radius to thickness ratio 60 
Length to radius ratio 24.98 
Density of the fluid 1000 
Density of the shell 7812 
E 203.4 GPa 
ν 0.3 

 
Table 4: Comparison of the results of isotropic shell with internal 

fluid 

Present 
research 

Toorani 
and Lakiss Newredson Lakiss and sino m 

4.268 4.1965  4.504 4.549  1  
16.349 16.062  17.257  17.46  2  
34.455 34.225  36.361  37.131  3  
56.473 55.63  59.594  62.115  4  

 
Table  5: Geometrical specifications of the shell and stiffeners 

Characteristic Size 

Number of stringer 60 
Radius 0.242 m 
Thickness 0.00065 m 
Length 0.6096 m 
Height of stringer 0.00702 m 
Width of stringer 0.00255 m 
E 68.95 GPa 
ν 0.3 
ρ 2714 kg/m3 

 
Comparison of the results for the isotropic shell 
filled up with fluid: Specifications of the shell and 
fluid are included in Table  3:  

In Table 4, natural frequencies of the present 
research are compared with a number of references. 
The unit of the frequencies is Hertz. 
As it is realized, there is a good convergence between 
the reference frequencies and the frequency achieved 
from the present research.  
 
Comparison of the results for the isotropic shell 
reinforced with stringer: Specifications of the shell 
and fluid are included in Table 5. 

In Table  6, the natural frequencies of the present 

research are compared with those of an experimental 

research and also those of an analytical research. 

As it is seen in Table   6, there is a good 

convergence between the reference frequencies and the 

frequency achieved from the present research.  
 

Discussion: Here, natural frequencies of the system in 

different  states  are  studied and the effective factors on  
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Table  6: Comparison of the results of an isotropic shell reinforced 
with stringer and without internal fluid 

Present Research 
Mustafa and 
Ali (1989) 

Experimental 
(ESDU, 1982)

1135 1141    
671 674    
426 427    
297 296    
229 225  231  
195 188 197 
184 174 189 
190 177 199 
208 193 219 

 
Table  7: Geometrical specifications of the shell  

 Characteristic 

L 
R 
Thickness 
Sequence of layers 

 
Table  8: Properties of the materials used in this section

Name of material 

E11 

(GPa) 

E22 

(GPa) 

G12 

(GPa) 

Steel 206 206  

Carbon/Epoxy 139.4 8.35 3.1 

 
natural frequencies and buckling have been 
investigated. The  specification  of  
Table  7. 

Characteristics of materials used in different 
sections of the investigation of the results
in Table  8. 

It is noteworthy that in all the investigated sections 

of the present project, the material of the stiffeners is 

steel and in the case of existence of fluid, water is the 

case. The boundary conditions of the shell are simply 

supported in two ends at all sections. The material of 

shell is carbon/epoxy and the "m" in mode shape is 

equal to 1. 

 
Investigation of the effect of variable height of 
stringers on natural frequencies: 
Shell has stringers with variable height and without 
internal liquid: The height of stringers varied in form 
of parabola that shown in Fig.  5. 

Table  9 has 5 states for stringers. The state 1 and 

state 2 are parabola with maximum (Fig.

shape) and the state 4 and state 5 are parabola with 

minimum (Fig.   5, upper shape). The state 3 is a straight 

line. 

Regarding the Fig. 6, in state 3 the natural base 

frequency is minimum.  

In state 1 and state2 base frequencies are bigger 

than state3. The base frequency of state 1 that (

larger, is higher than state2. 

In state 4 and state5 base frequencies are 

than state3. The base frequency of state 5 that (

is   larger,  is  the  highest   frequency.    
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son of the results of an isotropic shell reinforced 
 

Experimental 
(ESDU, 1982) n m 

1  1 

2  1  
3  1  

4  1  

5  1  
6 1 

7 1 

8 1 
9 1 

 

Size 

1 m 
0. 2 m 
0.002 m 
(90, 0, 0, 90) 

Properties of the materials used in this section 

ν 

Ρ 

(kg/m3) 

0.3 7800 

0.27 1542 

natural frequencies and buckling have been 
 shell is seen in 

s of materials used in different 
investigation of the results, are presented 

It is noteworthy that in all the investigated sections 

of the present project, the material of the stiffeners is 

fluid, water is the 

case. The boundary conditions of the shell are simply 

supported in two ends at all sections. The material of 

shell is carbon/epoxy and the "m" in mode shape is 

Investigation of the effect of variable height of 

Shell has stringers with variable height and without 
The height of stringers varied in form 

