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Abstract: This research focuses on network performance and how to solve the problem of low throughput in the 
Aloha Medium Access Control (MAC) protocol and its derivatives. For this purpose, we propose two 
complementary solutions. The first consists of the integration of the erasure coding scheme in this protocol to 
recover collided packets and to reduce the rate of collision between transmitted packets. Here, since each node sends 
N coded packets instead of the k original packets, we have (N-k) redundant packets. The introduction of redundancy 
and subsequently structuring it in an exploitable manner, allows serious errors injected by the channel to be 
corrected. However, if each node attempts to achieve its best output without regard for the other nodes’ actions, this 
could affect overall system throughput. To analyze such conflicting situations where the action of one node has an 
impact on the other nodes’ actions, we add a complementary solution, which is based on the game theory technique 
of acquiring network equilibrium. This makes the network stronger and able to resist many collisions. 
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INTRODUCTION 

 
The ALOHA system is one of the earliest random 

access systems and in the slotted version; all nodes are 
synchronized with a global clock and only allowed to 
start transmission at the beginning of common time 
slots. The CSMA protocol adds important functionality 
to the MAC protocols and, as its name suggests, CSMA 
(and its variants) senses the medium to determine 
whether any other node is transmitting. Despite a lot of 
preventative techniques, these protocols still suffer 
from packet collisions, thus reducing throughput and 
affecting system performance. In an attempt to improve 
the efficiency of these protocols, several models and 
solutions have been proposed. A game theoretic 
approach for wireless networks was proposed by 
Akkarajitsakul et al. (2011), a deep analysis of random 
MAC protocols was presented by Altman et al. (2004, 
2005), Boucenna and Benslama (2012) and Mackenzie 
and Wicker (2001) and considerable improvement in 
throughput was achieved by King-Sun et al. (2005). In 
this paper, we proceed in the same context by 
integrating the erasure coding schema in the Aloha and 
CSMA protocols to recover collided packets and 
accordingly increase network throughput in both of 
protocols with more results and simulations than done 
by Boucenna and Benslama (2012). However, users 

wishing to transmit typically want to do as soon as 
possible by the lower cost and if multiple users try to 
transmit randomly without following a suitable manner 
for all users; many accesses fail. Moreover, 
unsuccessful attempts to transmit may be costly. Thus, 
users trying to transmit have conflicting objectives in 
cost and throughput and the appropriate tool for 
examining interaction between selfish users with 
conflicting objectives is game theory. Therefore, we 
formulate a game model and investigate a network 
equilibrium in which all users are satisfied.  

 
Erasure coding: The purpose of erasure coding is to 
recover lost packets if their position is known in (N-k) 
erasure codes. An (N-k) code word consists of N code 
packets, with k original packets and (N-k) redundant 
packets. The k original packets can be recovered 
successfully if we receive N’ packets out of the N coded 
packets. If N is sufficiently large compared to the loss 
rate, we can achieve high reliability without 
retransmission. Figure 1 illustrates the mechanism of 
erasure coding, when (N-k) redundant packets are 
generated, while Shacham and McKenney (1990) 
describes how to generate redundant packets.  

The classic block codes for erasure correction are 

called Reed-Solomon codes. An (N-k) Reed-Solomon 

code  (over  an  alphabet  of size q = 2
l
,  where  l  is  the  
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Fig. 1: Erasure coding model description 

 

 
 

Fig. 2: Network game model 

 

length of a packet) has the ideal property that if any k of 

the N transmitted symbols are received; the original k 

source symbols can be recovered. But Reed-Solomon 

codes have the disadvantage that they are practical only 

for small N, k and q; standard implementations of 

encoding and decoding have a cost of C packet 

operations (the expected number of arithmetic 

operations to compute the coded packets, or to recover 

the original packets), where, 

 

2
( - ) logC k N k N=                                           (1) 

 

Furthermore, with a Reed-Solomon code, as with 

any other block code, the erasure probability f must be 

estimated and the code rate R = k/N selected before the 

data are transmitted. 

