Research Journal of Applied Sciences, Engineering and Technology 6(17): 3161-3164, 2013
DOI:10.19026/rjaset.6.3618
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2013 Maxwell Scientific Publication Corp.
Submitted: January 14, 2013
Accepted: March 02, 2013
Published: September 20, 2013

Research Article

A Characterization of Sporadic Janko Group $\mathbf{J}_{\mathbf{1}}$

Deqin Chen and Shitian Liu
School of Science, Sichuan University of Science and Engineering, Zigong Sichuan, 643000, China

Abstract

Let G be a group and $\omega(\mathrm{G})$ be the set of element orders of G. Let $k \in \omega(G)$ and s_{k} be the number of elements of order k in G . Let nse $(\mathrm{G})=\left\{\mathrm{s}_{\mathrm{k}} \mid \mathrm{k} \omega(G)\right\}$. In Khatami et al. (2011) and Liu (2012c) the authors proved that $L_{3}(2)$ and $L_{3}(4)$ are unique determined by nse (G). In this study, we prove that if G is a group such that nse $(\mathrm{G})=\operatorname{nse}\left(J_{1}\right)$, then $\mathrm{G} \cong J_{1}$.

Keywords: Element order, Janko group, Number of elements of the same order, Thompson' problem

INTRODUCTION

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a group. The set of element orders of G is denoted by $\omega(\mathrm{G})$. Let $\mathrm{k} \in \omega(\mathrm{G})$ and S_{k} be the number of elements of order k in G. Let nse $(\mathrm{G})=\left\{\mathrm{S}_{\mathrm{k}} \mid \mathrm{k} \in \omega(\mathrm{G})\right\}$. Let $\pi(G)$ denote the set of prime p such that G contains an element of order p. A finite group G is called a simple $K n$-group, if G is a simple group with $|\pi(G)|=\mathrm{n}$. Thompson posed a very interesting problem related to algebraic number fields as follows Shi (1989).

Thomson' problem: Let $T(G)=\{(n, s \mid n \in \omega(G)$ and $\mathrm{S}_{\mathrm{n}} \in$ nse $\left.(\mathrm{G})\right\}$, where S_{n} is the number of elements with order n. Suppose that $T(G)=T(H)$. If G is a finite solvable group, is it true that H is also necessarily solvable?

It was proved that: Let G be a group and M some simple K_{i}-group, $\mathrm{i}=3,4$, then $G \cong M$ if and only if $|\mathrm{G}|$ $=|\mathrm{M}|$ and nse $(\mathrm{G})=$ nse (M) (Shao et al., 2009, 2008). And also the groups $\mathrm{A}_{12}, \mathrm{~A}_{13}$ and L_{5} (2) are characterizable by order and nse (Guo et al., 2012; Liu, 2012a; 2012b), respectively). Recently, all sporadic simple groups are characterizable by nse and order (Khalili et al., 2013)).

Comparing the sizes of elements of same order but disregarding the actual orders of elements in $T(G)$ of the Thompson Problem, in other words, it remains only nse (G), whether can it characterize finite simple groups? Up to now, some groups especial for $\operatorname{PSL}(2, q)$, can be characterized by only the set nse (G) (Khalili et al., 2011; Shen et al., 2010), respectively).

The author has proved that the groups $\mathrm{L}_{3}(4)$ and $\mathrm{L}_{2}(16)$ are characterizable by nse (Liu, 2012b, 2013) respectively). In this study, it is shown that the group J_{1},
which the number of the set of the same order is 10 , also can be characterized by nse $\left(\mathrm{J}_{1}\right)$, that is.

MAIN THEOREM

Let G be a group with nse $(G)=$ nse $\left(\mathrm{J}_{1}\right)$.
Then $G \cong J_{1}$. In the proof of the Main Theorem, we use the technique of Khalili et al. (2003) to make the proof simple. Namely, we investigate the influence of the primes 7,19 on the set $\{2,3,5,7,11,19\}$ and the order of elements of the group. Hence we only consider the sets $\{2\},\{2,3\},\{2,5\},\{2,11\},\{2,3,5\},\{2,3$, $11\},\{2,3,5,11\}$ and $\pi(G)=\{2,3,5,7,11,19\}$. Finally, we get the desired result by order consideration.

Some lemmas:

Lemma 1: Frobenius (1895) Let G be a finite group and m be a positive integer dividing $|\mathrm{G}|$. If $L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}$, then $m \| L_{m}(G) \mid$

Lemma 2: Miller (1904) Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p subgroup of G and $n=p^{5} m$ with $(p, m)=1$. If P is not cyclic and $s>1$, then the number of elements of order n is always a multiple of P^{s}.

