
Research Journal of Applied Sciences, Engineering and Technology 6(9): 1653-1657, 2013

DOI:10.19026/rjaset.6.3885

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: January 07, 2013 Accepted: January 31, 2013 Published: July 15, 2013

Corresponding Author: Mengzhao Yang, School of Computer Science and Technology, Harbin Institute of Technology, Harbin

150001, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1653

Research Article
Fast Rendering of Realistic Virtual Character in Game Scene

1, 2
Mengzhao Yang and

1
Kuanquan Wang

1
School of Computer Science and Technology, Harbin Institute of Technology,

2
School of Computer and Engineering, Heilongjiang University of Science and Technology, Harbin

150001, China

Abstract: Human skin is made up of multiple translucent layers and rendering of skin appearance usually acquire
complex modeling and massive calculation. In some practical applications such as 3D game development, we not
only approximate the realistic looking skin but also develop efficient method to implement easily for meeting needs
of real-time rendering. In this study, we solve the problem of wrap lighting and introduce a surface details
approximation method to give realistic rendering of virtual character. Our method considers that different
thicknesses of geometry on the skin surface can result in different scattering degree of incident light and so pre-
calculate the diffuse falloff into a look-up texture. Also, we notice that scattering is strongly color dependent and
small bumps are common on the skin surface and so pre-soften the finer details on the skin surface according to the
R/G/B channel. At last, we linearly interpolate the diffuse lighting with different scattering degree from the look-up
texture sampled with the curvature and NdotL. Experiment results show that the proposed approach yields realistic

virtual character and obtains high frames per second in real-time rendering.

Keywords: Real-time rendering, skin appearance, surface details approximation, wrap lighting

INTRODUCTION

Human skin is a highly translucent material and

made up of multiple translucent layers, so it is a
particularly complex material to model accurately
(D’Eon and Luebke, 2007). The skin appearance is
dominated by the Subsurface Scattering (SSS) of light
diffusion, so we usually model the subsurface scattering
to simulate the skin rendering. The subsurface
scattering can be defined using the Bidirectional
Surface Scattering Reflectance Distribution Function
(BSSRDF) (Nicodemus et al., 1977), However the
BSSRDF is a complex function that currently has to be
massively calculated. A simple, but very effective
dipole model (Jensen et al., 2001) for rendering skin
was firstly presented via the light diffusion (Stam,
2001), which was quickly adopted in the practical
application (Jensen and Buhler, 2002). Then multiple
dipoles model (Donner and Jensen, 2005, 2006)
extended the dipole model for light diffusion in human
skin, which can capture the effects of discontinuities at
the frontiers of multi-layered materials and give
convincing rendering results. Recently, Won utilize the
coloration and shading and design a 3D emotional
method to make virtual character rendering (Won,
2010). However, these skin rendering methods have to
take a long time to render character skin, so they are
unsuitable for real-time rendering.

Several algorithms to simulate subsurface
scattering and skin appearance in real-time have already
been presented. Using Gaussian function with a
customizable kernel to simulate the subsurface
scattering in texture space (Borshukov and Lewis,
2003) is introduced and the technique introduced maps
naturally onto GPU, but it still fails to capture the most
complex subtleties of multiple scattering within skin
material. On the other hand, the Modified Translucent
Shadow Maps (MTSM) (Dachsbacher and Stamminger,
2003) was extended with irradiance and surface normal
information, Using the modified depth map which was
computed through the surface and connected shadowed
regions to locations on the light-facing surface, they can
obtain a good translucency. Later a two-pass Gaussian
blurring in real-time was presented to simulate the skin
(Gosselin, 2004), but the technique was not based on
multi-layer translucent material and was only a very
rough approximation of true scattering. Then, the work
by D’Eon and Luebke (2007) and his colleagues
simplified the multiple models (Donner and Jensen,
2005, 2006) by combining them with the idea of
diffusion in texture space (Borshukov and Lewis, 2003;
Dachsbacher and Stamminger, 2003). They
approximated subsurface scattering in the three-layer
skin with a weighted sum of Gaussian blurring for real-
time rendering in texture space and obtained very
realistic results. Compared with texture space

Res. J. Appl. Sci. Eng. Technol., 6(9): 1653-1657, 2013

1654

rendering, screen space rendering (Jimenez et al., 2009)
was provided a solution to simulate subsurface
scattering at interactive frame rates and the skin
rendering technology had been applied in 3D game
development (Mittring and Dudash, 2011). These
methods related above focused on the sense of reality
and translucency for skin appearance. Besides the
reality, in the 3D game development, however, the real-
time performance should be given more consideration
to make player switch different scenes rapidly.

