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Abstract: This study proposed an image enhancing method which is based on the non-local fractional order 
differential operator. In this method, a matrix form representation of discrete fractional order differentiation is 
introduced to enhance the digital image, which is effective to reduce the computation error caused by the traditional 
local approximate method of the fractional order differentiation. The proposed enhancing method is able to make 
effective use of the whole image information and improve the enhancing performance of the image enhancing 
algorithm based on the local mask. The color image enhancing strategy based on the non-local fractional differential 
also is given. A lot of experiments demonstrate that the proposed method is capable of enhancing gray and color 
image effectively. 
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INTRODUCTION 

 
Fractional calculus is an old and mysterious 

mathematical discipline dealing with the non- integer 
order differentiation and integration which is proposed 
in the seventeenth century and developed mainly in the 
nineteenth century (Podlubny, 1999). Recently, the 
concepts of fractional calculus have been widely used in 
various areas of image processing because of some of its 
characteristics superior to the integer order, which 
includes image restoration (Jian and Feng, 2007), 
enhancement (Pu et al., 2010; Chen et al., 2011, 2012), 
edge detection (Mathieu et al., 2003), motion estimation 
(Chen et al., 2010) and so on. 

In this study, we aim our interests at the image 
enhancement. The integer-order differential mask is an 
important tool in edge detection, but it damages the 
texture detail information in image. The texture detail 
feature of image has fractal-like structure and fractional 
differentiation is an effective tool to deal with this 
fractal problem. Based on this fact, six fractional 
differentiation–based image enhancement masks were 
proposed for texture image enhancement which was 
proved to have a good effect to deal with the complex 
texture details in smooth area (Pu et al., 2010). In 
addition, an adaptive image enhancing method based on 
the 2-D fractional order Savitzky-Golay mask was 
present to deal with the problem of parameter 
optimization (Chen et al., 2012). Although the 
performances of these methods have shown impressive 
results, the limitation of the use of local fractional 
differential numerical approximate have recently 
become of great concern (Podlubny, 2000). 

METHODOLOGY 
 
Riemann-liouville definition: Let � ∈  ��([�, 
] and 

α ∈ (n-1, n). The left Riemann-Liouville fractional 
order integral is defined by the following formula: 
 ��� �(�) = �

Γ(�) � (� − �)����� �(�)dτ, � ∈ [�, 
],                  (1) 

 

where the gamma function Γ(�) is obtained by the 
integral: 
 

Γ(�) =  � �������d�∞� .                  (2) 

 
The right Riemann-Liouville fractional integral of 

order α is defined as: 
 ��� �(�) =  �

Γ(�) � (� − �)����(�)��,��  � ∈ [�, 
],               (3) 

 
Suppose �(�) is a continuous function in [�, 
], the left 
Riemann-Liouville fractional order derivative is defined 
by the following formula: 
 D��� �(�) =  ����� �����(�)� = 

 
�

Γ(���)  ! �! � (� − �)������(�)���� , � ∈ [�, 
],                (4) 

 

and the right Riemann-Liouville fractional derivative is 

given by the following formula: 

  D" ���(�) = (− ���)� �����(�)� = 

 
�

Γ(���) (−   �)� � (� − �)������(�)���� , � ∈ [�, 
].               (5) 
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Matrix approximate method: An efficient matrix 

approximate method for Eq. (4) and (5) was proposed 

by Podlubny (2000), which leads to significant 

simplification of the numerical solution. For easy 

reading, we reproduce the relevant results. 

Let us assume that the given signal � is sampled 

from its continuous version at an uniformly spaced grid 

size of ∆ℎ. Thereby, the discrete form �& = �('∆ℎ), for ' = 0, 1, … , +. In image processing applications, the 

grid size ∆ℎ is one, so we set ∆ℎ = 1 for easy 

description. From Grünwald-Letnikov fractional 

derivative definition, the discrete formula of the left 

fractional order derivative of the digital signal can be 

defined by the following formula: 

 ,- .��& ≈  ∑ 12(�)�&�2 ,324�                                   (6) 

where, 12(�) = (−1)2 5678 represent the coefficients of the 

polynomial (1 − �)�. 