Lemma 3: Shen (2010) Let G be a group containing more than two elements. If the maximal numbers of elements of the same order in G is finite, then G is finite and $|G| \leq s\left(s^{2}-1\right)$

Lemma 4: Hall (1959) [Theorem 9.3.1]) Let G be a finite solvable group and $|\mathrm{G}|=\mathrm{mn}$, where $m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}},(\mathrm{~m}, \mathrm{n})=1$. Let $\pi=\left\{p_{1} \cdots, p_{r}\right\}$ and h_{m}

[^0]be the number of Hall π-subgroups of G. Then $h_{m}=q_{1}^{\beta_{1}} \cdots q_{s}^{\beta_{s}}$ satisfies the following conditions for all $i \in\{1,2, \cdots, s\}$:

- $q_{i}^{\beta_{i}} \equiv 1\left(\bmod p_{j}\right)$ for some P_{j}
- The order of some chief factor of G is divided by $q_{i}^{\beta_{i}}$

PROOF OF THEOREM

Let G be a group such that nse $(G)=$ nse $\left(\mathrm{J}_{1}\right)$ and s_{n} be the number of elements of order n . By Lemma 3 we have G is finite. We note that $s_{n}=k \phi(n)$, where k is the number of cyclic subgroups of order n. Also we note that if $\mathrm{n}>2$, then $\phi(n)$ is even. If $m \in \omega(G)$, then by Lemma 1 and the above discussion, we have:

$$
\left\{\begin{array}{l}
\phi(m) \mid s_{m} \tag{1}\\
m \mid \sum_{d \mid m} s_{d}
\end{array}\right.
$$

We rewrite the main theorem here to read easily.
Theorem: Let G be a group with nse $(\mathrm{G})=$ nse $\left(\mathrm{J}_{1}\right)=$ $\{1,1463,5852,11704,15960,23408,25080,27720$, $29260,35112\}$. Then $G \cong J_{1}$.

Proof: We prove the theorem by first proving that $\pi(G) \subseteq\{2,3,5,7,11,19\}$, second showing that $|\mathrm{G}|=$ $\left|\mathrm{J}_{1}\right|$ and so $\mathrm{G} \cong J_{1}$

By (1.1), $\pi(G) \subseteq\{2,3,5,7,11,13,19,29\}$. If $\mathrm{m}>2$, then $\phi(\mathrm{m})$ is even, then $S_{2}=1463,2 \in \pi(G)$. In the following, we prove that $13,29 \notin \pi(G)$.

If $13 \in \omega(G)$, then by (1.1), $S_{13}=35112$. If $2 \cdot 13 \in \omega(G)$, then $s_{26} \in$ nse (G). Therefore $2 \cdot 13 \notin \omega(G)$. Now we consider Sylow 13-subgroup P_{13} acts fixed point freely on the set of elements of order 2, then $\mid P_{13} \| s_{2}(=1463)$, a contradiction.

Similarly $29 \notin \omega(G)$. In fact, by (1.1), $s_{29}=$ 29260.

If $2 \cdot 29 \in \omega(G)$, then $S_{58} \notin$ nse (G). Therefore $2 \cdot 29 \notin \omega(G)$. Now we consider Sylow 29-subgroup P_{29} acts fixed point freely on the set of elements of order 2, then $\mid P_{29} \| s_{2}(=1463)$, a contradiction.

Therefore, $\pi(G) \subseteq\{2,3,5,7,11,19\}$. By (1.1), we have that $\mathrm{S}_{3}=5852$ or $23408, S_{5}=11704, s_{7}=$ $25080, S_{11}=15960$ and $S_{19}=27720$.

If $3.19 \epsilon \omega(\mathrm{G})$, then by (1.1) $57 \mid 1+s_{3}+s_{19}+s_{57}$ and $\phi(57) \mid s_{57}$ and so we have $s_{57} \notin \mathrm{nse}(\mathrm{G})$, a contradiction. Hence $3.19 \notin \omega(G)$.

If $5.19 \in \omega(G)$, then by (1.1) $95 \mid 1+s_{5}+s_{19}+s_{95}$ and $\phi(95) \mid s_{95}$ and so we have $s_{95} \notin$ nse (G), a contradiction. Hence $5 \cdot 19 \notin \omega(G)$.

Similarlly, we can prove that $7 \cdot 19 \notin \omega(G)$ and $11 \cdot 19 \notin \omega(G)$
If $2^{a} \in \omega(G)$, then $\phi\left(2^{a}\right) \mid s_{2^{a}}$ and so $0 \leq a \leq 5$.
Similarly if $3^{a} \in \omega(G)$, then $1 \leq a \leq 3$; if $5^{a} \in \omega(G)$, then $1 \leq a \leq 2$; if $11^{a} \in \omega(G)$, then $1 \leq a \leq 2$.