9 has 5 states for stringers. The state 1 and 

state 2 are parabola with maximum (Fig.   5, lower 

shape) and the state 4 and state 5 are parabola with 

5, upper shape). The state 3 is a straight 

Regarding the Fig. 6, in state 3 the natural base 

In state 1 and state2 base frequencies are bigger 

than state3. The base frequency of state 1 that (d2/d1) is 

In state 4 and state5 base frequencies are bigger 

than state3. The base frequency of state 5 that (d2/d1)   

   Therefore  with  

                                  

(a) 

                                  

 

(b) 

 
Fig. 5: Different height of stringers in 

shape has minimum and lower shape has maximum

 
Table 9: The shapes of stringers 

State number Shape name 

1 Parabola with maximum

2 Parabola with maximum

3 Straight line 

4 Parabola with minimum 

5 Parabola with minimum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: The effect of stringer height on natural frequency of 

shell without liquid 

 

increasing the d2/d1 ratio, natural frequencies at base 

mode increase and the parabola with minimum for 

stringers has higher base frequency. 

 

Shell has stringers with variable height and with 

internal liquid: In this section the states is same as 

previous and the difference is the internal liquid.

Regarding the Fig. 7, in state 3 the natural 

frequency is minimum in all modes. 

In state 1 and state2, base frequencies are bigger 

than states 3, 4 and 5. The base frequency of state 1 that 

(d2/d1)    is    larger,   is   the   highest 
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Fig. 5: Different height of stringers in parabolic form. Upper 

shape has minimum and lower shape has maximum 

Distribution of height 

 d1 = 15, d2 = 50 

 d1 = 25, d2 = 30 

d1 = 40, d2 = 0 

 d1 = 25, d2 = 30 

 d1 = 15, d2 = 50 

Fig. 6: The effect of stringer height on natural frequency of 

ratio, natural frequencies at base 

mode increase and the parabola with minimum for 

stringers has higher base frequency.  

Shell has stringers with variable height and with 

In this section the states is same as 

is the internal liquid. 

Regarding the Fig. 7, in state 3 the natural 

frequency is minimum in all modes.  

In state 1 and state2, base frequencies are bigger 

than states 3, 4 and 5. The base frequency of state 1 that 

hest   base  frequency. 

4 5

d1 = 15 mm . d2 = 50 mm
d1 = 25 mm . d2 = 30 mm

d1 = 25 mm . d2 = 30 mm
d1 = 15 mm . d2 = 50 mm

Material (4) and (90/0/90) without different hight stringers 
                                and internal fluid  
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Fig. 7: The effect of stringer height on natural frequency of 

shell with liquid 

 
Table  10: Geometrical specifications of the shell and stiffeners 

 Characteristic Size 

Height of stiffeners 0.01 m 
Width of stiffeners 0. 002 m 

Number of rings 5 

Number of stringers 8 
L 1 m 

R 0. 2 m 

Thickness 0.002 m 
Sequence of layers (90, 0, 0, 90) 

 
ccIn state 4 and state5 base frequencies are bigger than 
state3. The base frequency of state 5 that (d2/d1) is 
larger, is higher than state 4. Therefore with increasing 
the d2/d1 ratio, natural frequencies at base mode 
increase and when we have internal liquid, the parabola 
with maximum for stringers has higher base frequency.  
 
Investigation of the effect of rotation, axial force and 
pressure on buckling and natural frequencies: In this 
section the specification of shell is seen in Table  10:  
 
Buckling of stiffened shell with different internal 
pressure: Regarding the Fig. 8, with increasing the 
internal pressure, critical buckling forces at different 
modes increase. In the pressure of -500 kPa, the shell 
collapsed in mode n = 3. 

The differences between critical forces in each 
pressure in different modes are almost same. The 
minimum critical buckling forces in all speeds occur in 
mode m = 1 and n = 3. 
 
Natural frequencies of stiffened shell with internal 
liquid and different internal pressure: Regarding the 
Fig. 9, with increasing the internal pressure, the   
natural frequencies in different modes and                
base frequency increase. In pressure of -500 kPa       
and   in mode 3, because of shell collapsing          
natural frequency is zero. Internal pressure does         
not have any effects on mode n = 1and does not  
differing    the    natural     frequency    in     this   mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8: Critical buckling forces of shell with different internal 

pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9: Natural frequencies of stiffened composite cylindrical 

shell with internal liquid and different pressure 

 
When pressure varying from -500 to 1500 kPa, 

mode switching occur two times. When pressure is -330 
kPa and less, the base mode is m = 1 and n = 3. From -
160 kPa to 1000 kPa, the base mode is m = 1 and n = 2. 
When the pressure is 1500 kPa and more, the base 
mode is m = 1 and n = 1. 

