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Abstract: Treatment of petroleum refinery wastewater using anaerobic treatment has many advantages over other 
biological method particularly when used to treat complex wastewater. In this study, accumulated data of Up-flow 
Anaerobic Sludge Blanket (UASB) reactor treating petroleum refinery wastewater under six different volumetric 
organic loads (0.58, 1.21, 0.89, 2.34, 1.47 and 4.14 kg COD/m

3
·d, respectively) were used for developing 

mathematical model that could simulate the process pattern. The data consist of 160 entries and were gathered over 
approximately 180 days from two UASB reactors that were continuously operating in parallel. Artificial neural 
network software was used to model the reactor behavior during different loads applied. Two transfer functions were 
compared and different number of neurons was tested to find the optimum model that predicts the reactor pattern. 
The tangent sigmoid transfer function (tansig) at hidden layer and a linear transfer function (purelin) at output layer 
with 12 neurons were selected as the optimum best model. 
 
Keywords: Anaerobic digestion, artificial neural networks, chemical oxygen demand, petroleum refinery 

wastewater, UASB 

 
INTRODUCTION 

 
Petroleum refinery wastewater is hazardous to the 

environment as there are several organic and inorganic 
pollutants found in petroleum refinery wastewater of 
environmental concern including ammonia, oil, phenol, 
sulphur  based  contaminants and heavy metals (Vohra 
et al., 2006). One of the most important monitoring 
parameters for wastewater treatment plant is Chemical 
Oxygen Demand (COD) as it required relatively shorter 
time (Khan et al., 2006). 

Anaerobic treatment of high-strength petroleum 
refinery wastewaters (generally>1000 mg COD/L) 
(Behling et al., 1997) has been shown to provide a very 
cost-effective alternative to aerobic processes with 
savings in energy, nutrient addition and reactor volume. 
Petroleum refinery wastewater is degraded under 
anaerobic conditions and many toxic and recalcitrant 
organic compounds that found in petroleum wastewater 
are serving as a growth substrate (Metcalf and Eddy, 
2003). The Up flow Anaerobic Sludge Blanket (UASB) 
reactor is one of the most notable developments in 
anaerobic treatment process technology that commonly 
used for treating a wide range of industrial wastewater. 
UASB is a high rate system that can retain biomass 
with high treatment capacity and low site area 
requirement in addition to other advantages 

(Zinatizadeh et al., 2007). 
The use of software to simulate existing historical 

experimental data and predict unknown data based on a 
model representing the process, help to minimize 
efforts and creates more data which doesn’t exist. The 
modeling and simulation of processes have been 
developed using ever more complex deterministic 
models, due to the recent evolution of personal 
computer (Gontarski et al., 2000). 

Neural Networks (NN) or widely known as 
Artificial Neural Networks (ANN) is a mathematical 
modeling tool used to simulate complex relationships 
following a simplified level of the activity of the human 
brain through a large number of highly interconnected 
processing elements (neurons); and have been used in 
application of artificial intelligence that has shown 
quite a promise in engineering, pattern recognition and 
analysis (Hamed et al., 2004). Anaerobic digestion is a 
non-linear process which requires a non-linear control 
strategy; whereby artificial neural networks is the 
choice when a large amount of anaerobic digestion data 
are available but no reliable model and little knowledge 
of how the process works (Ward et al., 2008). 

ANN has being used to model existing data and 
simulate for predicted behavior in many wastewater 
treatment processes to ease the operation activities. 
Artificial neural networks are claimed to have a 
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distinctive advantage over some other nonlinear 
estimation methods used for bio-processes as they do 
not require any prior knowledge about the structure of 
the relationships that exist between important 
controlling variables (Holubar et al., 2002). 

