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Research Article 
Modeling and Control of a Quadrotor Helicopter System under Impact of Wind Field 

 

Yanmin Chen, Yongling He and Minfeng Zhou 
School of Transportation Science and Engineering, Beihang University, Beijing, 100191, China 

 

Abstract: Aiming at the hovering problem of a quadrotor helicopter system under impact of wind field, in this 
study, a nonlinear integral backtepping controller was designed. The quadrotor helicopter is a nonlinear system 
which is underactuated and strongly coupled. The wind field would lead to the nonlinear change of aerodynamic 
force and moment and make the flight condition worse. For the highly nonlinear characteristic of the system, first 
we establish the dynamic model that considers the effect of wind field via Newton-Euler formalism; and then we 
develop a controller based on integral backstepping algorithm and validate the stability of the system by Lyapunov 
theory. Simulation results demonstrate that the model can accurately reflects dynamic performance of the system 
and the controller presents good robustness in the effect of wind field. 
 
Keywords: Attitude control, integral backstepping, lyapunov theory, position control, quadrotor helicopter, wind 

field 

 
INTRODUCTION 

 
Recently, as a member of Vertical Take-Off and 

Landing (VTOL) Unmanned Aerial Vehicles (UAVs), 
the quadrotor helicopter has been more widely used in 
both military and civilian fields. Compared to fixed-
wing aircrafts, quadrotors can fly at low altitude and 
hovering at set point. Compared to traditional 
helicopters, quadrotors have several advantages 
including: simple mechanical structure, good 
maneuverability and small size, low cost and strong 
concealment. These excellent features make quadrotors 
able to perform in constrained area with more 
effectiveness and reliability. 

The quadrotor system is highly nonlinear because 
the aerodynamic of the four rotors. Like traditional 
aircraft, the control of quadrotor involves attitude 
control and position control. The main difference is 
that, due to unique body structure as well as rotor 
aerodynamic, the attitude dynamics and position 
dynamics are strongly coupled (Abhijit et al., 2009). 
Moreover, because the motion of the quadrotor is six 
degrees of freedom (6 DOF) but with only four driving 
forces, so the system is underactuated. 

In the relevant literatures, a lot of work has been 

done to deal with the problem of modeling and control 

of the quadrotor system. Hoffmann et al. (2009, 2011) 

developed the STARMAC ||  research platform to 

validate multiple algorithms such as reactive collision 

avoidance, path planning, cooperative search and 

aggressive maneuvering. In the early study, PID control 

scheme is widely used. Bouabdallah et al. (2004) used  

PID control and LQ regulation to control the system. 

Salih et al. (2010) introduced a PID controller to the set 

point flight of a quadrotor. Compared to linear control 

method, nonlinear control method can substantially 

enhance the capability of the controller. As a kind of 

nonlinear control method, backstepping control was 

implemented by many researches (Bouabdallah and 

Siegwart, 2007; Ashfaq and Wang, 2008; Bouchoucha 

et al., 2011; Madani and Benallegue, 2006a). Ashfaq 

and Wang (2008)
 
proposed a backstepping-based PID 

controller for a quadrotor under the condition of 

hovering and near hovering. Bouchoucha et al. (2011) 

developed an integral backstepping controller for 

attitude tracking. Madani and Benallegue (2006b) 

presented a full-state backstepping technique based on 

Lyapunov stability theory. There are also other 

nonlinear control methods used for the control of 

quadrotor system. Raffo et al. (2010) presented an 

integral predictive and nonlinear robust control strategy 

to solve the path following problem. Lee et al. (2009) 

discussed the effect of feedback linearization controller 

and sliding mode controller for trajectory tracking 

control. Carrillo et al. (2011) proposed a vision-based 

position control method; this method can measure the 

position variables that are difficult to compute when 

using conventional navigation systems. 

However, few researches considered the impact of 

wind field on modeling and control of the quadrotor 

system. In the actual flight, for quadrotor flying at low 

altitude, it is more susceptible to wind field that could 
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significantly affect the aerodynamic performance and 

stability (Su et al., 2007). Therefore, it is necessary to 

take the impact of wind field into account in the study 

of quadrotor system’s modeling and control. 

To overcome this problem, in this study, a dynamic 

model of the quadrotor considering the influence of 

wind field is established. The quadrotor system is 

divided into two interconnected subsystem: rotor 

subsystem and body subsystem. The rotor subsystem’s 

aerodynamic model which takes the impact of the wind 

field into consideration is built through blade element 

theory and momentum theory. The dynamic model of 

the body subsystem is established by Newton-Euler 

formalism. In order to control the position and attitude 

of the nonlinear system, an integral backstepping 

controller is designed and the system stability is 

conducted through the Lyapunov theory. Three 

numerical simulation experiments are demonstrated and 

the conclusions are drawn finally. 