The coefficients can also be obtained recursively from: 

 1�(�) = 1, 12(�) = 51 − �9�2 8 12(�), 7 = 1,2                              (7) 

 
Using the matrix approximate method, we can 

rewrite Eq. (6) by the following form: 
  ,- .��; ≈ <-�;                                            (8) 

 
where,  � ===; =  [�� �� … �3]> and <-is a matrix defined 
by the following formula: 
 

 <- = ?@@
@A 1�(�) 01�(�) 1�(�) … 0… ⋮⋮ ⋮13(�) 13��(�) ⋱ 0⋯ 1�(�)EFF

FG
                             (9) 

 

From Eq. (4), (5) and (8), the discrete formula of the 

right fractional order derivative of the digital signal can 

be computed by the following formula: 
  ,H .��; ≈ <H�; = <->�;                       (10) 

 

In the numerical method of the fractional order 

derivative, the computing error caused by the cut of the 

computing coefficients is inevitable due to the long 

memory character of fractional derivative. An effective 

method to reduce this error is to increase the number of 

computing coefficient, so the number of computing 

coefficient is an important criterion for evaluating the 

performance of numerical method. In matrix 

approximate method, the length of coefficient is related 

to the location of the estimated signal, so we use the 

average of the length of the coefficient to access the 

accuracy of numerical algorithm, which is obtained by 

the following formula: 

  I��JK =  ∑ 739�24� (+ + 1) = 0.5+ + 1.⁄                 (11) 

From Eq. (11), we can see that the bigger + is, the 

better the accuracy of matrix algorithm is. 

 

Proposed enhancing method: In practical image 

enhancing applications, assume that the digital image O 

is of + × Q pixels, which is sampled from its 

continuous version at an uniformly spaced grid size 

of  Rℎ. Thereby, the digital image O(', S) =O('Rℎ, SRℎ)for ' = 0, 1, … , + and S = 0, 1, … , Q. In 

image processing applications, the grid size Rℎ is 

chosen as Rℎ = 1. Based on the Grünwald-Letnikov 

fractional derivative definition, when 6 ∈ (0, 1), the 

discrete formula of the left fractional order derivative of 

the digital image in horizontal direction can be defined 

by the following formula: 

  ,- .�O(', S) ≈  ∑ 12(�)O(' − 7, S)324�                  (12) 

 

Using the matrix approximate method, the equation 

(12) can be rewritten by the following formula: 

  ,- .�T ≈ <-T                                    (13) 

 

here T is the image matrix defined by: 

 

T = U O(0, 0) O(0, 1)O(1,0) O(1, 1) … O(0, Q)… ⋮⋮ ⋮O(+, 0) O(+, 1) ⋱ 0⋯ O(+, Q)V               (14) 

 

In the same way, the right fractional order 

derivative of the digital image can be calculated by: 

  ,H .�T ≈ <->T.                           (15) 

 

In order to increase the average of the length of the 

coefficient used in image enhancement, we combine <- 

and <H into one matrix, <-�H, which is obtained by the 

following equation: 

 

 <-�H =

?@
@@@
@@@
@@
A 1�(�)0⋮01W(�)⋮13��(�)13(�)

1�(�)1�(�)⋱… ⋱0⋯⋮……

⋯⋯⋮1�(�)1�(�)1�(�)⋮……

⋯⋯⋮⋯0⋱ ⋯⋱1�(�)1�(�)

13(�)13��(�)⋮1X(�)0⋮01�(�) EF
FFF
FFF
FF
G
                (16) 

where,  

 

 YZ = [ − 1 =  3\ , if + is even Z = [ =  39�\ ,   if + is odd d                  (17) 

 

Based on the matrix <-�H, we can calculus the 

fractional order derivative of the digital image in 

horizontal direction using the following formula: 
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 ,.�T ≈ <-�HT,                  (18) 
 
and the average of the length of the coefficient used in 
Eq. (18) is calculated by: 
 

 I\�JK = ef3g9h39ii(39�) , '� + 'j �k�Qf39li ,    '� + 'j m�� d                  (19) 

 
From Eq. (11) and (19), it can be seen that I\�JK  ≫  I��JK  when + is the positive integer, so the 

accuracy of matrix approximate method defined by Eq. 
(19) is much better than that of the method defined by 
Eq. (11). 

In the same way, the fractional order derivative of 
the digital image in vertical direction can be calculated 
by the following formula: 

  ,o�T ≈ T<-�H> .                 (20) 

 
Based on the Eq. (18) and (20), the enhanced image is 
obtained by the following equation: 
 Tp�q��WK =  minsmaxsmaxs ,.�T,  ,o�Tv, 0v, Iwv     (21) 

 

here Tp�q��WK  is the enhanced image and Iw is 
the gray level of image. 