ANN has being used to simulate full working 
wastewater treatment plant using a model that was 
developed using laboratory data for ten months. 
Modeling of this wastewater treatment process used a 
configuration with tan sigmoid activation function for 
the input and hidden layers, while the linear activation 
function was used as the output activation function, 
resulted in R

2
 values ranged from 0.63 to 0.81 for 

Biochemical Oxygen Demand (BOD) and from 0.45 to 
0.65 for Suspended Solids (SS) (Hamed et al., 2004). 
Using the same mentioned configuration, Chemical 
Oxygen Demand (COD) removal was modeled using 
ANN in a wastewater treatment process for the 
prediction and simulation of degradation. The 
configuration of the back propagation neural network 
with 14 neurons and Levenberg-Marquardt back 
propagation training algorithm (TRAINLM) predicted 
the actual experimental results with correlation 
coefficient (R

2
) of 0.997 and MSE of 0.000376 

(Elmolla et al., 2010). 
Anaerobic biological treatment of wastewater was 

modeled based on integrated fuzzy systems and neural 
networks for the simulation and control of complex 
anaerobic treatment systems (anaerobic fluidized bed 
reactor and up-flow anaerobic sludge blanket) (Tay and 
Zhang, 1998). 

Several Feed-Forward Back Propagation neural 
networks (FFBP) were trained in order to model and 
subsequently control, methane production in four 
anaerobic continuous stirred tank reactors. The model 
was able to predict gas production and avoid shock 
loadings (Holubar et al., 2002). 

Utilizing a neural network simulation, anaerobic 
wastewater treatment process has been modeled to 
define the potentially damaging events that occur 
during disturbances to an anaerobic digestion. The 
neural network was capable of rapid recognition of 
disturbances that in the form of an increase in influent 
COD concentration and by utilizing data from an on-
line bicarbonate alkalinity sensor (Wilcox et al., 1995). 

A high strength wastewater (7300 mg COD/L) 
batch from a local petroleum refinery was treated in 
UASB as part of a train of biological reactor; the COD 
removal was found to be 80% (Gasim et al., 2012a). 
Two parallel UASB reactors were used to evaluate the 
treatment efficiency of petroleum refinery wastewater 
under six organic volumetric loading rates (0.58, 0.89, 
1.21, 1.47, 2.34 and 4.14 kg COD/m

3
·d, respectively); 

the COD removals efficiencies were 78, 82, 83, 80, 81 
and 75%, respectively as  the  load  increased  (Gasim 
et al., 2012b, c). 

The present study follows from the previous 
investigation by modeling the anaerobic treatment of 
petroleum refinery wastewater considering the influent 

and effluent COD concentration under different loads; 
the developed model was then used to simulate the 
reactor performance. 
 

MATERIALS AND METHODS 
 
Experimental data: The original raw data were 
adapted from previous work in which the data were 
representing two laboratory-scale Up-flow Anaerobic 
Sludge Blanket (UASB) reactors that were operated in 
parallel (A and B) at room temperature to treat 
petroleum refinery wastewater. The raw petroleum 
refinery wastewater was collected from a local 
petroleum refinery and fed to the two reactors in 
different concentration ranging on average from 982 to 
6972 mg COD/L over approximately 180 days. 
Chemical Oxygen Demand (COD) was tested for 
influent and effluent samples following colorimetric 
method using a HACH DR 2000 spectrophotometer, 
other parameters were measured according to Standard 
Methods (APHA, 1980). The data that were gathered 
from this experiment were 160 entries for influent and 
effluent. 
 
ANN procedure: The COD monitoring results during 
different loading were used for modeling. Artificial 
neural network was used as mathematical tool to 
simulate and predict the pattern of the reactor. Optimal 
generalization was targeted from this tool, therefore, the 
Levenberg-Marquardt algorithms was used as training 
function and batch gradient descent with momentum 
back propagation algorithms (TRAINGDM) as 
adaption learning function, Feed-Forward Back 
propagation network type was selected. The number of 
neurons has to be determined as it is related to the 
converging performance of the output error function 
during the training process. Increasing the number of 
neurons usually results in a better learning performance, 
as too few number of neurons limit the ability of the 
neural network to model the process, but too many 
number of neurons may results in losing the 
generalization and learning the noise present in the 
database used in training (Holubar et al., 2002). 