In this study, we develop sufficiently simple

method to implement realistic rendering so that it can

be well integrated with existing GPU pipelines and give

a high Frames Per Second (FPS) to meet the needs to

switch 3D game scene quickly. To solve the problem of

wrap lighting which is not based on real skin diffusion

profile and doesn’t account for surface curvature, we

introduce a surface details approximation method to

give a better realistic skin appearance and high FPS

rendering.

FAST RENDERING METHOD

Wrap lighting is a simple method to approximate

the diffuse lighting on the translucent materials and can

simulate a good rendering appearance, however, it is

not based on real skin diffusion profile and doesn’t

account for surface curvature, so the rendering result is

not very realistic compared with our rendering. Our

method is based on the observation that different

thicknesses of skin surface give different scattering

effect and scattering is strongly color dependent. We

pre-blur diffuse BRDF with skin profile and

parameterize BRDF with the curvature to give a better

scattering effect and high speed of rendering.

Wrap lighting technique: Wrap lighting is the fast

way to simulate scattering effect on skin appearance.

Usually, diffuse lighting on the skin surface doesn't

contributes any light when the surface normal is

perpendicular to the light direction, so we can use wrap

lighting to modify the diffuse situation. Through the

modification, the lighting wraps around the object

beyond the point where it would normally become dark.

This can reduce the contrast of the diffuse lighting,

which decreases the amount of ambient and fill lighting

that is required. Though the wrap lighting is a simple

technique to the approximation of diffuse lighting

model, it can simulate a good rendering appearance of

human skin while obtain a high rendering speed.

Figure 1 illustrates how to change the diffuse

lighting function to include the wrap effect (Green,

2004). The value wrap is a floating-point number

between 0 and 1 that controls how far the lighting will

wrap around the object.

In the fragment shader, per-pixel lighting is

computed and applied. Algorithm 1 gives part code of

Fig. 1: Graph of the wrap lighting function

fragment shader to implement wrap lighting and
compute color of per-pixel as follows:

Algorithm 1: Evaluation of Pixel Color through Wrap
Lighting in the Fragment Shader.

Input: The 2D texture coordinate, tex; The value of
wrap lighting function NdotL_Wrap; The diffuse light
of per-pixel, diffLight; The color tint at transition from
light to dark, scatterT; The specular light of per-pixel,
specLight.

Output: Each pixel color of head mesh, finalC:

• NdotL = tex.x*2-1

• NdotH = tex.y*2-1

• NdotL_Wrap = (NdotL+wrap)/(1+wrap)

• diffLight = max(NdotL_Wrap, 0.0)

• scatterT = smoothstep (0.0, scatter Width,
NdotL_Wrap) *smoothstep(scatterWidth * 2.0,
scatterWidth, NdotL_wrap)

• specLight = pow(NdotH, 40.0)

• if (NdotL_wrap< = 0) specLight = 0

• finalC.rgb = diffLight+scatterT*scatterColor;

• finalCr.a = specLight

• return finalC

However the wrap lighting technique is not based
on real skin diffusion profile, so it cannot give a better
rendering result.

Surface details approximation method: The surface
details approximation method aims to scale the physical
details of skin surface and realizes the method in real-
time quickly and easily.

Firstly, we have considered that there have
different thicknesses of geometry of the whole skin
surface. In some areas such as brow ridge, eyelid and
nose, scattering is a lot more visible compared with on
the forehead. This is because these areas have higher
curvature and will result in a lot more diffuse falloff of

Res. J. Appl. Sci. Eng. Technol., 6(9): 1653-1657, 2013

1655

incident light, so the translucency is more obvious in
these areas. We can pre-calculate the diffuse falloff of
the whole skin surface into a look-up texture. The key
to making the effect look good is that instead of having
a 1-dimensional texture for NdotL, it is a 2D texture
with the parameter 1/d in the y axis and the NdotL in
the x axis and the parameter 1/d is approximated with a
calculation of curvature based on similar triangles and
derivatives. This will allow the falloff at the area of
higher curvature to differ from that in the forehead or
face which encompasses different falloffs for different
thicknesses of geometry.

Secondly, we have noticed that scattering is
strongly color dependent: red light scatters much farther
than green and blue and the absorption properties of
skin are very sensitive to changes in frequency. So the
finer details on the skin surface are softened differently
according to the R/G/B channel. We can obtain
different soft map by the blending between a smoother
normal map and the high detail normal map. Hence, we
can basically start with our true surface normal which
we would use for specular lighting, then pre-filter the
new normal maps for R/G/B map using our skin profile
again.