 

The game and its model: We consider M wireless 

nodes that are willing to transmit data (active nodes) to 

a designated receiver. Nodes use a slotted Aloha or 

non-persistent CSMA based protocol to resolve 

contention at the MAC layer and to reduce the number 

of collisions among packets by always rescheduling a 

packet that upon arrival finds the channel to be busy. A 

slotted version of the Aloha protocol can be considered 

where the time axis is slotted with a slot size of τ sec 

(the propagation delay). All nodes are synchronized and 

are forced to start transmission only at the beginning of 

a slot. Slot duration is set to the maximum signal 

propagation time of τ = dmax/C sec, where dmax is the 

maximum separation distance between nodes and C is 

the speed of light. This ensures that after transmission 

stops, all nodes will find the channel to be clear after 

one slot time. Thus, each transmission must be 

preceded by an idle slot. We assume also that all 

packets are of constant length and the number of bits 

per packet l satisfies the condition for Reed-Solomon 

coding, E<q, (q = 2
l
). Thus, each transmission must be 

preceded by an idle slot. We assume also that all 

packets are of constant length and the number of bits 

per packet l satisfies the condition for Reed-Solomon 

coding, E<q, (q = 2
l
). 

We assume that the nodes are the players in the 

game. A player enters the game when he has a packet to 

transmit (active player) and leaves the game when all 

his packets have been successfully transmitted. The 

game in this paper is a repeated non-cooperative game, 

i.e., there is no coordination between players and they 

act as free agents and each player attempts to maximize 

his own payoff according to his strategy. Here the 

strategy is to select a suitable type of erasure coding 

and the utility is the player’s throughput. When in the 

game, the player chooses the type of coding that 

minimizes the cost of coding, but at the same time 

maximizes his utility (throughput). After each 

transmission failure, the player repeats his strategy until 

transmission succeeds. Figure 2 illustrates the game 

model where each node selects ρi in coding before 

transmitting via a medium in a wireless network. The 

strategy of each player i involves setting the number of 

redundant packets ρi to maximize player i’s expected 

utility ui. 

A game consists of a principal and a finite set of 

players M = {1, 2,…, M}, each of which selects a 

strategy ���� with the aim of maximizing his utility ui. 

The utility function ui (s): S→R represents each 

player’s sensitivity to the actions of the other players. 

Thus, our game can be modeled as a triple, G = (M, s, 

u) where M = {1, 2, …, M} denotes the set of players in 

the game (action set), s denotes the set of strategies for 

the players (si denotes the strategies for player i and s-i  

denotes  the  strategies  for  all  players except player i, 

s = {s1, s2, …, sM}) = {ρ1, ρ2, …, ρM} and u denotes the 

payoff assigned to each player (where Ui is the payoff 

utility assigned to player i).  
To measure the utility (throughput) function, we 

follow the probability concept based on that in King-
Sun et al. (2005). However in our study, we take into 
consideration the number of nodes forming the 
network, as well as the likelihood of choosing a type of 
encoding (decoding) and also the cost of 
encoding/decoding, which greatly influences the speed 
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of the system. Next we derive the expressions for 
throughput for both protocols (slotted Aloha and non-
persistent CSMA).  
 
The slotted aloha game: In our game we have M 
nodes, λ (packet/time slot) traffic load with the 
transmission of packets following a Poisson process 
with mean λ and throughput Th defined as: 
 

STh Pλ=                                                               (2) 

 
where, 
 

1

,1 1

k n

K n mn m
Ps P m k P

−

= =
= + ∑ ∑                           (3) 

 
The probability that a packet is successfully 

transmitted is given by: 
 

1( )(1 )N K N K Mp e eλ λ− − −= −                                   (4) 

 
simplicity, we set G = λN/k = λ (1 + ρ/k), where ρ is the 
number of redundant packets, then: 
 

(1 ) (1 ) 1( )(1 )k k MP e eλ ρ λ ρ
ρ

− + − + −= −                          (5) 

 
Let Qρ=1-Pρ Then, the probability that at least k 

encoded packets are received successfully is: 
 

KP =
N

i N i

i k

N
P Q

i
ρ ρ

−

=

 
 
 

∑                                           (6) 

 
Pn,m is the probability that only n (n≤k) encoded 

packets are received where m out of n are original 
packets. Then, we have: 
 

,

n N n

n m

k N k
P P Q

m n m
ρ ρ

−−  
=   −  

                               (7) 