Normalization of input data was performed by 
dividing all the input data with the maximum input; this 
resulted in the data to be in the range of 0 to 1. Output 
data were normalized by dividing all the output data 
with the maximum output; this resulted in the date to be 
in the range between 0 and 1. 

Neurons were tested and varied the number of 
neurons in the range from 5 up to 35. For better 
initialization of the model, the model was run 100 times 
at every neuron tested. Optimum number of neuron was 
selected in this study based on: 
 

• Minimum Root Mean Square Error (RMSE) 

• Maximum Variance Accounted For (VAF) 

• Maximum correlation coefficient (R
2
) 

• Minimum Mean Absolute Percentage Error (MAPE) 
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Neural Network in MATLAB (R2009a) software 

was used with back propagation neural network three 

layers in two configurations. First, with Log Sigmoid 

transfer function (LOGSIG) at hidden layer and a linear 

transfer function (PURELIN) at output layer. Second, 

with Tangent Sigmoid transfer function (TANSIG) at 

hidden layer and a linear transfer function (PURELIN) 

at output layer. The linear activation function 

(PURELIN) was used for both configurations for the 

output neuron since it is appropriate for continuous 

valued targets (Hamed et al., 2004). 

 

RESULTS AND DISCUSSION 

 

Modeling results: The raw data from anaerobic reactor 

was modeled using artificial neural networks software. 

Logsig-Purelin transfer function was compared to 

Tansig-Purelin transfer function to define the optimum 

model.  The selected model was then used to predict the 

reactor performance. The simulation data were then 

used to find the optimum performance. 

During testing and validation of data, number of 

neurons was tested ranging from 5 to 35. Table 1 shows 

the number of neurons tested and the score registered 

for RMSE, VAF, R
2 

and MAPE during evaluation of 

Logsig-Purelin and Tansig-Purelin transfer functions. 

Although the number of neurons are in the range of 

5-35, but from Fig. 1 it is noted that after neuron 15 and 

from plotted line representing the R
2
 from the training 

set is losing similarity with R
2
 from validation set, 

indicating over fitting and the model will not be able to 

generalize the pattern of the data that used as training 

set during validation (Jeon, 2007). 

Thus, the number of neurons was limited to the 

range between 5-15 neurons and the optimum neuron 

was selected as shown in Table 1 based on minimum 

RMSE, maximum VAF, maximum R
2
 and minimum 

MAPE.  

Logsig-Purelin transfer function indicated 15 

neurons is the optimum, while Tansig-Purelin 

suggested 12 neurons. It is usually preferable to use of 

simpler models, with fewer number of parameters than 

more complicated ones with more parameters, 

whenever feasible (Hamed et al., 2004; Holubar et al., 

2002). Thus, tangent sigmoid transfer function (tansig) 

at hidden layer and a linear transfer function (purelin) at 

output layer with 12 neurons is the optimum transfer 

function. 

Figure 2 showed the measured experimental data 

and the predicted using ANN for eighty entries of data 

that were used for training. Figure 3 showed the 

measured  experimental  data  and  the  predicted using

 
Table 1: Number of neurons tested and the score for evaluation parameters  

 
Logsig-purelin 

----------------------------------------------------------------------------------- 
Tansig-purelin 

-------------------------------------------------------------------------- 
Neurons RMSE VAF R2 MAPE RMSE VAF R2 MAPE 

5 0.076 85.952 0.859 16.878 0.076 86.027 0.860 17.035 

6 0.076 86.134 0.860 17.340 0.076 86.104 0.860 16.552 
7 0.075 86.249 0.862 17.255 0.075 86.229 0.862 17.279 

8 0.076 85.956 0.859 16.884 0.075 86.147 0.861 16.622 

9 0.075 86.250 0.862 16.694 0.075 86.170 0.861 15.971 
10 0.075 86.500 0.864 16.810 0.075 86.154 0.861 16.576 