Thirdly, we have observed that some small bumps
such as beard and pores are common on skin surface. In
this case, light should scatter past several surface
bumps, so the curvature breaks down at small sizes.
Specular lighting shows the most dramatic, high-
frequency changes such as bumps in the skin surface
and these small bumps can be contained in the normal
maps, so we can use normal map of specular lighting to
represent these bumps. Through pre-filtering the
normals by just simply blurring them and texture
mapping, we can obtain the final rendering appearance
which reflects small surface bumps.

Shader implementation of our method: Our method

use just a pixel shader to account for scattering method

related above. This base of this shader was a simple

shader for diffuse, ambient and specular lighting and

there are three texture maps used which are the original

texture for character head, the normal and bump maps

for original texture. If you have a texture you would

like to use and do not have a normal or bump maps for

it, there are tutorials online for creating normal maps

and bump maps with Crazybump and other programs.

Algorithm 2 gives part code of fragment shader to

implement our method as follows:

Algorithm 2: Evaluation of Pixel Color through Our
Method in the Fragment Shader.

Input: The texture map of original human face, TexS;

The lerp value for calculating the amount of blur

needed, lerpAmount; The diffuse light, diffLight; The

curvature of the human face surface, curvature; The

color of ambient, ambientColor; The diffuse degree of

Fig. 2: Original virtual character via texture mapping

incident light, diffLevel; The specular color, specColor.

The specular light, specLight.

Output: Each pixel color of head mesh, finalCorlor.

• texColor = tex2D(TexS, tex)

• light.a = texColor.a

• light.r = Scatter(texColor.r)

• light.g = Scatter(texColor.g);light.b =

Scatter(texColor.b)

• lerpAmount = saturate(Scatter(ambientColor.a))

• diffLight = lerp(light,texColor,lerpAmount)

• curvature = saturate(length (fwidth (normal))/

length(fwidth (float 4(worldNormal,1.0f))))

• rN=lerp(N_high,N_low,light.r); gN =

lerp(N_high,N_low,light.g)

bN=lerp(N_high,N_low, light.b)

• NdotL=float3(dot(rN,ambientColor.r),dot(gN,ambi

entCol r.g),dot(bN, ambientColor.b))

• diffLevel = DiffuseDegree(curvature, NdotL)

• H = normalize(V+L)

• Shininess = (40.0*diffLight.a)*128

• specularColor = float4(0.094f,0.114f,0.173f, 1.0f)

• specLight = pow(dot(H,N),shininess)*specColo

• diffLight = lerp(diffLevel,diffLight,lerpAmount)

• finalColor = (diffLight*texColor)+specLight

• return finalCorlor

RESULTS

We have implemented the proposed method to give

fast rendering of realistic appearance in real-time. With

AMD Athlon II X4 Four Cores and NVIDIA GeForce

GT230, we have realized the algorithm using HLSL

shader and DirectX 9.0 programming in VS2010. We

can achieve frame rates of approximately 464 frames

per second, which is relatively high speed and is

valuable practically in the real-time 3D games

development.

We use the 3D head mesh and original face texture

map from the IR-LTD digital scanned model (IR-LTD

Model). Based on basic texture mapping and

environment lighting, we can obtain the original

rendering result for virtual character as shown in Fig. 2.

Then we use the wrap lighting technique to

simulate scattering on the virtual character as shown in

Fig. 3. Basically this technique creates a color shift as

the lighting approaches zero. It certainly looks better

Res. J. Appl. Sci. Eng. Technol., 6(9): 1653-1657, 2013

1656

Fig. 3: Rendering of virtual character via wrap lighting

Fig. 4: Rendering of virtual character via our method

than the Fig. 2 but not great. In our running program,
when zooming out our browser, we can see how this
can be believable from a distance. For real-time 3D
game, this technique could be easily applied to the
stadium crowd to make them look more realistic.
Another use might be when implementing a Level-of-
Detail technique, changing to this method when the
viewer gets far enough away can save processing time
while maintaining a realistic looking model.

However the wrap lighting technique is not based

on real skin diffusion profile and some details on the

skin appearance such as whiskers and effects in areas

with higher curvature cannot be clearly simulated.

Using our method, we can obtain the rendering result as

fast as wrap lighting but with much better results as

shown in Fig. 4.