If the purpose is increasing the base frequency with 
increasing internal pressure, increasing the pressure 
more than a certain pressure (1420 kPa in this case) can 
not increase the base frequency, because the base mode 
is n = 1 and the natural frequency in this mode dose not 
changing with internal pressure. 
 
Buckling of rotary stiffened shell with internal 
pressure of 500 kPa: Regarding the Fig. 10, with 
increasing the speed of rotation, critical buckling forces 
at different modes increase. The differences between 
critical forces in each pressure in different    modes are 
almost same. 
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Fig. 10: Critical buckling forces of shell with different 

rotation speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11: Natural frequencies of shell with different rotation 

speeds 

 
The minimum critical buckling forces in all speeds 

occur in mode m = 1 and n = 3. 
 

Natural frequencies of rotary stiffened shell without 

internal liquid and with internal pressure of 500 

kPa: Regarding the Fig. 11, with increasing the speed 

of rotation, natural frequencies at different modes 

increase. Speed of rotation does not have any effects on 

mode n = 1 and the natural frequency does not 

changing in this mode. 

When rotation speed varying from 0 to 2000 

rad/sec, mode switching occur one time. When the 

speed of rotation is 1000 rad/sec and less, the base 

mode is m = 1 and n = 2. When the speed of rotation is 

1500  rad/sec  and  more,  the  base mode is m = 1 and 

n = 1. 

When rotation speed varying from 0 to 2000 
rad/sec, mode switching occur one time. When the 
speed of  rotation  is  1000  rad/sec  and  less,  the  base  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12: Natural frequencies of shell with different axial loads 

 
mode is m = 1 and n = 2. When the speed of rotation is 
1500  rad/sec  and  more,  the  base mode is m = 1 and 
n = 1. 
 
Natural frequencies of stiffened shell without 
internal liquid and with different axial loads:  For all 
states in this section, the internal pressure is 500 kPa 
and the rotation speed is 500 rad/sec. 

Regarding the Fig. 12, with increasing the 
compressive axial load, natural frequencies at different 
modes decrease and with increasing the tensile axial 
load, natural frequencies at different modes increase. In 
all states, the base frequencies occur in mode m = 1 and 
n = 2. Maximum difference is between base frequencies 
and with increasing n, the difference between natural 
frequency decrease.    

 
CONCLUSION 

 

• In stiffened composite shell without liquid, by 

increasing the d2/d1 ratio, natural frequencies at 

base mode increase and the parabola whit 

minimum for stringers has higher base frequency.  

• In stiffened composite shell with internal liquid, by 
increasing the d2/d1 ratio, natural frequencies at 
base mode increase and the parabola with 
maximum for stringers has higher base frequency.  

• In stiffened composite shell with increasing the 

internal pressure, critical buckling forces at 

different modes increase. 

• In stiffened shell with internal liquid, by increasing 

the internal pressure, the natural frequencies in 

different modes and base frequency increase. 

• In stiffened shell with internal liquid, with 

increasing the speed of rotation, critical buckling 

forces and natural frequencies at different modes 

increase. 

• In stiffened shell with increasing the compressive 

axial load, natural frequencies decrease at different 

   0.5

   1.0

    2.0

    3.0

2 3 4 5 6
n

C
ri

ti
ca

l 
b

u
c
k

in
g
 f

o
rc

e
 (

N
)

Carbon-epoxy and (90/0/0/90) with stringers and ring
                 and inner pressure = 500 kPa 

omega = 0 (rad/=sec)
omega = 100
omega = 500
omega = 1000

omega = 1500
omega = 2000

   1.5

    2.5

      0
1 2 3 4 5

n

F
re

q
u
e
n

c
y
 (

ra
d
/s

ec
o

n
d
)

Carbon-epoxy and (90/0/0/90) with stringers and ring
                and inner pressure = 500 kPa 

omega = 0 (rad/sec)
omega = 100
omega = 500
omega = 1000
omega = 1500
omega = 2000

2000

10000

4000

6000

8000

12000

14000

6

      0
1 2 3 4 5

n

N
et

u
ra

l 
fr

e
q
u

e
n

cy
 (

ra
d

/s
e
c
)

Carbon-epoxy and (90/0/0/90) with stringers and ring
              and inner pressure = 500 kPa 

axial forc = 30 KN tensile 
15 KN tensile 
1 KN compressive 
15 KN compressive
30 KN compressive
40 KN compressive

1000

  5000

2000

3000

4000

6

  7000

6000

  9000

8000



 

 

Res. J. Appl. Sci. Eng. Technol., 6(19): 3495-3505, 2013 

 

3505 

modes and with increasing the tensile axial load, 

natural frequencies increase at different modes. 
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