 

DYNAMIC MODEL OF QUADROTOR 

HELICOPTER SYSTEM 

 

The quadrotor system is composed by body and 

four rotors, as presented in Fig. 1. Set up two reference 

frames: the earth-fixed reference frame E = {Ex, Ey , Ez} 

and the body-fixed reference frame B = {Bx , By , Bz}. 

The absolute position X = [x, y, z]
 T 

and attitude angle Θ 

= [φ, θ, ψ]
 T

 of the system are defined in the reference 

frame E. These three Euler Angels are called roll angle 

(-π/2<φ<-π/2), pitch angle (-π/2<θ<π/2) and yaw angle 

(-π<ψ<π).  

The rotation transformation matrix from B to E is: 

 

-

C C C S S S C C S C S S

S C S S S C C S S C C S

S C S C C

ψ θ ψ θ ϕ ψ ϕ ψ θ ϕ ψ ϕ

ψ θ ψ θ ϕ ψ ϕ ψ θ ϕ ψ ϕ

θ θ ϕ θ ϕ

 − +
 

= + − 
  

R(Ω)        

                                                                              (1) 

where, S (.
 
) = sin (.

 
) and C( 

. 
) = cos ( 

. 
). 

The thrust forces FTi (i =1, 2, 3, 4) is generated by 

the four rotors. The motion of the quadrotor is 

controlled by varying the rotation speed of the four 

rotors to change the thrust and the torque produced by 

each one. Four rotors are divided into two pairs-pair (1, 

3) and pair (2, 4). The rotate direction of the two pairs 

is contrary in order to counteract the aerodynamic 

torque generated by the rotors’ rotation. Increase or 

decrease the rotation speed of the four rotors 

simultaneously will generate vertical motion. 

Independently varying the speed of the rotor pair (1, 3) 

can control the pitch angle (θ) about the y-axis and the 

translational motion along the x-axis. Accordingly, 

independently varying the speed of the rotor pair (2, 4) 

can  control  the  roll  angle (φ) about the x-axis and the  
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Fig. 1: Sketch of quadrotor helicopter 

 
translational motion along the y-axis. The yaw angle 
(ψ)  about  the z-axis  is  determined  by the yaw torque 
which is the sum of the reaction torques generated by 
each rotor. 
 
Rotor aerodynamics: The two speed coefficients 

advance ratio (µ) and inflow ratio (λ) of the rotor is: 

 

( )

( ( ) )

B B T E

x x x

B B T E

z z z

U V R W

r r

U V R W

r r

µ

ν ν
λ

− Ω ⋅
= =
Ω Ω
− − − Ω ⋅

= =
Ω Ω

               (2) 

 

where, U is the air speed, V is the ground speed and W 

is the wind speed. In reference frame G, W
E 

= [W
E

x , 

W
E

y ,W
E

z]
T
 is a known quantity. Ω is the angular 

velocity of the rotor, r is the radius of the rotor, ν is the 

induced velocity. The aerodynamic coefficients: thrust 

coefficient CT, drag coefficient CH, torque coefficient 

CQ and roll coefficient CR can be derived according to µ 

and λ, thereby the thrust force FT, drag force FH, torque 

MQ and rolling moment MR can be obtained: 

 
2 2

2 2

2 2

2 2

T

H

Q

R
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C Ar r

C Ar r

ρ
ρ
ρ
ρ

  
  
   =
  
  
    

T

H

Q

R

F Ω

F Ω

M Ω

M Ω

                   (3) 

 

where, ρ = 1.293 kg/m
3 

is the air density and A is the 

area of propeller disk. 

 

System General Forces and Moments: Assume that 

the quadrotor is a rigid-body structure and is completely 

symmetrical. Establish the translational dynamic 

equation and the rotational dynamic equation according 

to Newton-Euler formalism. 
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Step 1: Establish the translational dynamic equation: 

 

m= &&
total

F X                        (4) 

  

where, Ftotal is the external resultant force, such as: 

 

total rotor aero G
F = F - F - F                     (5) 

 

where FG=mG is the gravity, G = [0,0,g]T. Frotor 

represents the aerodynamic forces of the rotor and Faero 

is the air resistance of the body: 

 
4 4

1 1

2

( )

1
( )

2

i i

Aρ

= =
= −

=

∑ ∑rotor Ti Hi

B

aero

F R(Ω) F F

F C U

                 (6) 

 

where, C=diag[Cx,Cy,Cz]. 

