
Research Journal of Applied Sciences, Engineering and Technology 6(10): 1711-1719, 2013

DOI:10.19026/rjaset.6.3893

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: September 25, 2012 Accepted: November 23, 2012 Published: July 20, 2013

Corresponding Author: Sajjad Abedi, Power System Analysis Lab., Electrical Engineering Department, Amirkabir University

of Technology (Tehran Polytechnic), 424 Hafez Ave., 15875-4413, Tehran, Iran
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1711

Research Article
A Methodology for Computational Efficiency Improvement of Z-Matrix in

Power System Fault Analysis Using Evolutionary Algorithms

1
Sajjad Abedi,

2
Arash Alimardani,

2
Mehrdad Abedi and

2
Seyed Hossein Hosseinian

1
Islamic Azad University, Damavand Branch, Damavand, Iran

2
Power System Analysis Lab., Electrical Engineering Department, Amirkabir University

of Technology (Tehran Polytechnic), 424 Hafez Ave., 15875-4413, Tehran, Iran

Abstract: This study presents a novel and comparative approach to select an optimal path during direct Z-Matrix
building process using Evolutionary Algorithms (EAs). The proposed evolutionary methods are based on selection
of series and shunt elements (i.e., lines, transformers and generators) in optimal order for minimizing computation
time. The proposed evolutionary methods are tested on IEEE 14-bus benchmark and the results are compared. The
proposed method is also arranged to find the optimal path considering all possible network alterations due to all
possible faults to avoid the requirement for repeating the calculation process for each single line fault. The
comparative results indicate the feasibility and effectiveness of the method to find the optimal path in Z-matrix
building process and considerably diminishing the time consumption for Z-matrix modification.

Keywords: Computation time, evolutionary algorithms, IEEE 14-bus benchmark, impedance matrix, optimal path

INTRODUCTION

Bus impedance matrix (Z-matrix) plays an

important role in the field of power system analysis and
operation. However, the process of Z-matrix building is
complicated and more time consuming compared to bus
admittance matrix formulation (Peterson et al., 1989).
Nevertheless, the information contained in Z-matrix is
more pronounced (Peterson and Makram, 1989;
Grainger and Stevenson, 1994; Bergen and Vittal,
2000; Tianmin and Baozhu, 2009). For instance, the
diagonal element related to specific bus in Z-matrix
presents thevenin impedance at this bus.

Z-matrix has many effective and useful
applications in the field of fault analysis, voltage sag
calculations, contingency study, economic dispatch and
relay setting (Guochen, 1995). In addition, Z-matrix
reflects a linear relationship between injected current
and bus voltages for distribution network analysis
(Shipley et al., 1966; Reitan and Kruempel, 1969;
Reitan, 1980; Makram et al., 1989; Glover and Sarma,
1994; Wei et al., 2005).

Z-matrix building process is most commonly based
on direct and indirect methods. Indirect method requires
Y-matrix inversion. Y-matrix formation is relatively
simple, however, adding and removing an element due
to system modification would require repetitive matrix
inversion.

In order to find new and modified version of Z-
matrix, this event leads to complicated and time

consuming process especially in a large electric power
system. Direct method which is appeared in most
electrical text books can be applied for Z-matrix
building using a step-by-step procedure, while in each
step one element can be added accordingly. The
important advantage of this method is that, after Z-
matrix building termination any changes or
modification can be implemented to existing Z-matrix
by simple algorithms to produce a new Z-matrix
(Grainger and Stevenson, 1994; Miller and Goldberg,
1995.

Yue et al. (2004) presented a decomposition
method based on spanning tree and two decomposition
matrices. However, this method is not able to cope with
mutual inductances and is not well suited for strongly
meshed power networks.