If $7^{a} \in \omega(G)$, then $1 \leq a \leq 2$. If $7^{2} \in \omega(G)$, then $S_{7^{2}} \notin$ nse (G), therefore $\mathrm{a}=1$. Similarly, if $19^{a} \in \omega(G)$, then $\mathrm{a}=1$.

Therefore, we have that $2^{6}, 3^{4} \notin \omega(G)$; $p \cdot 19 \notin \omega(G)$ with $\mathrm{p}=2,3,5,7,11,19 ; p^{2} \notin \omega(G)$ with $\mathrm{p}=7,19 ; p^{3} \notin \omega(G)$ with $\mathrm{p}=5,11$.

If $5 \in \pi(G)$, then $\exp \left(\mathrm{P}_{5}\right)=5$ or 25 .
If $\exp \left(\mathrm{P}_{5}\right)=5$, then $\mid P_{5} \| 1+s_{5}(=11705)$ and so $\left|P_{5}\right|=5$. It follows that $n_{5}=s_{5} / \phi(5)=2 \cdot 7 \cdot 11 \cdot 19$ and so $7,11,19 \in \pi(G)$.

If $\exp \left(\mathrm{P}_{5}\right)=25$, then $\mid P_{5} \| 1+s_{5}+s_{25}(=39425)$ and so $\left|P_{5}\right|=25, n_{5}=2 \cdot 3^{2} \cdot 7 \cdot 11$

If $7 \in \pi(G)$, then $\mid P_{7} \| 1+s_{7}(=25081)$ and so $\left|P_{7}\right|=7$. So $n_{7}=2^{2} \cdot 5 \cdot 11 \cdot 19$ and so $5,11,19 \in \pi(G)$. If $11 \in \pi(G)$, then $\exp (\mathrm{P} 11)=11,121$.

If $\exp \left(\mathrm{P}_{11}\right)=11$, then $\mid P_{11} \| 1+s_{11}(=11705)$ and so $\left|P_{11}\right|=11$. It follows that $n_{11}=2^{2} \cdot 3 \cdot 7 \cdot 19$ and so $3,7,19$ $\in \pi(G)$.

If $\exp \left(\mathrm{P}_{11}\right)=121$, then $\mid P_{11} \| 1+S_{11}+S_{121}(=$ 43681) and so $\left|P_{11}\right|=121$. Hence $n_{11}=2^{2} \cdot 3^{2} \cdot 7$ and so $3,7 \in \pi(G)$.

If $19 \in \pi(G)$, then as $19^{2} \notin \omega(G)$, we have that $\left|P_{19}\right| \mid 1+s_{19} \quad(=27721)$ and $\left|P_{19}\right|=19$. Hence $n_{19}=2^{2} \cdot 5 \cdot 7 \cdot 11$. So $5,7,11 \in \pi(G)$.

Therefore we only consider that the set $\pi(G)$ is $\{2\},\{2,3\},\{2,5\},\{2,11\},\{2,3,5\},\{2,3,11\},\{2,3$, $5,11\}$ and $\pi(G)=\{2,3,5,7,11,19\}$. So we divide the proofs into the following cases.

Case a: $\pi(G)=\{2\}$. In this case, $\omega(\mathrm{G}) \subseteq\left\{1,2,2^{2}, 2^{3}\right.$, $\left.2^{4}, 2^{5}\right\}$. But the number of the set of nse (G) is 10 , so we get a contradiction.

Case b: $\pi(G)=\{2,3\}$. Since $3^{4} \in \omega(G)$, then $\exp \left(\mathrm{P}_{3}\right)$ $=3,9,27$. So we consider the following subcases.

First let $\mathrm{S}_{3}=5852$.

- \quad Subcase b.1.1: $\exp \left(P_{3}\right)=3 . \mid P_{3} \| 1+s_{3}(=5853)$ and so $\left|P_{3}\right|=3$. So $n_{3}=2 \cdot 7 \cdot 11 \cdot 19$. It follows that 7 , $11,19 \in \pi(G)$, a contradiction.
- \quad Subcase b.1.2: $\exp \left(\mathrm{P}_{3}\right)=9 . \mid P_{3} \| 1+s_{3}+s_{9}(=$ 30933) and so $\left|\mathrm{P}_{3}\right|=9$. Whence $n_{3}=2^{2} \cdot 5 \cdot 11 \cdot 19$ and so $5,11,19 \in \pi(G)$, a contradiction.
- Subcase b.1.3: $\exp \left(P_{3}\right)=27$. We know that $\left|P_{3}\right| \geq 3^{3}$. If $\left|P_{3}\right|=3^{3}$, then we have a contradiction since $s_{27} \in \operatorname{nse}(\mathrm{G})$. Second let $\mathrm{S}_{3}=23408$.
- Subcase b.2.1: $\exp \left(P_{3}\right)=3, \mid P_{3} \| 1+S_{3}(=$ 23409) and so $\mid P_{3} \| 3^{4}$.

