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Decay of MHD Turbulence before the Final Period for Four-point Correlation in a
Rotating System

M.A. Bkar Pk, M.S. Alam Sarker and M. A K. Azad
Department of Applied Mathematics, University of Rajshahi-6205, Bangladesh

Abstract: The aim of this study is to determine decay of magnetic field fluctuations in MHD turbulence for four-
point correlation in a rotating system before the final period. Two, three and four point correlation equations have
been obtained and the set of correlation equations is made determinate by neglecting the quintuple correlations in
comparison to the third and fourth order correlation terms. The correlation equations are converted to spectral form
by taking their Fourier-transforms. Finally, integrating the energy spectrum over all wave numbers. The energy
decay of magnetic field fluctuations for four-point correlations in a rotating system is obtained and is shown

graphically in the text.
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INTRODUCTION

Magneto-Hydrodynamics is the science which
deals with the motion of highly conducting fluids in the
presence of a magnetic field. The Coriolis force and
centrifugal force must be supposed to act on the fluid.
The coriolis and centrifugal force due to rotation plays
an important role in a rotating system of turbulent flow.
Deissler (1958, 1960) developed a theory “Decay of
homogeneous turbulence before the final period.” By
considering Deissler’s theory, Sarker and Kishore
(1991) studied the decay of MHD turbulence before the
final period. Funada ef al. (1978) considered the effect
of Coriolis force on turbulent motion in presence of
strong magnetic field. Islam and Sarker (2001b) studied
the decay of dusty fluid MHD turbulence before the
final period in a rotating system. Sarker and Islam
(2001) also considered the decay of MHD turbulence
before the final period for the case of multi-point and
multi-time. Islam and Sarker (2001a) also extended
their previous problem for first order reactant. Kishore
and Golsefid (1988) discussed the effect of Coriolis
force on acceleration covariance in turbulent flow with
rotational symmetry. Loeffler and Deissler (1961)
studied the decay of temperature fluctuations in
homogeneous turbulence before the final period.
Chandrasekhar (1951) studied the invariant theory of
isotropic  turbulence in  magneto-hydrodynamics.
Corrsin (1951) considered the spectrum of isotropic
temperature fluctuations in isotropic turbulence. Bkar
et al. (2012) studied the decay of energy of MHD
turbulence for four-point correlation. Bkar et al. (Year)
also studied the first-order reactant in homogeneou
turbulence prior to the ultimate phase of decay for four-

point correlation in presence of dust particles.Azad
et al. (2012) discussed the transport equatoin for the
joint distribution function of velocity, temperature and
concentration in convective tubulent flow in presence
of dust particles.

It is noted that all above cases, the researcher had
considered three-point correlations and through their
study they obtained the energy decay law prior to the
ultimate phase.

In the present study, we have studied the decay of
MHD turbulence before the final period for four-point
correlation in a rotating system. The energy decay of
MHD turbulence depends on the variation of the
magnitude of coriolis parameters in the magnetic field
and causes important role between rotating and non-
rotating system. The effects of rotation in magnetic
field fluctuation of MHD turbulence are graphically
discussed. It is observed that energy decays increases
with the decreases of rotation and maximum at the
point where the rotation i.e., coriolis force is zero.

Four point correlation and equations: To find the
four point correlation equation, we take the momentum
equation of MHD turbulence at the point p and the
induction equation of magnetic field fluctuation at

"

p',p'and p" as:
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where,
o = Plp+ 4|h? = The total MHD pressure
p(x2) = The hydrodynamic pressure
p = The fluid density
Py =v = The Magnetic Prandtl number
v = The kinematics viscosity
A = The magnetic diffusivity
hix, t) = The magnetic field fluctuation
u(x, 1) = The turbulent velocity
t = The time
Xk = The space co-ordinate and repeated

subscripts are summed from 1 to 3

Multiplying Eq. (1) by A/h’h; (2) by wu,n"hr(3) by

i m

u,h'h, (4) by u, hh! and adding the four equations, we

1 m
than taking the space or time averages or ensemble
average, both of the averages gives the same
representation .Space or time averages denoted by
(~- -7 and ensemble average denoted by <......... >,
We get:
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By using:
”:a!,a_g’i__a_'_a_'_a
ox, Or, ox, o ox, or, or, or 6)

into Eq. (5) and then following nine dimensional
Fourier transforms:

wh RN = 1 1 T ol @) exolicer + 07 + 7 fikawai
< J > 7J;07L7J;:< t)y/( )}/ )> [ p
(M
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(R PV = Ifﬁf@,@ﬁy (3 ))exp[(errk K kd KA
(10)