In spite of the importance of the Z-matrix, its
usefulness has been primarily constrained by the
computational burden due to building process. Direct
method for Z-matrix building is based on a step by step
procedure which in each step, different choices
regarding different element to be added are on the table.
Thus, different paths related to available choices
provide different computation time in Z-matrix building
process. Therefore, among all available paths including
set of elements to be added, only one path can be
nominated as optimal path with minimum computation
time. The most recent report based on detecting the
optimal path in Z-matrix building process is appeared in
(Ranjbar et al., 2008), which employs Genetic

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1712

Algorithm (GA) for optimization purposes. However,
there is no comparison with other evolutionary
algorithms for result validation. Furthermore, the
network alterations due to short circuit in the lines of
the network and its influence on the calculation time are
not taken into consideration.

In the present study, an effort has been made to
present a comparative and novel approach for detecting
the optimal path during Z-matrix building process for
efficient short circuit computation in large power
systems. The aim is to develop an optimization problem
to find the best element order in the direct Z-Matrix
building method and minimize the calculation time.
Considering all possible network alterations due to fault
occurrence in all network lines, it is noteworthy to state
that based on the proposed method, for only one time,
only one unique overall optimal path should be
determined which is applicable for all of the mentioned
network alterations and any further short-circuit
computation, resulting in considerable improvement in
computational efficiency. In order to nominate a
solution method to the optimization problem with best
convergence quality and speed, four popular
evolutionary optimization algorithms are employed and
compared, including: conventional Particle Swarm
Optimization (PSO) as well as its three modified
versions, Genetic Algorithms (GAs), Shuffled Frog
Leaping Algorithm (SFLA) and Differential Evolution
(DE) algorithm and its modified version.

PROBLEM FORMULATION

Basic concepts: The Z-matrix describes the
relationship between bus voltages vector and injected
current (Ranjbar et al., 2008), as follows:

Bus Matrix BusV Z I=           (1)

The diagonal elements of the Z-matrix, called
driving-point impedance or Thevenin impedance are
defined as:

0
j

I
i

ii
j ii

V
Z

I

=

≠
=

 (2)

The off-diagonal elements named the transfer
impedance are defined as:

0
j

Ij

ji
j ii

V
Z

I

=

≠
=

 (3)

Using these definitions the conventional direct
method of Z-matrix building has been developed
(Grainger and Stevenson, 1994; Tianmin and Baozhu,
2009). This method deals with elements one by one and
categorizes them into 4 types:

Fig. 1: The procedure of line injection

Z new lin e + Z o ld ,KK

O ld

Z -m a tr ix

K th ro w

K
th
 c
o
lu
m
n

Z new lin e

+Z o ld ,KK+ Z o ld ,J J

-Z o ld ,JK -Z o ld ,K J

K th ro w

K
th
 c
o
lu
m
n

O ld

Z -m a tr ix
J th ro w

J
th
 c
o
lu
m
n

su b tra c t

su b tra c t

O ld

Z -m a tr ix

Im p e d a n ce o f th e

n ew l in e
T yp e

1

T yp e

2 ,3

T yp e

4

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1713

Type 1: Adding an element from a new bus to the

reference bus.

Type 2: Adding an element from a new bus to an

existing bus.

Type 3: Adding an element from an existing bus to the

reference bus.

Type 4: Adding an element between two existing

buses.

Fitness function: In order to evaluate the computation

time of each possible order of elements, a fitness

function dependent on the type of the current element

should be defined. As mentioned, there are four types

of elements to be added in Z-matrix building process.

Figure 1 illustrates the mechanism of each type of

element injection into Z-matrix. Type 3 and type 4

require a Kron reduction afterwards. Equation (4) to (7)

represent the calculation time of each type of element

respectively:

T1 = tR (4)

2 R A RT 2nt t t= + +
 (5)

()2

3 R M D S R A RT 2nt n t t t t t t= + + + + + +
 (6)

() ()2

4 R S M D S R

A S R

T 2n t t n t t t t

2t 2t t

= + + + + +

+ + +
 (7)

In these equations, n is the dimension of the matrix

when an element is assembled, tR, tS, tA, tD and tM are

the required time for replacement, subtraction, addition,

division and multiplication operators, respectively.

Each element is connected between two buses.

Depending on the type of element to be added (type 1

to 4) one of the Eq. (4) to (7) is taken into

consideration, correspondingly. So the fitness function

for each candidate solution can be defined as follows:

Ztime = 0 (8)

For each element in order of the candidate solution,

if the bus is type i:

Ztime = Ztime + Ti (9)

The value of tR, tS, tA, tD and tM depend on the

architecture of each computer and the software in use.