From Eq. (4-6), the translational dynamic 

equations are obtained: 

 

4

1

4 2

1

1
[( )

1
( ) ]

2

Tii

B

Hxi x xi

x S S C S C F
m

F AC U

ϕ ψ ψ θ ϕ
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=

=

= + −

−

∑

∑

&&

                 (7) 

 

4

1
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1

1
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1
( ) ]

2
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∑
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                (8) 

 

4 2

1

1 1
( ( ) )

2

B

Ti z zi
z C C F AC U g

m
θ ϕ ρ

=
= − −∑&&             (9) 

 

Step 2: Establish the rotational dynamic equation: 

 

&& & &
totalM = IΘ+ Θ×(IΘ)                  (10) 

 

where Mtotal is the external resultant moment, such as: 

 

total c g RM = M + M + M                  (11) 

 

where, 
41

1
( 1)

i
r i

J
+

=
= ⋅ − ×∑ &

g iM Θ Ω  is the gyroscopic 

torque of the rotor, Jr is the rotor’s moment of inertia, 
41

1
( 1)

i

i

+
=

= − ∑R RiM M  is the rolling moment and Mc is 

the control moment produced by the rotors: 

 

41

1

( )
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i
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l

+
=

 − + 
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T2 T4
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Qi
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                 (12) 

where, l is the arm length of the quadrotor. From Eq. 

(10-12), the rotational dynamic equations are obtained: 
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1
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1
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 (15) 

 

where, r 1 2 3 4Ω = Ω - Ω +Ω - Ω . 

 

INTEGRAL BACKSTEPPING CONTROL  

SCH EME 

 

Integral backstepping control scheme is used for 

this system because: 

 

• The backstepping technique is applicable to 

nonlinear system and has strong robustness to 

disturbances (Kanellakopoulos and Krein, 1993) 

• The integral term of states parameters error is 

introduced to the backstepping technique in order 

to eliminate the static error of the system (Skjetne 

and Fossen, 2004) 

 

Assume that the angular velocity of the system in 

reference frame E is equal to it in reference frame B; 

ignore the drag force, rolling moment of rotor           

and air resistance of body. Consider the thrust 

coefficient b   and drag coefficient d as constants. 

Based on the       above assumptions, the equation of the 

system model in state-space is obtained: ( , )f=&S S U , 

where [ , , , , , , , , , , , ]Tx x y y z z ϕ ϕ θ θ ψ ψ= && && & &S  is the state vector 

and U = [U1, U2, U3, U4]
T 

is the input vector. The inputs 

U1, U2, U3 and U4 are defined as: 

 

1

2

3

4

( )

( )

( )

( )

2 2 2 2

1 2 3 4

2 2

2 4

2 2

1 3

2 2 2 2

1 2 3 4

U b Ω +Ω + Ω +Ω

U b -Ω + Ω

U b Ω - Ω

U d Ω - Ω + Ω - Ω

  
  
   =
  
  
    

               (16) 

 

where, U1 is designed for altitude control and U2, U3, 

U4 is used for the control of the three attitude angles 

respectively. The control equation is written as: 
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dz
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Fig. 2: Structure of control system 
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The structure of the control system is shown in  

Fig. 2. The controller consists of three parts: attitude 

controller, altitude controller and position controller. 

Altitude controller outputs U1 according to the desired 

altitude (zd), current altitude (z) and attitude angle 

(φ,θ,ψ). Position controller receives U1, combines the 

desired position (xd,yd) and current position (x,y), 

outputs desired roll angle (φd) and desired pitch angle 

(θd). Attitude controller receives desired attitude angle 

(φd, θd, ψd) and current attitude angle (φ,θ,ψ), outputs 

U2, U3, U4. The dynamic model receives input vector 

from controller, integrates with wind field, outputs the 

state of next time step and feeds back to the controller. 

Here we deduce the control of roll angle as an 

example to explain the design of controller. 

 

Step 1: Set the tracking-error of roll angle (φ) as: 

 

deϕ ϕ ϕ= −                                     (18) 

 

Set the first Lyapunov function as: 

 

2 2

1 1 1

1
( )

2
V eϕ λ χ= +                     (19) 

 

where, 1
0

( )
t

e dϕχ τ τ= ∫  is the integral of tracking-error 

of roll angle (φ), λ1>0. 