11 0.075 86.516 0.864 16.977 0.075 86.388 0.864 16.750 

12 0.074 86.741 0.867 17.585 0.074 86.638 0.866 16.827 
13 0.074 86.608 0.866 16.426 0.075 86.424 0.864 16.023 

14 0.075 86.133 0.861 16.204 0.076 86.111 0.860 16.907 

15 0.074 86.724 0.867 16.205 0.075 86.412 0.864 16.427 
16 0.074 86.796 0.867 16.516 0.075 86.136 0.861 16.832 

17 0.074 86.589 0.865 16.585 0.074 86.756 0.868 17.353 

18 0.073 87.119 0.871 15.706 0.074 86.778 0.868 15.532 
19 0.074 86.716 0.867 17.047 0.073 86.949 0.869 17.307 

20 0.074 86.492 0.865 16.317 0.073 86.949 0.869 16.809 

21 0.076 85.834 0.858 17.072 0.073 86.981 0.870 16.355 
22 0.074 86.680 0.867 16.713 0.074 86.478 0.865 16.020 

23 0.075 86.480 0.864 15.911 0.075 86.242 0.862 16.362 

24 0.073 86.999 0.870 16.576 0.073 86.993 0.869 16.514 
25 0.073 87.008 0.870 15.617 0.073 87.067 0.871 17.009 

26 0.071 87.577 0.876 16.561 0.073 87.119 0.871 17.088 

27 0.073 86.956 0.869 15.467 0.074 86.674 0.865 16.072 
28 0.073 86.983 0.870 16.659 0.074 86.711 0.867 16.339 

29 0.071 87.825 0.878 15.832 0.074 86.468 0.865 16.621 

30 0.074 86.751 0.867 16.916 0.075 86.330 0.863 16.449 
31 0.068 88.734 0.887 16.171 0.072 87.368 0.873 15.808 

32 0.071 87.777 0.876 16.889 0.076 85.953 0.859 15.702 

33 0.071 87.756 0.877 15.273 0.073 87.088 0.869 15.789 
34 0.064 89.933 0.899 15.950 0.068 89.544 0.889 13.591 

35 0.062 90.687 0.907 14.955 0.075 86.372 0.863 15.382 
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Fig. 1: R2 scores versus number of neurons tested for logsig-purelin (left) and tansig-purelin (right) transfer functions 

 

   
 
Fig. 2: Measured and predicted normalized data for training set 

 

 
 
Fig. 3: Measured and predicted normalized data for validation set 

 

ANN for eighty entries of data that were used for 

validation. The best selected model shows significant 

prediction of actual experiment; hence, it was then used 

for simulation. 

 

Simulation results: The best model with Tansig-

Purelin transfer function and 12 neurons was used to 

simulate random data to find out the optimum 

efficiency. Figure 4 shows all the hundred and sixty 

data set that was used for both the training and 

validation, used here for simulation. 

Random data entries ranged from 500 to 10000 

was used to simulate the reactor performance. Figure 5 

shows the simulated influent and effluent 
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Fig. 4: Measured and predicted normalized data for actual data simulation 

 

 
 
Fig. 5: Influent, effluent and removal efficiency versus data entries using best selected model for tansig-purelin transfer function 

 

concentrations in addition to removal efficiency. 

Highest removal efficiency observed was 82% at 

influent 1400 mg COD/L and effluent 245 mg COD/L. 

 

CONCLUSION 
 

Raw data from petroleum refinery wastewater 

treatment with different loads using two UASB reactors 

were successfully used for modeling. Modeling resulted 

in a model that used tangent sigmoid transfer function 

(tansig) at hidden layer and a linear transfer function 

(purelin) at output layer with 12 neurons as the 

optimum transfer function. Simulation using the 

optimum model with random data entries ranged 

between 500 to 9000 resulted in a pattern that simulates 

the reactor performance for data that were never really 

experimentally tested in the lab. Lab experiment was 

showing highest removal of 82% which confirmed by 

using the best selected model that developed using 

mathematical model. 
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