If $\left|P_{3}\right|=3$, then $n_{3}=2^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 19$. It follows that 5, 7, 11, $19 \in \pi(\mathrm{G})$, a contradiction. If $\left|P_{3}\right|=9$, then $|\mathrm{G}|$ $=\quad 175560+5852 \mathrm{k}_{1}+11704 \mathrm{k}_{2}+15960 \mathrm{k}_{3}+23408 \mathrm{k}_{4}+$ $25080 \mathrm{k}_{5}+27720 \mathrm{k}_{6}+29260 \mathrm{k}_{7}+35112 \mathrm{k}_{8}=2^{l} .3^{2}$ with k_{1}, \cdots, k_{8} and 1 are nonnegative integers and $0 \leq k_{1}+\cdots+k_{8} \leq 1$. Since $175560 \leq|\mathrm{G}|=2^{l} \cdot 3^{2} \leq$ $175560+35112 \cdot 1 \cdot 8$, we have $1=15$. Hence $|\mathrm{G}|=175560+5852 k_{1}+11704 k_{2}+15960 k_{3}+23408 \quad k_{4}$ $+25080 k_{5}+27720 k_{6}+29260 k_{7}+35112 k_{8}=2^{15} \cdot 3^{2}$, but the equation has no solution in N . If $\left|P_{3}\right|=3^{3}$ or $\left|P_{3}\right|=3^{4}$, then by Lemma 2, $s_{3}=\left|P_{3}\right| t$ for some integer t . But the equation has no solution in N .

- Subcase b.2.2: $\exp \left(P_{3}\right)=9$. We have that $\mid P_{3} \| 1+s_{3}+s_{9}(=51129)$ and so $\left|P_{3}\right|=9$. Whence $n_{3}=2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11$ and so $5,7,11 \in \pi(G)$, a contradiction.
- Subcase b.2.3: $\exp \left(\mathrm{P}_{3}\right)=27$. We know that $\left|P_{3}\right| \geq 3^{3}$. If $\left|P_{3}\right|=3^{3}$, then $s_{27}=27720$ and so $n_{3}=2^{2} \cdot 5 \cdot 7 \cdot 11$. It follows that $5,7,11 \in \pi(G)$, a contradiction.

If $\left|P_{3}\right| \geq 3^{4}$, then by Lemma 2, we also get a contradiction.

Case c: $\pi(G)=\{2,5\}$.

If $\left.\exp \left(\mathrm{P}_{5}\right\}\right)=5$, then $\mid P_{5} \| 1+s_{5}(=11705)$ and so $\left|P_{5}\right|=5$. Since $n_{5}=2 \cdot 7 \cdot 11 \cdot 19,7,11,19 \in \pi(G)$, a contradiction.

If $\exp \left(P_{5}\right)=25$, then $\mid P_{5} \| 1+s_{5}+s_{25}(=39425)$ and so $\left|P_{5}\right|=25$. Since $n_{5}=2^{2} \cdot 3^{2} \cdot 7 \cdot 11,3,7,11 \in \pi(G)$, a contradiction.
Case d: $\pi(G)=\{2,11\}$.

If $\exp \left(\mathrm{P}_{11}\right)=11$, then $\mid P_{11} \| 1+s_{11}(=15961)$ and so $\left|P_{11}\right|=11$. So $n_{11}=2^{2} \cdot 3 \cdot 7 \cdot 19$ and $3,7,19 \in \pi(G)$, a contradiction.

If $\exp \left(\mathrm{P}_{11}\right)=121$, then $\mid P_{11} \| 1+s_{11}+s_{121}(=$ 43681) and so $\left|P_{11}\right|=121$. So $n_{11}=2^{2} \cdot 3^{2} \cdot 7$ and 3,7 $\in \pi(G)$, a contradiction.

Case e: $\pi(G)=\{2,3,5\}$.