 
An original packet can be successfully received or 

recovered if at least k out of N encoded packets are 
correctly received or n (n≤k) out of N encoded packets 
are received, m out of n received packets are original 
and the packet under consideration is among these 
packets (with probability m/k). Thus, from Eq. (3) we 
conclude: 

 
N

i N i

i k

N
Ps P Q

i
ρ ρ

−

=

 
= + 

 
∑  

 

1

1 1
( )

k n n N n

n m

k N K
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− −

= =

−  
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∑ ∑

           (8) 

 
From Eq. (2), the throughput can be expressed as: 
 

1

,1 1
.( )

k n

K n mn m
Th P m k Pλ

−

= =
= + ∑ ∑                        (9) 

In addition: 
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N
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N
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     (10) 

 
Accordingly, the utility function for an active 

player i am defined as: 
 

( )
i i

N
i N i

i

i k

N
Th P Q

i
ρ ρρ λ −

=

=
  

+  
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1

1 1
( )
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n m

k N K
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+   −   
∑ ∑

      (11) 

 
The non-persistent CSMA game: In CSMA, when a 
node attempts to transmit a packet, it senses the channel 
first. If the channel is idle, the packet is sent 
immediately; however, if the channel is busy the node 
delays its transmission until the channel becomes idle. 
As a result, collision probability can be reduced and 
performance is improved. Here, by following the same 
process as in the slotted Aloha game, we can express 
the utility function as: 
 

U
Th

B I
=

+
                                                         (12) 

 

where, �� = � +  
, � ̅ =  ����
������ and �� = ��. ��. �. 

Let: 
 

  { }
{ }

   int  

  

P one arrival in erval
Us

P some arrival occurs

τ
=

 

 
Then: 
 

1(1 )G G M

GM

e e
Us

e

α α

α

− − −

−

−
=  

 
( 1) 1(1 )G M G Me eα α− − − −= −                                   (13) 

 
Then for Ps, the probability that a packet is 

successfully transmitted is: 
 

1( )(1 )N K N K Mp e eαλ αλ− − −= −                                 (14) 

 

We have G = λN/k = λ (1 + ρ/k), where ρ is the 

number of redundant packets, then: 
 

(1 ) (1 ) 1( )(1 )k k MP e eαλ ρ αλ ρ
ρ

− + − + −= −                    (15) 

 

For simplicity, let Qρ=1-Pρ.  
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Fig. 3: Conventional model throughput in S-aloha with 

varying λ 
 

 
 
Fig. 4: Conventional model Th in S-aloha with varying values 

of λ and α. When λ ∈ [0.7, 1.5], Th is maximized 

 

The probability that at least k encoded packets are 

received successfully is: 
 

N
i N i

K

i k

N
P P Q

i
ρ ρ

−

=

 
=  

 
∑                                          (16) 

 

Let Pn,m be the probability that only n (n≤k) 

encoded packets are received, where m out of n are 

original packets; then we have: 
 

,

i N n

n m

k N K
P P Q

m n m
ρ ρ

−−  
=    −                               

(17) 

 
We also have: 
 

1

,1 1
( )

k n
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−
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(18) 

 
Throughput can be expressed as: 
 

( 1)(1 ) . .

1
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G
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e
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Moreover, 
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e
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Accordingly, the utility function for an active 
player i is defined as: 
 

(1 ) (1 )( 1)

(1 )

(1 ) . .
( )

1

i i

i
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i
i k
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(21) 

 

Existence of Nash equilibrium: 

Theorem 1: (Fudenberg and Triole, 1991): Debreu, 

Glicksberg (1952) have Consider a strategic-form game 

whose strategy spaces Si are nonempty compact convex 

subsets of a Euclidean space. If the payoff functions Ui 

are continuous in S and quasi-concave in Si, there exists 

a pure strategy Nash Equilibrium (NE). 

 

Theorem 2: (Fudenberg and Triole, 1991): An 

Equilibrium exists for every concave n-person game. 

For such a case, Rosen proved the existence of 

equilibrium for a concave utility function. It is thus 

clear that since our utility (11) satisfies all preceding 

conditions �����
����

= 0!, both theorems are applicable to 

this game. Thus, a pure NE exists. To find the NE of 

the game we analyze the player’s best response function 

(Osborne, 2004). The best response of player i is the 

number of redundant packets that maximizes the utility 

function. 