(SR ) = ]H(gﬁ,q);{k (e )@ ) explichr + K + K Wikak'ak”
(1)

(nar W) = | T [ W@z )explier+ K7 + 7 hikakar
(12)
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and interchange of point’s p and p etc, in the subscripts
with the facts:

u W = uu iR

uu ;(/! /h"hm = uu "W R

i m i

wun b hy = wu kb hh"; u, wihihihy = wulhlh b

m it i, T jm> " m o

and taking contraction of the indices i and j we obtain
the spectral equation is:

*(W'%" ) +f[(l + DK K2+ K + 2y, (KK + KK+ kKD i7 7))

+2(£pUQp+gqlﬂQq+£ Q, +5,, Q) @y rlym) =ik, + ki + k)b 7y

—i(k, + k| + k)G y iyl ik, + ki + k)G i7 vy

+ilky + ki + KOGy vy ) + ik + ki + k(S )
(14)

If we take the derivative with respect to x; of the
momentum Eq. (1) at p, we have:

o’ o’ 15
2 > =———(uwu, —hh) (15
x,0x,  Ox,0x,
Multiplying Eq. (15) by hl’hjhr’;”taklng time
averages and writing the equation in terms of the
independent variables 7, 7, #" we have:

(KK, +K,K;, +K, K/ +KK, +KK; + KK} +K/K; + K]K; +K]K; +K/K})

G =
@rir5rm) KK, + KK} + K|K]+ 2K,K] + 2K}K] + 2K, K]
! "y m r.n._m
Py iy iy - virivirm) (16)

Eq. (16) can be used to eliminate (57, " w) from
Eq. (14). Equation (14) and (16) are the spectral Eq.
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corresponding to the four—point correlation equation.
The spectral equations corresponding to the three-point
correlation equations by contraction of the indices i and
J are:

LA +-0+ POK + K+ 2p, KK GPB) =
p

(K, +K}) (6688 i(k,+K}) BBBB~-I
(K, +K]) (0,88 + (K, +K}) ($8,B8) +
Ck, +k))yBB! (17)

and(yﬂﬂ") (KK, +KK, + Kk, +KK})
(K +K +2K,K))

W’_ ﬁlﬁkﬁiﬂj) (18)

here the spectral tensors are defined by:
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(W) = | [ oxpliter + K akak
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A relation between ¢1¢k yih ﬁ "and ¢]7/’y;’y”;’ can be

obtained by letting 7
result with Eq. (20):

(o1 sk &) [

<¢, (k)}/ ( )/ ( )>exp[z(kr+k k" ]dkdkdk (25)

=0 in Eq. (7) and comparing the

The spectral equation corresponding to the two-
point correlation equation taking contraction of the
indices is:

§<¢,¢,’ (k) + %kz@,(o! (k) = 2ik, ({00! ) ~ (a,0,0/(- ¥)) (26)

M

where, ¢ o' and @@ @/ are defined by:
<hihi’ (;)> = J‘i<(pi¢){ (%)> exp(z%.;)dk 27)

and (1 1) = [ (a0, 0/(k ) explifr ik (28)

The relation between ai%go}(]?)and @, BB s

obtained by letting #=0in Eq. (19) and comparing the
result with Eq. (24), then:

(o) = [ 4ot v (29)

Solution neglecting quintuple correlations: As it
stands the set of linear Eq. (14), (17), (18), (19), (21),
(22) and (29) is indeterminate as it contains more
unknowns than equations. Thus neglecting all the terms
on the right side of Eq. (14), the equation can be
integrated between to t; and t to give:

<¢,;/,-’y’;;/,ﬁ> = <¢,;/,-’y’;;/,§;>l exp[—= (1+ pyy )(k2 k" k" 2kK 2K K"+ Zkk')
‘ ’ Pu

Q, +£,,Q, + £, Q It 1) (30)

_z(gplep+quz q rkj=<r

where, <¢ }"}’,"}’,',['> is the value of <¢ 7'}/'}/"> att =t

that is stationary value for small values of k, k'andk"”
when the quintuple correlations are negligible.
Substituting of Eq. (18), (25), (30) in Eq. (17) we get:

[+ py )& +K)+2py Kk V(K BB

M

(k kBB +——
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—0
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+dl, | eXp{_l(t—tl){HpM)(kz K2 +k”2)+2pM(Idc’—k’k”)}]¢ﬂc”
—0 pM

eXp[z(gpAl Q rk/Qr sk/n s Xt ¢ )] (3 1)

Eqhi®2g
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At t; ,y° have been assumed independent of k" ;
that assumption is not, made for other times. This is one
of several assumptions made concerning the initial
conditions, although continuity equation satisfied the
conditions. The complete specification of initial
turbulence is difficult; the assumptions for the initial
conditions made here in are partially on the basis of
simplicity. ~ Substituting g% " = gk /dk {dk; and

integrating with respect to &/, k), and k%, we get:

%(kuﬁzﬂ/ﬁb L1 po N7 k)42, ]

A

VB

(kg BB~ ____NPw
v =1)(1+py)]

[al ]ex{_ v =1)(1+py,) {(l #2p, K +k2) | 2p, H
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(vt =)+ py)l
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Pu
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Vi

v(E=2)A+ py)]

[Cl]ex V(l—tl)(1+p,w){k2 , (1+2pM )(lglz)Jr zp‘wkk,} exp
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2¢,,Q, +26,,Q, +26,Q, +26,,Q ki -1,)} (32)

Integration of Eq. (32) with respect to time and in
order to simplify calculations, we will assume that [a]; =
0; That is we assume that a function sufficiently general
to represent the initial conditions can obtained by
considering only the terms involving [b]; and [c]; The
substituting of Eq. (29) in Eq. (26) and setting:

H =27, result in

2
oH LS G (33)
o py
where,

G=k2 [arif Kb BAGR) kg BBEANL,
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5
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{- o exp[—a}z[(l +2p, )kz 2P kk' + k,zJ] +kexp
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exp(x?)dxdk'
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5
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|%

exp(x?)dx}dk' (34)

o —_

where H is the magnetic energy spectrum function,
which represents contributions from various wave
numbers (or eddy sizes) to the energy and G is the
energy transfer function, which is responsible for the
transfer of energy between wave numbers .In order to
make further calculations, an assumption must be made
for the forms of the bracketed quantities with the
subscripts 0 and 1 in Eq. (37) which depends on the
initial conditions:

(2”)2[ kk¢[ﬂi’ﬂi”(%7 P)_ kk¢iﬂflﬂi”(_];7_ﬁ]0 =
_50(k2k74_k4k!2) (35)

where, &, is a constant depending on the initial
conditions for the other bracketed quantities in Eq. (34),
we get:

7 7

AL R = Bk kY], =20 (i) -
1% 1%

(h RN =2 (KK~ kK

(36)

Remembering,
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dk' = 272k d(cos 0)dk'» and
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where, w:[v(zle)(uplw))n Integrating Eq. (37) with gy (t—t Y4 py ) M
P 90p 7
respect to k'we have: WM kot
1 M
3 120 p,, 60 p>u 30 0
G_Gﬁ +G, {vz(z—tl)Z * vig-t)0+p, ) vs(z—tl)3}
expl- (26,00, +26,,Q, +26,Q, +2¢,,Q, )t —1,)[(38) 64p’u 10 pu W00+ p, ) 0,
v(t—t) Vz(t_tl)z(l"'PM)z v(t—t,)
h a
where, 2 21,137 2
{P =Py (I+py) }k ] Iexp(yz)dy (43)
1 5 0
_ s oDir we _t(J)(1+2pM)k2 (39) where
Gy = 3 3 s (+p,) ’
V=t (+py)’ PPy
1
1517ka SPMZ 3 6, Pu pMZ _1z8 — 1 2
[Mr 1, (+py) {(Hp.wfv(r—zo) 2v(t—ru>}k ‘1+p.u{(1+p.w>2 IH o, =(WJ k
M

2793



Res. J. Appl. Sci. Eng. Technol., 6(15): 2789-2798, 2013

G = Lo

ra SmPpy 2

exp (—V(f—fl)(1+2pjw)]kz[
29 pM
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75601+ p,, )’ KoL 20160(1+p,,)° 42336001+ p,,)’ e
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The integral expression in Eq. (39) , the quantity Gg
represents the transfer function arising owing to
consideration of magnetic field at three point correlation
equation; G, arises from consideration of the four-point
equation. Integration of Eq. (39) over all wave numbers
shows that:

TG.d% =0 (45)

Indicating that the expression for G satisfies the
conditions of continuity and homogeneity, physically, it
was to be expected, since G is a measure of transfer of
energy and the numbers must be zero. From (34):

We get:

H:exp[_ M} JGexp[_M}de)eXp{_m}
Pu Pu Pu

J(k) = Nok*/ 7 , is a constant of integration and can be
obtained as by Corrsin (1951)
Therefore we obtained:

H =
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where,
G=G,+G, +G, +G, +G, (47)

After integration Eq. (46) becomes:
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H =S S e
B 16v(l+ p,)?

45p,,
2 1+ py ) (1)

+
2}kl()

20p*s —40p’ +160p%y ~60p,, =5) _(24p° ~200p,, +20)} o,

v(t—t,)
5)}kl4

—{((20-240p,, +424p>y —48p°w)/ p, k" +((1-2p,, ) (20p*y —40p’°x

8+

—v(r—t)(1+2pM)jk[

60p,,
Vz(t_tl)

W+ py)' (-1

W p, (14, ) (e =1)

a-2p,) 20p M —40p M +160p v —60p, —
4‘77 M(1+pM) t-1)

(
{ 20p°w —70p,, — 5)+
{
{

+160p°s —60p,, —5)/4p s (1+ p,,)" k' exp(-w,) Ei(w,)]
, = {v(1-2p, )t/ p,, 1 and
Ei(@,) = [expl{v(1=2p, )t/p, Nt —t)]dt

§| 1/2 9/2M

Vs _2 V(1+pM)11/2

1890 p
{ ¢ 4}k6+

4 6
vi(l+p,) (—t)
+{(—423170-16938180p,, —25381440p% —16894080p" —4213440p* v}/ v*(1+ py, ) (1 =1, }k*
+{(=2115855 — 4237380 p,, + 4245780 pu + 16927680 px + 14783328 p*
+A218816p%w +4368 p,, ) /V3(1+ py ) (1 —1,) 1K

exp [—v(r—n)(wzpkaQ[
Py

+{(-2115855-5670p,, +12720540p* sy +8436120p°ys —19072032p" i
—25347840p v —4128p"u +2304p% v ) /v(1+ p, ) pPu (t—1,) 1k

—{((-2115855+ 4226040 p,, +12731880 ps —17004960 p*ss —35944272 p*us

+ 12796224p5M + 42264592p6.w + 16857280p7M + 9920P8M - 4864P9M )k14

+1344p, k" [(1+ p,,)° P’} exp(@,) Ei(,)]
o, =exp{v(1-2p, )t/ p, }k*»

Ei(@y) = [expl{v(1=2p, )k Ip, } [t —1,)ldt
From Eq. (48) we get:

H= Hl + Hz
expl-(26,,Q, +26,Q, +2¢6,,Q, +2¢,,Q ki —t,} (49)
H, = Nok’ exp{_ 2vk2(t—to)} +H, and g -
7 Pu
(H}/] + H7z + H73 + H}’4 )

In Eq. (49) H, and H, magnetic energy spectrum
arising from consideration of the three and four—point
correlation equations respectively. Eq. (49) can be
integrated over all wave numbers to give the total
magnetic turbulent energy. That is:

hh' %
W (50)
2 0
NOW © N p}/ZMVa?/Z(t_t )73/2 +
b H dk — 0 0
{ ! 821

‘foQ‘f6 (r- t0)75

IH2dk — fl[RV_”/Z(t _tl)_15/2 +SV—19/2(t_tl)—17/2:

expl-(26,,Q, +25,,Q, +26,,Q, +25,,Q Nt -1,)}

qki

where, R=0,+0,+0,+0;.8§=0,+0, +Qand Q"

values are:

6
n.p°M
iny
(1+P,)(1+2P,)”
i 5PM(7PM,6)_35 (317 M*pr+3) 8[7;”(3[7 ‘472}7\4*3)
16 1+2P,) 8(1+2p, )’ 32°1+2p,,)’ h
zp°'M

(1+ P2 1+2P, - pu)”
159 157(5-6p, +21p*y) 157.3(15-6p,, +36py —6p°u +61p*y
2° 2°(1+2P, - p*u) 2"(1+2p, —p’M)’
11.9.7(1+ P*u )(75-30p,, +180p° s —30p°w +305p* ),
2%1+2p,, - p*M)*
13.11.9.7(1+ P’ )*(75=3p,, +90p* s =30p™u +15p*s)
2“(1+2p, - p*M)*
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21/2
z.pu
0, = [157

=- —+
A+ p,)"2(A+2p, - p*u)”?