Our method can achieve the effects of subsurface

scattering using only locally stored information and a

custom shading model. This means that our shader

becomes a simple pixel shader and no extra passes and

no blurring is required as texture space rendering

method or screen space rendering method, so it reduces

the skin shading down to a single pass only and will

scale linearly with the number of head mesh pixels that

needs to be shaded. Being in O(N) time it makes this

method acquire a high FPS.

Figure 2, 3 and 4 give a single and rigid impression

for having no environment map as background. In the

practical scene of 3D game, we display three virtual

characters rendering obtained above at the same time in

an office room as shown in Fig. 5 and show that three

characters can be naturally integrated into the

surroundings, which greatly enhance the sense of

immersion when playing 3D game.

CONCLUSION

We have implemented a fast rendering method

based on GPU for virtual character at high interactive

speed. Considering that different thicknesses of skin

surface give different scattering effect and scattering is

strongly color dependent, we obtain the rendering result

as fast as wrap lighting but with much better

appearance. Experiments show that our proposed

technique can not only generate realistic skin

appearance, but also is easy to be implemented and well

integrated with existing GPU pipelines. The vision of

results in the practical office scene can enhance

Fig. 5: Rendering of three virtual characters in a practical scene

Res. J. Appl. Sci. Eng. Technol., 6(9): 1653-1657, 2013

1657

immersion of digital character when playing game.

Moreover, we design a fast rendering process and

obtain a relatively high FPS, so it has an important

application value for development in 3D game.

Even though we see our work as a step in allowing

designers to quickly render and interact with realistic

digital character, how the more realistic appearance is

approximated is an interesting direction which we are

currently working on.

ACKNOWLEDGMENT

This study was supported by the National Natural

Science Foundation of China (NSFC) under Grant No.

61173086 and No. 61179009 and Science and

Technology Foundation of Heilongjiang Province

Education Department in China under Grant No.

11551435.

REFERENCES

Borshukov, G. and J. Lewis, 2003. Realistic Human

Face Rendering for the Matrix Reloaded,

SIGGRAPH Sketches and Applications. California,

USA.

D’Eon, E. and D. Luebke, 2007. Advanced techniques

for realistic real-time skin rendering. GPU Gems 3,

3: 293-347.

Dachsbacher, C. and M. Stamminger, 2003.

Translucent shadow maps. Proceeding of EG

Symposium on Rendering, pp: 197-201.

Donner, C. and H. Jensen, 2005. Light diffusion in

multi-layered translucent materials. ACM Trans.

Graph. (TOG), 24(3): 1032-1039.

Donner, C. and H. Jensen, 2006. A spectral BSSRDF

for shading human skin. Proceeding of 17th

Eurographics Workshop on Rendering, pp:

409-418.

Gosselin, D., 2004. Real time skin rendering.

Proceeding of the Game Developer Conference,

D3D Tutorial, Vol. 9.

Green, S., 2004. Real-Time Approximations to

Subsurface Scattering. In: Fernando, R. (Ed.), GPU

Gems. Addison-Wesley, Reading, pp: 263-278.

IR-LTD Model. 3D Scanning and Digital Character,

Retrieved from: http:// www.ir-ltd.net/.

Jensen, H. and J. Buhler, 2002. A rapid hierarchical

rendering technique for translucent materials.

ACM Trans. Grap. (TOG), 21(3): 576-581.

Jensen, H., S. Marschner, M. Levoy and P. Hanrahan,

2001. A practical model for subsurface light

transport. Proceeding of the 28th Annual

Conference on Computer Graphics and Interactive

Techniques, ACM, pp: 511-518.

Jimenez, J., V. Sundstedt and D. Gutierrez, 2009.

Screen-space perceptual rendering of human skin.

ACM Trans. Appl. Percept. (TAP), ACM, 6(4): 3.

Mittring, M. and B. Dudash, 2011. The technology

behind the diret X 11 unreal engine “Samaritan”

demo. Proceeding of the Game Developer

Conference (GDC).

Nicodemus, F.E., J.C. Richmond and J.J. Hsia, 1977.

Geometrical Considerations and Nomenclature for

Reflectance. National Bureau of Standards,

Washington, D.C., pp: 52.

Stam, J., 2001. An illumination model for a skin layer

bounded by rough surfaces. Proceeding of the 12th

Eurographics Workshop on Rendering Techniques,

Springer-Verlag, pp: 39-52.

Won, Y.T., 2010. 3D Emotional rendering method

utilizing coloration and shading to make virtual

character design in culture contents development.

Int. J. Inform. Process. Manag., 1(1): 126-137.

