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Abstract: In this study, a novel method is proposed in which designs equilibrium point of tumor model in order to 
decrease the density of tumor cells as well as makes the possibility of controlling desirable clinical situation to 
improve desirable clinical conditions by enlarging tumor dormant state. The tumor dormancy means that all tumor 
cells are in cell-cycle arrest or a dynamic equilibrium state in which cells proliferation are in balance with cells 
undergoing apoptosis and the tumor growth is blocked. Therefore, this equilibrium represents a desirable clinical 
condition. If the trajectories of the describing dynamic systems belong to a specific region denoted by domain of 
attraction, then the convergence of system to the healthy steady state is guaranteed for this equilibrium point, the 
domain of attraction is a set of desired clinical conditions. This problem is indicated in form of the two layer global 
multi objective function optimization. 
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INTRODUCTION 

 
Cancer occurs when a group of cells has lost the 

ability to control growth through mutations. These cells 
divide rapidly to form tumors and sometimes cancer 
cells can spread to other parts of the body. In order to 
control the growth of tumor, different strategies 
introduced. The response of tumor to treatment depends  
on  many  factors,  such as  the  severity  of  the  
diseases, the treatment’s application  and  the  strength  
of  patient’s  own  immune  response. It is possible to 
model this process and mathematical  modeling  of  this  
process  is a  powerful  tool  in  the  development  of 
improved  treatment  regimens.  

In respect of the control systems that protect 
against cancer, they are classified in two general 
groups: systems that prevent mutations and systems that 
cope with mutations once they occurred. To promote 
effective treatments, it is significant to identify the 
mechanisms to controlling cancer growth, how they 
interact and how they can most easily be manipulated to 
eradicate (or manage) the disease. Through the 
development and solution of mathematical models that 
describe different aspects of solid tumor growth, 
applied mathematics has the potential to prevent extra 
experimentation and also to provide biologists with 
complementary and valuable insight into the 
mechanisms that may handle the development of solid 
tumors (Byrne, 1999). 

Tumor dormancy or dynamic equilibrium state in 
which tumor cells and immune cells are in balance has 
been recognized as a clinical phenomenon in numerous 
types of cancer for many years. Clinicians and 
experimental biologists have used the term dormancy 
loosely, to describe the hypothetical state of cancer 
cells lying in wait over a period of time after treatment 
of the primary tumor, pending subsequent growth and 
clinical recurrence.  

Determining the steady states of the model and the 
stability of the equilibrium points for cancers is 
investigated  by  Sarkar  and  Banerjee  (2005), Amato 
et al. (2007) and Yang (2012). 

The mathematical modeling of tumor growth and 
treatment has been approached by a number of 
researchers using a variety of models over the past 
decades (Bajzer et al., 1996). These models describe 
interaction and competition between tumor cells and 
immune cells (namely Cytotoxic T-Lymphocytes 
(CTLs) and macrophages).  

Different dynamics of the cancer development can 
be described in four states. Lotka-Volterra-based 
models are used in several papers and also in this study 
to explain the states of interactions and competition 
between normal cells and tumor cells. They are 
included: uncontrolled tumor growth, the populations of 
normal cells and malignant cells coexist together with 
blocked sizes in steady-state condition (tumor 
dormancy), tumor recurrence and tumor remission. 
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Desirable clinical conditions is the cases of tumor 
dormancy and tumor remission since in these equilibria 
the population size of tumor cells can be limited to low 
or null values. The tumor dormancy state is occurred 
when the trajectories of dynamics system tends to 
asymptotically stable equilibrium in which the size of 
malignant cells and normal cells do not vary. This 
equilibrium represent a set of desirable clinical 
conditions which are domain of attraction related to 
stable equilibrium point in tumor growth nonlinear 
system (Kuznetsov et al., 1994; Gatenby, 1995; 
Michelson and Leith, 1995; Bajzer et al., 1996; 
Kirschner and Panetta, 1998; Pillis and Radunskaya, 
2001; Sarkar and Banerjee, 2005; Pillis et al., 2005; 
Pillis et al., 2006; Byrne et al., 2004). 

Methods which estimate Domain of Attraction 
(DA), can be classified in two general groups, 
Lyapunov based and non-Lyapunov based. The first 
group contains two main steps (Chesi et al., 1997; Zhai 
et al., 2009; Rapoport, 1999; Barreeiro et al., 2002; 
Rapoport and Morozov, 2008). At the first step a 
suitable Lyapunov Function (LF) based on the structure 
of the system is proposed and in the second step DA is 
estimated based on the suggested LF.  

Hashemzade and Yazdanpanah (2006), Cao et al. 