The proof is the same as Case c .
Case f: $\pi(G)=\{2,3,11\}$.
The proof is the same as Case d .
Case g: $\pi(G)=\{2,3,5,7,11,19\}$.
We know that $\left|P_{7}\right|=7$ and $\left|P_{19}\right|=19$.
We first show that $\left|P_{5}\right|=5$ and $\left|P_{11}\right|=11$.
If $5.7 \in \omega(G)$, set P and Q are Sylow 7-subgroups of G , then P and Q are conjugate in G and so $C_{G}(P)$ and $C_{G}(Q)$ are conjugate in G. Therefore we have that $s_{35}=\phi(35) \cdot n_{7} \cdot k$, where k is the number of cyclic subgroups of order 5 in $C_{G}\left(P_{7}\right)$. As $n_{7}=s_{7} / \phi(7)=4180$, $100320 \mid S_{35}$ and then $S_{35}=100320 t$ for some integer t , but the equation has no solution in N , a contradiction. Hence $5.7 \notin \omega(G)$. It follows that the group P_{5} acts fixed point freely on the set of order 7 and so $\mid P_{5} \| s_{7}$ (= 25080). Hence $\left|P_{5}\right|=5$.

Similarly since $11 \cdot 19 \notin \omega(G)$, then we have that the groupP11 acts fixed point freely on the set of order 19 and so $\mid P_{11} \| s_{19}(=27720)$. Hence $\left|P_{11}\right|=11$.

Since $2 \cdot 19 \notin \omega(G)$, the group P_{2} acts fixed point freely on the set of order 19 and so $\mid P_{2} \| s_{19}(=27720)$.
Hence $\mid P_{2} \| 2^{3}$.
Similarly since $3 \cdot 19 \notin \omega(G)$, we also have $\left|P_{3}\right|=3$.
Therefore $|G|=2^{m} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$. But $\sum_{s_{k} \in n s e(G)} s_{k}$
$=175560=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \leq 2^{m} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$. Thus
$|G|=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19=\left|J_{1}\right|$. So since nse $(G)=$ nse $\left(\mathrm{J}_{1}\right)$, we have from (Khalili et al., 2013), that $G \cong J_{1}$. This completes the proof.

ACKNOWLEDGMENT

The object is supported by the Department of Education of Sichuan Province (Grant No: 12ZB085 and 12ZB291) and the NSF of SUSE (Grant No: 2010KY06). The author is very grateful for the helpful suggestions of the referee.

REFERENCES

Frobenius, G., 1895. Verallgemeinerung des Sylowschen Satze. Berliner Sitz, pp: 981-993.
Guo, S., S. Liu and W. Shi, 2012. A new characterization of alternating group A_{13}. Far East J. Math. Sci., 62(1): 15-28.

Hall, M., 1959. The Theory of Groups. Macmilan, New York.
Khalili, A.R., S.S. Salehi Amiri, A. Iranmanesh and A. Tehranian, 2013. A characterization of sporadic simple groups by NSE and order. J. Algebra Appl., 12(2), DOI: 10.1142/S0219498812501587.
Khalili, A.R., S.S. Sadlehi Amiri and A. Iranmanesh, 2011. A Note on a Characterization of Matieu Groups.
Khatami, M., B. Khosravi and Z. Akhlaghi, 2011. A new characterization for some linear groups. Monatsh Math., 163: 39-50.

Liu, S., 2012a. A characterization of $L_{5}(2)$. Arch. Des Sci., 65(11): 42-48.
Liu, S., 2012b. A characterization of $L_{2}(16)$. Wulfenia, 19(11): 291-298.
Liu, S., 2013c. A characterization of $L_{3}(4)$. Sci. Asia.
Liu, S. and R. Zhang, 2012c. A new characterization of A_{12}. Math. Sci., DOI: 10.1186/2251-7456-6-30.

Miller, G., 1904. Addition to a theorem due to frobenius. Bull. Amer. Math. Soc., 11(1): 6-7.
Shao, C.G., W.J. Shi and Q.H. Jiang, 2009. A new characterization of simple K_{3}-groups. Adv. Math., 38: 327-330, (In Chinese).
Shao, C.G., W.J. Shi and Q.H. Jiang, 2008. A new characterization of simple K_{4}-groups. Front. Math. China, 3(3): 355-370.
Shen, R., C. Shao, Q. Jiang, W. Shi and V. Mazurov, 2010. A new characterization of A_{5}. Monatsh Math., 160: 337-341.
Shi, W.J., 1989. A new characterization of the sporadic simple groups group theory. Proceeding of the Singapore Conference Walter de Gruyter, Berlin, New York, pp: 531-540.

[^0]: Corresponding Author: Deqin Chen, School of Science, Sichuan University of Science and Engineering, Zigong Sichuan, 643000, China
 This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