Moreover, the proposed non-local fractional order 

differential-based image enhancing algorithm also is 

available for the color image. We all know that the 

RGB color model is the most popular color model. 

However, the three components, red (R), Green (G) and 

Blue (B), have strong coupling with each other. If we 

use Eq. (21) in these three channels directly, it will 

result in the color distortion. LAB color model is the 

one of the typical color models. In LAB color model, 

the three components have weak coupling with each 

other. Based on this fact, we use LAB color model 

instead of RGB model to prevent the color distorted. 

For easy reading, the main process is described as 

follows. Firstly, we transform RGB color model into 

Lab color model. Then, we process the ’L’ component 

using Eq. (21) because the ’L’ component closely 

matches human perception of lightness. Finally, we 

transform the processed Lab color model back to RGB 

color model. 
 

EXPERIMENTS AND ANALYSIS 
 

Relationship between the fractional order and 
performance of proposed enhancing method: The 

fractional order 6 is the only parameter in our proposed 
enhancing method whose choice directly affects the 
result of enhanced image. In this section, our purpose is 
to reveal the relationship between the fractional order 
and performance of our proposed enhancing algorithm. 

For this purpose, the typical 512 × 512 texture-

rich gray image is used as the test image. We enhance 

this image by our proposed non-local fractional 

differential method with the different fractional order, 

α = 0, 0.2, 0.4, 0.6, 0.8 and 1. The original image and 

its enhanced results are shown in Fig. 1. 

From Eq. (16), the matrix <-�H is the identity 

matrix, so the enhanced image Tp�q��WK  is equal to 

original image T when α = 0. When α = 1, the 

enhanced image is the edge image obtained by the 

difference operator, which is shown in Fig. 1f. From 

this figure, it can be seen that the edge in original image 

is enhanced greatly but many detailed textures are 

removed. The enhanced images (α ∈ (0, 1)) can be 

seen as the natural interpolation between original image 

the (α = 0) and the edge image (α = 1) which are 

shown in Fig. 1b-e. From these figures, we can see that, 

when α increases from 0 to 1, the texture information is 

firstly enhanced and then removed and the edge 

information is enhanced more and more. Therefore, we 

are able to find a optimal enhanced result between 

α = 0 and α = 1. 
 

Enhancing results of gray image: In this section, 

some experiments are given to assess the performance 

of our proposed enhancing algorithm for gray image. 

For this purpose, two typical 512×512 gray images, 

shown in Fig. 2a and e, are used as the test image. 

These two images are enhanced by our proposed 

enhancing method with fractional order α = 0.2 and 

their enhanced results are shown in Fig. 2b and f 

respectively. 

From Fig. 2b and f, we can see that the contrast of 

enhanced result is much better than that of original 

image and the detailed texture is more clear. In order to 

show the clear comparisons, the partial enlarged views 

of the original images and their enhanced images are 

shown in  Fig.  2c, d, g  and  h.  Comparing with the 

Fig. 2c, the detail information in Fig. 2d is clearer, for 

example, the hair looks more sheen, the hat looks more 

tridimensional and the gap of feather is easier to 

distinguish. From Fig. 2g and h, we can get the same 

conclusion. It is obvious that the beard in Fig. 2h is 

easier to distinguish than that of Fig. 2g. 

Therefore, from these experiment results, we can 

conclude that the proposed fractional differential 

enhancing method is able to achieve a good trade-off 

between the detail texture preservation and the image 

enhancement. 

 

Enhancing results of color image: In this section, 

some experiments are shown to verify the validity of 

our proposed enhancing method for the color image. 