(2002), Brockett and Li (2003), Chesi (2004) and 

Matallana et al. (2011) represent the methods of 

enlarging DA.A bi-level optimization method for the 

design of the operating equilibrium of a nonlinear 

dynamic system based on a measure of the extension of 

its domain of attraction is proposed by Matallana et al. 

(2011). A non-Lyapunov based approach for estimating 

the domain of attraction, in the form of a continuation 

optimization  algorithm,  is  proposed by Moghaddam 

et al. (2012). According to the proposed algorithm, the 

domain of attraction is estimated with finite number of 

open sets. This method is also applied to design 

controlling parameters to extend the domain of 

attraction along desired directions. As it is mentioned, 

enlarging DA in tumor growth model means improving 

and enlarging the desirable clinical conditions. So, to 

extend DA leads to decrease cost of controlling so as to 

drive the tumor cell to the desirable equilibrium state. 

Several methods are proposed in order to drive the 

tumor cell to the DA of desirable equilibrium point 

(Ghaffari and Nasserifar, 2009; Mehmet et al., 2010; 

Pillis and Radunskaya, 2003). 

In this study, we proposed a method based on 

design the equilibrium point in order to reach the 

dormant state that has smaller density tumor cells. What 

is more, extending desirable clinical conditions in 

dormant state by finding an optimum value for hunting 

rate of predation of the tumor cells. Hunting rate of 

predation of the tumor cells by hunting cells is depend 

on a therapeutic method such as radiation therapy, 

hyper thermic,… This method is indicated in the form 

of a two layer optimization problem. In inner layer for 

each allowable controlling parameter (which satisfies 

asymptotically stability constrain and are in acceptable 

range of hunting rate of predation of the tumor cells) 

the best estimation of DA is obtained by designing P 

matrix in Lyaponuv equation. Then, in outer layer the 

controlling parameter that leads to an equilibrium point 

with the largest estimation of DA and the smallest the 

density of tumor cells is found as optimal controlling 

parameter.  

 

PRELIMINARIES 

 

Consider the following system: 

 

00 )(,),( xtxRxxhx n            (1) 

 

Definition 1 (equilibrium (Khalil, 2010)): A point xe 

∈ Rn is called an equilibrium point of system (1) if f 

(xe) = 0. The equilibrium points of system (1) 

correspond to the intersection of the null clines of the 

system, meaning the curves given by f (x) = 0. 

In the sequel, without loss of generality, we assume 

that the equilibrium point under study coincides with 

the origin of the state space of Rn, xe = 0. 

 

Definition 2 (stability (Hahn and Band, 138 1967)): 

Let x (t, xe) denote the solution of system (1), which at 

the initial time t0 passes through the initial point xe ∈ Rn 

The origin is defined as stable if ε>0 there exists a 

δ>0 such that: 

 

0,).( ttxtx e                                          (2) 

 

Is valid whenever ||xe|| <δ. 

 

Definition 3 (asymptotic stability (Hahn, 1967): The 

origin is defined as asymptotically stable if: 

 

 It is stable 

 There exists a η>0 having the property 

lim
𝑡→∞

𝑥 (𝑡, 𝑥0) = 0 whenever ||x0|| <η 

 

Definition 4 (positive and negative definite functions 

(Salle and Lefschetz, 1961)): Let 𝐷 ⊆ 𝑅𝑛. A function 

V(x): D→R is called positive definite (positive semi 

definite) on D if V (0) = 0 and V (x) >0 (V (x) ≥0) 

xD\ (Yang, 2012) V (x) is called negative definite 

(negative semi definite) if -V (x) is positive definite 

(positive semi definite). 

 

Definition 5 (Lyapunov function (Khalil, 2010): Let 

V (x) be a continuously differentiable real-valued 

function defined on a domain 𝐷 ⊂ 𝑅𝑛 containing the 

equilibrium xe = 0. The function V (x) is called a 
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Lyapunov function of equilibrium x = 0 of system (1) if 

the following conditions hold: 

 

 V (x) is positive definite on D 

 The time derivative of V (x) along the trajectories 
of system (1): 

 

)()()( xf
x

V
xV T




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is negative definite on R (0)                                                                                          
 
Definition 6 (domain of attraction (Khalil, 2010)): 
The domain of attraction of the origin is given by: 
 

}.0),(lim|{ 00 


xtxRxDA
t

n                       (3)   

 
Definition 7 (dormancy therapy): The usage of low 
dose drugs in order to control tumor size to take and 
keep the tumor into dormancy phase (stage) for prolong 
Time to Progression (TTP), not to kill cancer cells. 
 