26

159.7(14p° —18-40p, )+
2’(142p,,—p*y)

15119.7(14p" s =56p*s —=12p°u =40p,, =18) ]
2°(+2p,, —p*u)

19/2

0, -— T.p M(1+pM)1/2 [g+
P +2p,)(0+2p, - )P 2
15.7(17+32p,, —2p° v +4p* v +20p*u)
2"+ py ) (1+2py, = pu)

+
9.7.5(1 7+49pM +13p2M —13]73/»1 +98p4M +134p5M +104$06M +60p7,\4)
2“(1+pM)3(1+2pM _pzM)z
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2%+ py)' (14+2py = p°u)

L (BIL9T504 py =P+ ') (A7 +49p,, +13p%0 =13p%0 +98p*u +134p"w +104p°u +60p"w)
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2° 2''(1+2P,)
9
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7T 23/2 772
I+ py) " (+2py,)
97.53 7.5.3(4231710 + 16938180 p,, + 25381440 p*us + 1689480 p* v + 4213440 p*
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2 2°(1+2p,)

(9.7.5.3(2115855423738p,, 4245780 —16927680"y —14783328'
_ ~4218816° —436%°m)
T

24(1+2p,,)’

Therefore from Eq. (50) we get:

e e L OV (1) T H IRV (=) e SV R ()]

827

Bkl Nop”uv (- 1,)""
2

expl-(26,,Q, +26,Q, +26,,Q, +2¢,,Q, kt—1,)} (5D

Thus, the decay of MHD turbulence for four-point
correlation in a rotating system may be written as:
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Fig. 1: Energy decay curves for f=0.75
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Fig. 2: Energy decay curves for f = 0.50
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Fig. 3: Energy decay curves for f=0.15
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Fig. 4: Energy decay curves for f=10

Timet

Fig. 5: Energy decay curves for /' = 1.5
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Timet)

Fig. 6: Decay curves of Eq. (54)

<h2> = A=) Bt —1,)" +[Ct=1,)" " + Dt —1,)"]
exp {—f(t-1)} (52)

where f is Coriolis force parameter. If all omegas are
equal to zero in Eq. (52) then, we get:

<h2> = A —t)7 + Bt —1)" +[Ct—1,)"? + Dt —1,)"""] (53)

This is the decay of MHD turbulence for four-point
correlation in non-rotating system. Which is same as
[12]. If E1= 0, then:

<h2> = A(t—1,)>"* +B(t—1,)" (54)

This is the decay of MHD turbulence for three-
point correlation. This is completely same with the
result obtained by Sarker and Kishore (1991).

RESULTS AND DISCUSSION

Here y1, y2, ¥3, y4 and y5 are solutions of Eq. (52)
in a rotating system at t, =t; = 0.5, 1, 1.5, 2, 2.5
corresponding with Coriolis force 0.75, 0.50 ,0.15, 0
and 1.50, which indicated in the Fig. 1 to 5 respectively.
Also y1, y2, y3, y4 and y5 are solutions of Eq. (54) at t,
=t,=0.5, 1, 1.5, 2, 2.5 which indicated in Fig. 6.

From Fig. 1 to 5, we observe that energy decay
curves successively increased for decreasing the values
of the Coriolis force and maximum at the point where
the Coriolis force is equal to zero. For three-point
correlation energy decay very slowly. If the quadruple
and quintuple correlations were not neglected, than
more terms in negative higher power of (t - t;) would
be added to the Eq. (52) and for large times the last
terms in the Eq. (52), becomes negligible, leaving the -
3/2 power decay law for the final period. Decay of
energy of MHD turbulence for both rotating and non-
rotating system with different values of Coriolis force is
graphically shown in Fig. 1 to 6. We conclude that in
the magnetic field fluctuation the energy decay
increases with the decreases of rotation and maximum
at the point where the rotation (i.e., coriolis force)
is zero.
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