For this purpose, we choose four typical 384×512 color 

texture images as test images which are respectively 

shown in Fig. 3a, c, e and g. Our proposed enhancing 

strategy is used to process these four images and their 

enhanced results are shown in Fig. 3b, d, f and h 

respectively. In these experiments, we set fractional 
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         (a) Enhanced image with 6 = 0              (b) Enhanced image with 6 = 0.2          (c) Enhanced image with 6 = 0.4 

 

 
 

         (d) Enhanced image with 6 = 0.6          (e) Enhanced image with 6 = 0.8            (f) Enhanced image with 6 = 1 

 

Fig. 1: The comparison among enhanced images with different fractional order 

 

 
 
       (a) Original image                   (b) Enhanced image                  (c) Partial view of (a)                 (d) Partial view of (b) 

 

 
 

        (e) Original image                   (f) Enhanced image                   (g) Partial view of (e)               (h) Partial view of (f) 

 

Fig. 2: Comparison between original images and enhanced results 
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    (a) Original image                     (b) Enhanced image of (a)          (c) Original image                     (d) Enhanced image of (c) 

 

 
 

    (e) Original image                      (f) Enhanced image of (e)         (g) Original image                     (h) Enhanced image of (g) 

 

Fig. 3: Comparison between original images and enhanced results 

 

   
 

               (a) Original image                                  (b) Imadjust method                              (c) Adapthisteq method 

 

                    
 

                                 (d)  Fractional-order S–G method                              (e) Proposed method        

 

Fig. 4: Comparison among the proposed image enhancement method and three typical image enhancement methods 

 

order α = 0.2. Comparing with the original images, we 

can see that the enhanced results have the more 

abundant color and the better observability. Specially, 

the detail texture information is enhanced greatly. 

Therefore, we have conclusion that our proposed 

enhancing method is effective for the color image 

enhancement. 

In order to further assess the performance of our 

proposed fractional differential enhancing method, we 

compare the proposed fractional order enhancing 

method with three typical enhancing methods, 

including the imadjust method (Gonzalez and Woods, 

1992), adapthisteq method (Gonzalez and Woods, 

1992) and fractional-order Savitzky-Golay method 

(Chen et al., 2012). For this purpose, we choose a 

typical 384×512 color texture images as the test image 

which is shown in Fig. 4a. The enhanced images, 

obtained by imadjust method, adapthisteq method, 
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      (a) Original PET image             (b) Segmented result of (a)         (c) Enhanced PET image          (d) Segmented result of (c) 

 

Fig. 5: Comparison between the segmented results of original PET image and enhanced PET image 

 

fractional-order Savitzky-Golay method and our 

proposed method, are respectively shown in Fig. 4b, c, 

d and e. In the experiment, the parameters of these 

methods are set to ensure the optimal performance. 

Comparing with the enhanced results shown in Fig. 2b, 

c and d, we can see that, in Fig. 2e, not only is the 

image contrast enhanced, but also the brightness 

distribution in image is protected. The texture is clear 

and the gradation is distinct. 

Therefore, we can conclude that the proposed 

enhancing method has the better performance than the 

other three enhancing methods. 

 

Enhancing results of PET image: Image enhancement 

technology not only can improve the observability of 

the image, but also can increase the accuracy of some 

postprocessing technologies. In order to assess this 

criterion, the PET image, downloaded from the 

DICOM7 medical imaging database, is used as the test 

image. We use the same segment method to process the 

original image and the enhanced images respectively. 

For easy observation, the pseudo-color technology is 

used to process the test image and experiment results 

and the processed images  are  shown in Fig. 5. The 

Fig. 5a shows the original PET image. In the figure, the 

luminous annular region is the cardiac muscular tissue 

which is the important standard for evaluating 

myocardial vitality. In the medical image processing, 

the segment of the cardiac muscular tissue is an 

important step. The segmented result of the original 

PET image is shown in Fig. 5b. Our proposed 

enhancing method is used to enhance the original PET 

image and the result is shown in Fig. 5c. For 

comparison, the segmented result of enhanced image is 

shown in Fig. 5d. From the comparison between Fig. 5b 

and d, we can see that a gap exists in the annular region 

of Fig. 5b, while the annular region in Fig. 5d is clearer 

and more helpful for the doctor to estimate the 

condition of the cardiac muscular tissue. 

Therefore, we can conclude that the proposed 

enhancing method is helpful for improving the accuracy 

of the postprocessing technologies in the PET image 

segment application. 

CONCLUSION 

 

A non-local fractional differential-based approach 

was proposed for image enhancement in this study , 

which includes the following contributions. Firstly, the 

matrix approximate method is extended to new version 

which is suitable for the image enhancement. Secondly, 

the effective non-local fractional order differential 

image enhancing method is proposed based on the 

improved matrix approximate method, which solves the 

problem of use of local fractional differential numerical 

approximate. Finally, a lot of experiments verify the 

validity of proposed method. Future works involve 

constructing the adaptive strategy for this model and 

applying it in the medical image enhancement. 
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