Theorems:  
Theorem 1 (Jacobean matrix spectrum (Khalil, 

2010)): Let 𝐴 =  
𝜕𝑓

𝜕𝑥 (𝑥)
‖ 𝑥=0 (the Jacobian of system (1) 

at the origin) then: 
 

 The origin is asymptotically stable if all 
eigenvalues of A have negative real parts. 

 The origin is unstable if one or more eigenvalues of 
A have positive real parts. 

 
Theorem 2 (estimation of the domain of attraction 
(Khalil, 2010)): Let V (x) be a Lyapunov function for 
the equilibrium x = 0 of system (1). R (0) can be an 
estimation of DA if Dv (x) /dt<0 holds in the following 
set: 
 

}0,)(:{)0(  ccxVxS                                      (4) 

 
Hence, every trajectory initiated within region S 

(0) tends to x = 0 as time tends to infinity. 
 
Theorem 3 (Lyapunov identity (Khalil, 2010)): If the 
equilibrium x = 0 of system (1) is asymptotically stable, 
then there exists a Lyapunov function of the quadratic 
type, v (x) = xT Px, where P is a positive definite matrix 
which can be calculated from the so-called Lyapunov 
identity: 
 

QPAPA
T

 11                                                  (5) 
 

A common choice is to set Q = I where I is the 
identity matrix. 

 
Theorem 4: Consider the following representation of 
system (1):  

)()( 11 xhxAxh                                              

 
where h1 (x) comprises the nonlinear part of function h 

(x). It can be shown that if the following condition 

holds (Vidyasagar, 1993): 

 

)(2
)()(

max

min1
P

Q
x

xh



 ,  rBx             (6) 

 

V (x) and its time derivatives are positive and 

negative definite respectively within the ball Br of 

radius r. It is clear that the larger the ratio 𝜆𝑚𝑖𝑛  (𝑄)/
2𝜆𝑚𝑎𝑥  (𝑃)

 
the larger the possible choice of r. 

 

Proposition 1: According to the theorem 2, the best 

estimation of DA is that the largest the level set value c 

in Eq. (4). In order to find the better estimation of DA, 

it is necessary to maximize the set’s level of V (x) 

which is fully contained in the region of negative 

definiteness of dV (x) /dt. On the other hand, the largest 

level to be the smallest hyper-sphere contained in dV 

(x) /dt = 0. Therefore, in order to find the best 

estimation of DA based on theorem 4, Eq. (6) can be 
reformulated as: 

 

0
)(2

)()(

max

min1 
P

Q
x

xh


 , 

rBx
 

 

DYNAMICAL MODEL OF TUMOR GROWTH 

 

The dynamical model of tumor growth is 

considered by Sarkar and Banerjee (2005). In this 

model, spontaneous tumor regression and progression 

are described as a prey-predator like system. Prey and 

predator cells in the case of tumor are clear which prey 

destroy the immune cells and predator is consisted in 

two stages, hunting cells and resting cells and as it 

mentioned they destroy the prey (cancerous cells).It is 

considered that tumor cells are destroyed at a rate 

proportional to the densities of hunting predator cells 

and tumor cells. Also, it is assumed that the resting 

predator cells are converted to the hunting cells either 

by contact with a fast diffusing substance (cytokines) 

produced by the hunting cells or by direct contact with 

antigens. When a cell has been converted, it will never 

return to the resting stage as well as active cells die at 

constant probability per unit of time. It is supposed that 

the proliferation of tumor cells is over the normal cells 

(Merola et al., 2008). Hence, it is considered that two 

different carrying or packing capacities for resting 

predator cells and tumor cells, respectively, where the 

carrying capacity of predator cells is less than that of 

the tumor cells: 
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𝑑𝑀

𝑑𝑡
= 𝑞 + 𝑟𝑀 (1 −

𝑀

𝑘1
) − 𝛼𝑀𝑁   

𝑑𝑁

𝑑𝑡
= 𝛽𝑁𝑍 − 𝑘1𝑁                                                 (7) 

 
𝑑𝑍

𝑑𝑡
= 𝑠𝑍 (1 −

𝑍

𝑘2
) − 𝛽𝑁𝑍 − 𝑑2𝑍  

 
where, 
M  = Tumor cells density  
N  = Density of hunting predator cells 
Z  = The resting predator cells density  
r  = The growth rate of tumor cells 
q  = The conversion of normal cells to 

malignant cells 
k1  = The maximum packing capacity of tumor 

cells  
(𝑘2 > 0) =  The same as 𝑘1 but it is for resting cells 

(also 𝑘1 > 𝑘2) 

𝛼 > 0 = The rate of tumor cells by hunting ones 
𝛽 > 0 =  The rate of conversion of (𝑘2 > 0) cell 

𝑑1 =  The natural death of hunting cell 
s = The rate of growth for predator cells 
𝑑2 =  The rate of natural death for hunting cell 
 

Considering all biologically feasible equilibrium 
admitted by the system (7) and studying the dynamic of 
the system around each equilibrium leads to the fact 
that negative sign is not admissible for the existence of 
positive interior equilibrium (Merola et al., 2008). 
System (7) has three equilibrium points: 
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where, 
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In the above equilibrium points, it is abundantly 

clear that the equilibrium E1 only malignant cells are 

exist in comparison with E2 which both malignant cells 

and predator cells are present in the organism. What is 

more, in equilibrium E3, the three species of cells are 

present. 