The derivation of Eq. (19) is: 

 

1 1 1
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( )
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V e e e

e e

e

ϕ ϕ ϕ

ϕ ϕ

ϕ

λ χ

λ χ

ϕ ϕ λ χ

= +

= +

= − +

& &

&

& &

                  (20) 

 

If we set the virtual control ( )dϕ&  of ϕ&  as: 

 

1 1 1 1( ) , 0d d c e cϕϕ ϕ λ χ= + + >& &                 (21) 

 

then: 

 
2

1 1V c eϕ= −                                    (22) 

Hence when 0eϕ ≠ , 1 0V <& . 

Set the tracking-error of ϕ&  as: 
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( )deϕ ϕ ϕ= −
&

& &                       (23) 

 

Set the second Lyapunov function as: 

 

2 2 2 2

2 1 1 2 2

1
( )

2
V e eϕ ϕλ χ λ χ= + + +

&
                (24) 

 

where, 2
0

( )
t

e dϕχ τ τ= ∫ &
 is  the integral of tracking-error 

of roll angular velocity (ϕ& ), λ2>0. 

The derivation of Eq. (24) is: 

 
2

2 1 1 1

2

1 1 1 2 2 1

((1 )

)

dV e c e c e

c c e

ϕ ϕ ϕ

ϕ

λ ϕ

λ χ ϕ λ χ

= + − + + −

− + −

&

& &&

&&

                   (25) 

 

If we set the virtual control ( )dϕ&&  of ϕ&&  as: 

 
2

1 1

1 2 1 1 1 2 2

( ) (1 )

( )

d dc e

c c e c

ϕ

ϕ

ϕ λ ϕ

λ χ λ χ

= + − + +

+ − +
&

&& &&

                  (26) 

 

where, c1>0，c2>0, then: 

 
2 2

2 1 2( )V c e c eϕ ϕ= − +
&

&                                 (27) 

 

Hence when 0eϕ ≠  
and 0eϕ ≠& , 2 0V<& . We can know 

that the closed-loop system is asymptotically stable 

according to Lyapunov theorem. 

 

Step 3: According to the control equation of roll angle 

(φ) in Eq. (17): 

 

2( / ) / /yy zz xx r r xx xxI I I Ω J I U l Iϕ θψ θ= − + +& &&& &    

 

U2 is obtained: 

 

2

2 1 1 1 2

1 1 1 2 2

[(1 ) ( )
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xx

d

yy zz xx r r xx

I
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l
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&&
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Similarly, pitch angle (θ) control U3 can be 

obtained: 

 

2

3 3 3 3 4

3 3 3 4 4

[(1 ) ( )

( ) / / ]

yy

d

zz xx yy r r yy

I
U c e c c e

l

c I I I J I

θ θλ θ
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&
&&

& & &
      

(29) 

 

where, c3,c4,λ3,λ4 are positive constants and , are 

the integral of tracking-error of pitch angle (θ) and pitch 

angular velocity ( ). 

Table 1: Structural parameters 

Parameter Definition Value Unit 

m Mass 0.723 kg 

l Arm length 0.314 m 

Jr Rotor inertia 7.321×10-5 kg·m2 

Ixx X Inertia 8.678×10-3 kg·m2 

Iyy Y Inertia 8.678×10-3 kg·m2 

Izz Z Inertia 3.217×10-2 kg·m2 

b Trust factor 5.324×10-5 N·s2 

d Drag factor 8.721×10-7 Nm·s2 

 
Table 2: Control parameters 

Item Value Item Value Item Value 

c1 10 c2 3 c3 10.5 

c4 3.5 c5 4 c6 3 

c7 4 c8 2.5 c9 3 

c10 1 c11 2 c12 1 

λ1~λ12 0.05     

 

Yaw angle (ψ) control U4 can be obtained: 

 

2

4 5 5 5 6

5 5 5 6 6

[(1 ) ( )

( ) / ]

zz

d

xx yy zz

I
U c e c c e

l

c I I I

ψ ψλ ψ

λ χ λ χ ϕθ

= + − + + + −

+ − −

&
&&

&&

     (30) 

 

where, c5,c6,λ5,λ6 are positive constants and 5χ , 6χ are 

the integral of tracking-error of yaw angle (ψ) and yaw 

angular velocity (ψ& ). 

Altitude control U1 can be obtained: 

 

2

1 7 7

7 8 7 7 7

[ (1 )

( ) ]

z

z

m
U g c e

C C

c c e c

ϕ θ

λ

λ χ

= + − + +

+ −
&

               (31) 

 

where, c7,c8,λ7 are positive constants and 7χ  is the 

integral of tracking-error of altitude z. 