In this study, to determine these operational times, a

simple method is implemented. A matrix with the same

dimension as Z-bus matrix with random complex

variables is defined.

Then, each operation is performed on every

element of this matrix. This procedure is repeated for

100000 iterations for each operation and the total

calculation time is obtained. Finally, the average time

of each operation per element is determined and also

normalized.

EVOLUTIONARY ALGORITHMS

In this following, Genetic Algorithm, Particle

Swarm Optimization algorithm, Shuffled Frog Leaping

algorithm and Differential Evolution algorithm and

some of their modified versions are briefly presented.

Genetic algorithm: Genetic Algorithm (GA) is a

particular class of evolutionary algorithms. This search

technique is used in finding exact or approximate

solutions to optimization problems. Every solution is

represented in the form of a string called chromosome

which consists of a set of variables called genes. Each

chromosome is evaluated by the objective function

(Elbeltagi et al., 2005).

The GA used in this study, begins with a set of

chromosomes randomly generated within the feasible

space. In each iteration, GA tries to improve the

chromosome with worst fitness by generating an

offspring through crossover or mutation procedures.

Crossover is a natural process between parent

chromosomes and is given a rate ranging from 0.6 to 1

(Elbeltagi et al., 2005). Figure 2 illustrates the

crossover operation between two randomly chosen

parents. The offspring may be affected by mutation. In

this case, some genes change by chance. This makes the

chromosomes spread out the search space and may

avoid being trapped in local minimum. Mutation rate is

usually assumed less than 0.1 (Goldberg, 1989).

Particle swarm optimization: Particle Swarm

Optimization (PSO) is a multi-agent search technique,

which is inspired by the social behavior of a flock of

birds searching for food (Kennedy and Eberhart, 1995).

Each bird in the flock is called a particle and the flock

is referred to as a swarm. Each particle travels through

multidimensional search space looking for the best

position (global optimum), by adjusting its position

according to its own experience as well as the

experience of its adjacent particles (Elbeltagi et al.,

2005).

In this notation, X and V are particle coordinates

and its corresponding velocity in the search space,

respectively. The best position of a particle and the best

position of all particles are recorded and represented as

Pbest and Gbest, respectively. In each iteration, the

velocity and position of particles are calculated as

follows:

 (10)

1 ,

2 ,

(1) ()

() (())

() (())

i i

best i i

best i i

V t w V t

c R and P X t

c R and G X t

+ =

+ × × −

+ × × −

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1714

Fig. 2: Genetic algorithm offspring generating process

Table 1: Parameters of PSO versions

PSO parameters C-PSO CI-PSO LDI-PSO T-1 PSO

Inertia weight (w) 1 0.729844 0.9-0.4 0.7290
Learning factor c1 2 2.01 2 1.4944
Learning factor c2 2 2.01 2 1.4944

(1) () ()i i iX t X t V t+ = +

 (11)

where,
c1 & c2 : Learning factors
w : Called the inertia weight

The iteration process continues until the termination
condition is satisfied. Conventional PSO (C-PSO),
Inertia Constant PSO (IC-PSO), Linearly Decreasing
Inertia PSO (LDI-PSO) and Type 1 PSO (T-1 PSO)
(Shi and Eberhart, 1998; Valle et al., 2008) are applied
in this study. Table 1 indicates the parameters of these
algorithms.

Shuffled frog leaping algorithm: The SFL algorithm
originally developed as a population-based met
heuristic to perform an informed heuristic search using
mathematical functions to find a solution of a
combinatorial optimization problem (Amiri et al.,
2009). It combines the benefits of both the genetic-
based Memetic Algorithm (MA) and the social
behavior-based particle swarm optimization algorithm.