 

Definition 1: (Jerzy, 2007): An action S is the best 

reply to S-i, if ui (s, s-i) ≥ui (s, s-i) 
for all s'∈S. Let BR (s-i) 

denote the set of best replies to S-i. An NE is an action 

profile s = (s, s-i) in which si∈BR (s-i) for all i = 1... M. 

First, we investigate whether there exists a value of 

ρi such that a better throughput can be achieved. We 

consider the scenario where all nodes use the same 

value ρi = ρ and modify this in synchronization with the 

other nodes in the network. Note that all our 

simulations were carried out using the MATLAB 

simulator. 

 

In slotted aloha: We investigated the behavior of the 

conventional system throughput (before integrating 

erasure  coding)  by  varying  λ. According to Fig. 3 

and 4, throughput is maximized when λ∈ [0.7, 1.5}. 

Figure 4 plots in 3D the average throughput obtained by 

the network for different values of λ and α. For better 

and more precise results, we use α = 0.05 in the 

reminder of this work (like the conventional model).  

Moreover, Fig. 5 confirms that operating with ρ = 0 

leads to network collapse. However, there exists an 

optimal point of operation (ρ = 2 packets) at which 

throughput is maximized Th (ρ = 2) argmaxTh for 

every node in the network. We refer to this optimal 

point of operation as ρ*, which corresponds to the NE 

for our scheme. In other words, when ρ≤ρ*, congestion 

dominates resulting in lower throughput, whereas when 

ρ≥ρ* throughput decreases. Thus, Th (ρ, ρ-ι) ≥Th (ρ, ρ-ι) 

for all ρ’∈ ρ and ρ = BR (ρ-i). 
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Fig. 5: S-aloha throughput versus ρ 

 

 
 
Fig. 6: CSMA throughput versus λ and ρ 

 

 
 

Fig. 7: CSMA throughput versus ρ 

 

In CSMA: We investigate whether there exists a value 

of ρi such that better throughput can be achieved. We 

consider the scenario where all the nodes use the same 

value ρi = ρ and modify it in synchronization with the 

other nodes in the network. Figure 6 and 7 plot the 

average throughput obtained by a node for different 

values  of ρ. These figures confirm that operating with 

ρ = 0 leads to network collapse. However, there exists 

an optimal point of operation (ρ = 5 packets) at which 

throughput is maximized, Th (ρ = 5) = argmaxTh, for 

every node in the network. We refer to this optimal 

point of operation as ρ*, which corresponds to the NE 

for  our  scheme. It  shows  that  when ρ≤ρ*, congestion  

 
 
Fig. 8: Cost of coding versus ρ in S-aloha 

 

 
 

Fig. 9: S-aloha throughput versus λ with M = 1 

 

dominates, resulting in lower throughput. However, 
when " ≥ " ∗ throughput decreases. Thus, Th (", "�&) 
≥Th (", "�&), for all ρ’ ∈ ρ and ρ = BR (ρ-i). In the 
remainder of this section, we use α = 0.2. 

 
Performance improvement: 
In slotted aloha: Now, we investigate the importance 
of the obtained results. We begin this assessment with 
the cost of coding employed in our model. The cost of 
coding denotes the number of arithmetic operations 
performed during encoding, or decoding operations to 
recover encoded packets. In other words, it represents 
the speed of the system. The fastest system is the one 
with the lowest cost. Figure 5 shows that cost decreases 
at equilibrium. 

In Fig. 8 we evaluate the cost while varying the 
number of redundant packets as well as the number of 
original packets used during erasure coding. At 
equilibrium, we have the lowest cost [0.9, 2.2%]; in this 
case, the encoder (decoder) carried out 90 arithmetic 
operations to generate two redundant packets (or 
recover eight original packets). Furthermore, it 
performed 950 arithmetic operations for ten redundant 
packets. This difference greatly affects the speed and 
also system performance. Figure 9 shows a comparison 
of throughput at equilibrium and without equilibrium 
(conventional system). In Fig. 9 and 10, we can see the 
improvement due to equilibrium, which becomes even 
clearer when we mimic reality by using a greater 
number of active nodes (M = 20). In Fig. 9, there is a 
small  difference  in  throughput, which is possible only  
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Fig. 10: S-aloha throughput versus λ with M = 20 

 

 
 
Fig. 11: Behavior of throughput versus the active nodes in S-

aloha 

 

 
 

Fig. 12: Cost of coding versus ρ in CSMA 

 

 
 

Fig. 13: CSMA throughput versus λ 

for a small λ: λ ∈ [0.04, 0.14]. For values beyond this 

interval, use of the NE model becomes ineffective. 