When E3 belongs to the positive orthant it is 

possible to control the steady-state density of the tumor 

by varying α. Therefore, E3 is a desirable equilibrium 

point. 

The Jacobian of system (7) at the desirable 
equilibrium point is asfollows: 


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                                                                                   (12) 

 

The state response of system (7) is determined for 

theinitial condition x0 = (4.87, 2.7, 0.1)T and parameters 

q = 10,  r  = 0.9,  α = 0.3,  k1 =  0.8,  β = 0.1,  d1 = 0.02, 

s = 0.8, k2 = 0.7, d2 = 0.03 by Merola et al. (2008). The 

optimal estimated  DA which is obtaind through a 
optimization alghorithm for E3 = [3.25, 5.1, 0.2]. All 

parameters, except α, are assumed the values given by 

Merola et al. (2008) and the allowable  range  for α is 

considered, such that α is between 0 (absence of drug) 

and 0.3 (maximum value of α). 

In the next section an optimization problem is 

proposed in order to design the eqilibrium point which 

is optimal in aspect to the amount of density tumor cells 

and the extensionof DA. It is clear that the smaller 

density of tumor cells and the larger DA is desirable. 

 

PROPOSED APPROACH 
 

In this section, the following two level global multi 
objective optimization is proposed. In this optimization 

problem, the stable equilibrium point with the smaller 
density tumor cells and the larger DA is designed by 

finding the optimal controlling parameters. In this 

optimization problem xe is the equilibrium point and α 
is the predation’s rate of the tumor cells by hunting 

cells which is as a controlling parameter in order to 
enlarge DA or maximize desirable clinical sets. What is 

more, r is the radius of the sphere which the stability is 
guaranteed or DA and xe (1, 1) denotes that amount of 

density tumor cells in equilibrium point: 
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Fig. 1: State response of system (7) from an initial condition 

 

In optimization problem (13), in the inner layer 

optimization for each allowable controlling parameter, 

the best Lyapunov function through Lyapunov identity 

is designed and according to theorem 4 and proposition 

1, the largest estimation of DA is obtained. It should be 

mentioned that the allowable controlling parameters are 

that the parameters which are in allowable range

 

of 

predation’s rate of the tumor cells by hunting cells and 

the parameters that lead to asymptotic stable 
equilibrium point according to theorem 1. In the outer 

layer the controlling parameter that leads to an 

equilibrium point with the smaller density of tumor 

cells and larger DA is considered as optimal controlling 

parameter. 

 

It should be noted that constraints (13) may have 

had many local solutions. In order to avoid dummy 

solutions, problem (13) has to be solved to global 

optimality therefore in this contribution a standard 

implementation of a genetic algorithm adopted by 

Haghighatnia and Moghaddam (2012). 
By solving this optimization problem for 

Dynamical model of tumor growth at (7), the DA for 
this nonlinear system is the positive part of the sphere 

with center with coordinate equal to (2.61, 5.41, 0.2) , 

the radius equal to 3.66 and optimal value 0.3 for 
predation’s rate of the tumor cells by hunting cells, this 

equilibrium point indicates a better tumor dormancy 
equilibrium rather than previous works (Merola, 

Cosentino et al., 2008) because the density of tumor 
cells in dormant state is smaller and the desirable 

conditions is larger (Fig. 1). In Fig. 1 Trajectory starting 
is from the initial condition x0 (5.11, 1.7 and 0.05). As 

is expected, the trajectory, starting by this unfavorable 
state which is included into the DA of the equilibrium 

point, converges to the tumor dormancy equilibrium. 
 

CONCLUSION 

 

In this study a new method so as to improve the 

desirable clinical conditions in dormancy therapy is 

proposed. In this method, the model of tumor growth 

and the desirable clinical condition are considered as a 
nonlinear system and DA, respectively. To aim, an 

algorithm in order to enlarge DA based on design 

equilibrium point of nonlinear system and by using 

quadratic Lyaponuv functions is proposed. In this 

algorithm, controlling parameter is rate of predation of 

the tumor cells by hunting cells with a therapeutic 

method such as radiation therapy, hyper thermic… 
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