In SFL algorithm, there is a population of possible

solutions defined by a set of frogs that is divided into

subgroups called memeplexes, each performing a local

search. After a defined number of memetic evolution

steps, ideas are passed among memeplexes in a

shuffling process. The local search and the shuffling

process continue until defined convergence criteria are

satisfied (Elbeltagi et al., 2005).
At first, an initial population of P frogs is created

randomly within the feasible space. For an S variable
problem, the i

th
 frog is represented as Xi = (xi1, xi2,…,

xiS). Then, the frogs are sorted in a descending

Fig. 3: Shuffled frog leaping algorithm improvement attempts

order according to their fitness. Then, the whole
Population (P) is separated into m memeplexes, each
containing n frogs. In this procedure, the first frog
moves to the first memeplex, the second frog moves to
the second memeplex, frog m moves to the m

th

memeplex and frog m+1 goes back to the first
memeplex, etc. Within each memeplex, position of
frogs with the best and worst fitnesses is determined as
Xb and Xw, respectively. Also, position of frog with the
global best fitness is determined as Xg. Then, in each
memeplex, a process is applied to improve only the frog
with the worst fitness (not all frogs) in each cycle as
follows:

() ()i b wD Rand X X= × −
 (12)

NEWw w iX X D= +
 (13)

where, Rand() is a random number between 0 and 1.
This operation is shown in Fig. 3. As the first attempt, if
this process generates a better solution, the worst frog
will be replaced. Otherwise, the calculations in (12) and
(13) are repeated with replacement of Xb by Xg (second
attempt). If no improvement becomes possible in this
case, then a new solution is randomly generated within
the feasible space to replace the worst frog (third
attempt). Then, the calculations continue for a specific
number of iterations (Elbeltagi et al., 2005).

After a pre-specified number of memetic

evolutionary steps within each memeplex, to ensure

global exploration, ideas passed within memeplexes are

combined in the shuffling process (Amiri et al., 2009).

The local search and the shuffling process continue

until convergence criteria are satisfied. Figure 3 shows

the main idea of this algorithm.

Differential evolution algorithm: Differential

evolution algorithm, introduced by Price et al. (2005),

is a simple population based, stochastic evolutionary

algorithm for global optimization and is capable of

handling non-differentiable, nonlinear and multi-modal

objective functions (Varadarajan and Swarup, 2008). In

DEA, the population consists of real-valued vectors

with dimension D that equals the number of design

Parent A Parent B Offspring

From

Parent A

From

Parent A

From

Parent B

Randomly

chosen

Genes

Randomly

chosen

Genes

Randomly

chosen

Genes

A1

A2

A i

A i+1

A i+m

B1

B2

B i-1

B i+m+1

Bn

Leap

(Second a ttem p t)

Leap

(F irs t a ttem p t)

Current Mem ep lex

Mem ep lex w ith the

bes t g loba l frog

Best F rog

Second Frog

W o rs t F rog

Bes t F rog

Second Frog

W o rs t F rog

Genera te a random Frog

w ith in the feasib le space Th ird a ttem pt

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1715

parameters. The size of the population is adjusted by
the parameter Np (Price et al., 2005). The initial
population is uniformly distributed in the search space.
Each variable k in an individual i in the generation G is
initialized within its boundaries xk,min and xk,max. At each
generation, two operators, namely mutation and
crossover (recombination), are applied to each
individual; thus producing the new population. Then, a
selection phase takes place, where each individual of
the new population is compared to the corresponding
individual of the old population and the best of them is
selected as a member of the population in the next
generation. In the following, the evolutionary operators
are briefly described. The first step is the mutation that
can be described as follows:

, 1 1, 2, 3,V .()i G r G r G r GX F X X+ = + −
 (14)

where,
Xri,G : Randomly chosen vector among the population

in the generation G
F : A constant within (0, 2)
Vi,G+1 : The trial vector

If Xr1,G is replaced by Xbest,G, another form of the
presented DE (R-DE) called B-DE will be formed
(Abedi et al., 2012). In the second step called the
crossover step, Eq. (15) is used to determine the trial
vector that may replace the current vector in the next
population with the probability of Crossover constant
(CR) which is between 0 and 1 (Price and Storn, 1997):

, , 1 ,

, , 1

, , 1

j i G j i

j i G

j i G

V if rand CR or j i
U

X otherwise

+

+
+

≤ =
= 
 (15)

where, randj,I is a random number generated within the
range 0 and 1. Finally, the selection phase is performed
and the generated vector is tested by being compared
with the best vector of prior iteration. These steps are
repeated in times of a defined number of iterations or
the algorithm is terminated if the stop circumstances are
confirmed.