 Figure 10 shows a remarkable improvement in 
throughput when using the NE model, where the 
difference can reach 0.02 packets/sec, with λ = 2. Note 
that when we increase the number of active nodes 
(users), the advantage of equilibrium becomes more 
important. 

At Equilibrium (NE), throughput increases quickly 
to reach its maximum, after which it begins to 
deteriorate  slowly  until  it  reaches  its lowest level at 
λ = 10 packets/sec. It should be noted that, by 
increasing the number of active nodes, network 
throughput decreases; this is due to the number of 
collisions, which increases when increasing the number 
of active nodes (users) (Fig. 11). 

The use of the erasure coding scheme and game 
theory analysis in the slotted Aloha protocol results in a 
stable and more efficient network. However, to confirm 
this advantage in general, in the following section we 
apply the same process to the non-persistent CSMA 
protocol. 

 
In CSMA: Here, we investigate the importance of the 
obtained results. Game theory has allowed us to 

discover the equilibrium in the MAC layer after 
integrating erasure coding in the non-persistent CSMA 
protocol. However, in order to evaluate these results, 
we need to examine the behavior of certain particular 
characteristics and then compare these to the results 
obtained using other values not in equilibrium.  

As before, we begin the assessment considering the 
cost of coding used in our model. The cost of coding 
gives the number of arithmetic operations carried out 
during the encoding and also during the decoding 
operations to recover encoded packets. In other words, 
it represents the speed of the system. The fastest system 
is the one with the lowest cost. Figure 12 shows the 
lower cost at equilibrium. From Fig. 12 we can evaluate 
the cost of coding when varying the number of 
redundant packets as well as the number of original 
packets used during erasure coding. At equilibrium, we 
have the lowest cost [1-3.5%]; in this example, the 
encoder (decoder) carried out 350 arithmetic operations 
to generate five redundant packets (or recover 14 
original packets). Furthermore, it performed 1050 
arithmetic operations for 12 redundant packets. This 
difference greatly affects the system speed and also its 
performance. Figure 13 presents a comparison of 
throughput at Equilibrium (NE) and without 
equilibrium (conventional). Figure 14 describes in more 

detail, the behavior of throughput when λ∈ [0.1]. 

Figure 14 illustrates the behavior of network 
throughput versus the offered traffic load and the 
number of redundant packets. Throughput is maximized 

when ρ = 5 and λ∈ [0.5, 5]. 

At Equilibrium (NE) throughput increases quickly 
to reach its maximum, Th

*
max = 0.5, which is better than 

that  found  in  the  conventional  model,  Thmax = 0.05.  
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Fig. 14: CSMA throughput versus λ 

 
This confirms the advantage of the Nash equilibrium 
discovered by applying game theory analysis. 
Thereafter, throughput begins to deteriorate slowly until 
it reaches its lowest level (Thmin = 0.05) at λ = 10 
packets/sec. 

As in the slotted Aloha protocol, there is a 
remarkable improvement in the performance of slotted 
non persistent CSMA with the application of an erasure 
coding scheme and game theory analysis. 
 

CONCLUSION 
 

In this paper, we created non-cooperative and 
repeated game models for the slotted Aloha and slotted 
non-persistent CSMA protocols to improve network 
performance. At equilibrium, network throughput is 
maximized and all nodes are satisfied, without the need 
to change their strategies, which makes the network 
stable and more efficient. Use of our proposed solutions 
based on erasure coding and game theory makes the 
Aloha and CSMA protocols stronger and able to resist 
many collisions. Our results were verified by 
appropriate simulations, where we compared both the 
conventional and game models. The simulations show 
acceptable progress in terms of throughput and speed 
(coding cost). Thus, the use of game theory is beneficial 
for contention based medium access protocols. 
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