 

SIMULATION RESULTS 

 

This section validates the effective of proposed 

model and control scheme by three numerical 

simulation experiments. Firstly, we test the 

performance of the system in the absence of wind field. 

Then, wind field with velocity of W
E 

= [1, 2, 0]
T 

m/s 

and W
E 

= [3, 3, 0]
T 

m/s is introduced separately. Table 1 

summarizes the structural parameters of the model. 

Table 2 lists the control parameters of the controller. 

 

In the absence of wind field: Expect system hovering 

at X = 13×1
 
m. The initial conditions is X = 13×1

 
m, Θ = 

03×1
 
rad, the desired conditions is Xd = 13×1 m，ψd = 0

 

rad. The translational and rotational velocity in both 

initial and desired conditions is 0. The position and 

attitude  angle  response  of the system in the absence of 

wind  field  are  shown  in Fig. 3 and 4. We can observe  

3χ 4χ

θ&
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Fig. 3: Position response (in the absence of wind field) 

 

 
 
Fig. 4: Attitude angle response (in the absence of wind field) 

 

 
 
Fig. 5: Position response (In the presence of a WE = [1, 2, 0]T 

m/s wind field) 

 
that the position reach to desired value rapidly; the 
attitude angle have slight oscillation at beginning, but 
the controller stabilized it at 0 rad in a short period of 
time. In this situation, the controller presents good 
performance. 
 

In the presence of a W
E 

= [1, 2, 0]
T 
m/s wind field: 

Maintain  the  same  initial  and  desired conditions, the 

system’s  position  and  attitude  angle  response  in  the 

 
 
Fig. 6: Attitude angle response (In the presence of a WE = [1, 

2, 0]T m/s wind field) 

 

 
 
Fig. 7: Position response (in the presence of a WE = [3, 3, 0]T 

m/s wind field) 

 

presence of a W
E 

= [1, 2, 0]
T 

m/s wind field are shown 

in Fig. 5 and 6. We can see that the position can be 

stabilized at the desired value in about 15 seconds. 

Pitch angle (θ) is stabilized at 0.13 rad, roll angle (φ) is 

stabilized at -0.27 rad, This is due to the influence of 

lateral wind field, the aircraft nose of the two directions 

need to be placed into a certain angle in order to 

achieve hovering. For the wind speed in y direction is 

greater than it in x direction, the roll angle (φ) is larger 

than  pitch  angle (θ). In this situation, the oscillation of  
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Fig. 8: Attitude angle response (In the presence of a WE = [3, 

3, 0]T m/s wind field) 

 

attitude angle and the time achieve stable are greater 

than them in experiment 1. 

 

In the presence of a W
E 

= [3, 3, 0]
T 
m/s wind field: 

The wind speed is increased to W
E 

= [3,3,0]
T 

m/s, still 

maintaining the same initial and desired conditions, the 

system’s position and attitude angle response in this 

experiment are shown in Fig. 7 and 8. We can observe 

that position can be stabilized at the desired value in 

about 20 seconds. Pitch angle (θ) is stabilized at 0.33 

rad, roll angle (φ) is stabilized at -0.33 rad and both of 

them are larger than that in experiment 2. This is due to 

the increase of wind speed the aircraft nose needs to be 

placed into a lager angle in order to resists the 

reinforced wind. We can note that because the wind 

speed is equal in x direction and y direction in this 

experiment, pitch angle (θ) and roll angle (φ) are of the 

same. Compared with experiment 2, we can see that 

with the increase of wind speed, the oscillation of 

attitude angle and the time achieving stable are become 

greater. 

 

CONCLUSION 

 

The dynamic model of a quadrotor helicopter 

system under impact of wind field is established and the 

nonlinear controller based on integral backstepping 

algorithm is designed. The performance of the system 

under effect of wind field is studied by numerical 

simulation experiment. The conclusions from the 

results can be summarized as follows: 

 

• Position and attitude angle response of the system 
is accurate to wind field and that is line with 
principles of flight dynamics; stable time and 

oscillation are greater when the speed of wind field 
is increased, this indicates the impact wind field 
reduce the stability of the system. Therefore, this 
model can accurately reflect the dynamic 
performance of the system in the effect of wind 
field 

• The controller can make the system achieve 
hovering in the desired location even under the 

interference of wind field. Therefore, the controller 
has good performance. 
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