OPTIMAL PATH FINDING METHODOLOGY
USING EVOLUTIONARY ALGORITHMS

In order to implement each EA method, a vector

containing the element order of a specified network is
defined and a set of such vectors is developed to form a
population; this is a common concept in all the
algorithms used. When the population is generated, the
aforementioned fitness function should be calculated
for every vector considering the following constraints.

There are two uncommon constraints to be
considered in the optimization process using any of the
mentioned evolutionary algorithms. First, every vector
of elements order has to start with a generator to
establish the connection to the reference bus.

The second constraint, which is very hard to satisfy
in case of employing evolutionary algorithms, is that
every element to be added in each step of the Z-matrix
building process should have a direct or indirect path to
the reference bus through the previously added
elements. In other words, at least one of the buses of the
new element should be one of the buses that are already
added. Hence, there are three significant defects in
employing any EA for this optimization problem.

Firstly, generally when an evolutionary method
generates a new population, the values in every vector
of the population are not integers. This problem may be
overcome by rounding the variables.

Secondly, even if the variables are integers, it is
possible that some variables have the same value. It is
obvious that no two variables in each vector must be
equal with each other.

Thirdly, even if the variables are integers and
mutually different, it is very improbable that the vector
satisfies both the constraints together.

To overcome these difficulties, a novel method in
vector generation in each population is proposed. This
method can be applied in any evolutionary algorithms
that are used for the optimization problem.

In this problem, the second constraint is severe on
the solution vector which determines a specified
relation between each element with the previous one. In
other words, since in building Z-matrix, an element
could be added only under one of the four underlying
conditions, the operators in evolutionary algorithms
(crossover, …) should generate new vectors, which
satisfies this constraint on each element. However,
generating a high-dimensional vector from existing
ones which satisfies this constraint on each element of a
vector is very improbable. The main reason that in this
study, each employed optimization method is briefly
described is to clarify this issue. This might take a great
deal of trails until a vector with satisfying property
(mentioned constraint) on all elements is generated.

Therefore, in this method, instead of generating
vectors of all elements altogether and checking the
constraints to be satisfied, the vector is discretized into
1×1 arrays each containing only one element number
and every step of the optimization algorithm is
performed on this scalar. For example, in GA,
crossover operator is performed on a single gene. Then
the constraints are checked for each single scalar. This
means that it should be checked that the resulted value
by the operator, which is the number of a bus, is a bus
connected to the previously added to the Z-matrix or is
one of the generators. In this case, if the generated
scalar does not satisfy the constraints, the performed
steps is repeated only for the same scalar not for the
total array. If after for example 100 times the steps
repeated and the constraints are still unsatisfied, only
the current scalar is randomly generated. After
generating this element (gene), the next one will be
produced. This procedure is illustrated in the flowchart
shown in Fig. 4.

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1716

Fig. 4: Proposed method to handle the constraints

Case study-single network: The proposed Z-matrix

building method was tested on IEEE 14-bus benchmark

(Christie, 1999a). As the algorithm requires the buses

numbered, the number of individuals is given in

Table 2. The parameters tR, tS, tA, tD and tM are

calculated on a E-7200 Pentium with a 2 GBs RAM on

MATLAB 7.6. Table 3 depicts the per unit values of

each operation time. The chosen base value is

tR = 4.42e-8 sec.

Figure 5 and 6 demonstrate the iterative

convergence of best run for each EA method. With

regard to the randomness of the heuristic algorithms,

Table 2: Numbering of IEEE 14-bus power system

Element number From bus To bus

1 0 1

2 0 8

3 0 2

4 0 3

5 0 6

6 1 5

7 1 2

8 2 3

9 2 5

10 2 4

11 3 4

12 4 7

13 4 9

14 4 5

15 5 6

16 6 11

17 6 12

18 6 13

19 7 8

20 7 9

21 9 14

22 9 10

23 10 11

24 12 13

25 13 14

Table 3: Calculation time of each operator (P.U.)

Replacement Addition Subtraction Multiply Division

1 0.8042 0.7702 7.9876 8.1566

Fig. 5: Iterative convergence of employed EAs

Fig. 6: Iterative convergence of employed EAs

many trials with different initializations should be
experienced to prove if the algorithm is robust. The
comparison of performance of employed algorithms

Start

i=1

Constraints

are satisfied?

i=Number of

particles?

i=i+1

Number of

Vector=1

j=1

Generate the jth

array of the new

vector correspond

to the EA algorithm

Round the variable

to integer values

New array

satisfies the

constraints?

j=Number of

variables?

j=j+1

Update the

population

correspond to the

EA procedure

Number of vector=

EA required vectors in

each iteration?

End

Iteration=

muximum number

of iterations?

Iteration=1

Number of

vector=number of

vector+1

Generate the ith

integer vector

randomly with

dissimilar arrays

No

Yes

Yes

No

No

Yes

No

Yes

No

Yes

No

Yes

0 50 100 150 200
1.2

1.4

1.6

1.8

2

2.2
x 10

4

Iteration

C
al

cu
la

ti
o
n
 t
im

e(
p
.u

.)

RDE

BDE

SFLA

0 50 100 150 200
1.4

1.6

1.8

2
x 10

4

Iteration

C
al

cu
la

ti
o
n
 t
im

e(
p
.u

.)

C-PSO

IC-PSO

PSO-type1

LDI-PSO

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1717

Table 4: Statistical results of different EAs through 50 trials

Compared

algorithm

Best Z-matrix

time (p.u.)

Mean Z-matrix

time (p.u.)

Worst Z-matrix

time (p.u.)

C-PSO 14643 15930 16705

CI-PSO 15002 16080 16710

LDI-PSO 15280 16021 16876

T-1 PSO 15038 16249 17112

GA 14731 16313 17270

B-DE 14157 14950 15572

R-DE 13704 15039 15691

SFLA 14296 15566 16328

Table 5: Convergence time comparison among applied evolutionary

algorithms

Compared

algorithm

Shortest

convergence

time

Average

convergence

time

Longest

convergence

time

C-PSO 58.69 266.15 1181.90

IC-PSO 78.89 209.11 362.26

LDI-PSO 58.50 229.06 467.85

T-1 PSO 73.74 451.13 1131.50

GA 57.68 125.91 1956.00

R-DE 66.74 90.41 113.69

B-DE 67.81 92.94 111.98

SFLA 33.45 697.31 1213.80

after 50 independent runs is shown in Table 4 and 5.

Moreover, the average computation time of randomly

generated paths for this network is computed as 32258

p.u. which is distinctly comparable with the determined

optimal path calculation time shown in Table 4.

The result of implementation of each optimization

algorithm on the benchmark to find the optimal path is

presented in Table 6. Considering fitness and

convergence time of different algorithms, Table 4 to 6

depict that R-DE is the most efficient method for this

application. GA and SFLA are the next efficient

algorithms. Figure 7 demonstrates the IEEE 14-bus

diagram and the global optimal path of Z-matrix

building resulted by DE algorithm.

Case study-short-circuited networks: In some

applications of Z-Matrix such as fault analysis and

voltage sag calculation after a fault, the network

topology is altered. To determine a unique optimal path,

applicable in all possible network topologies, the

objective function should be modified such that the

average calculation time of all the networks is

minimized. In other words, we are looking for one

optimal path with no need to further determination of

the optimal path as various faults occur.

As a case study, the unique optimal path is

determined for IEEE 14-bus power system. As DE had

the best performance among the applied algorithms,

only this method is employed in this part of the case

study. The result of this optimization is presented in

Table 7. Moreover, the average computation time of

1000 randomly generated paths are calculated for

comparison. This is done by sequentially selecting the

elements randomly among the feasible solutions. For

this network, the result is 29683 p.u., which is distinctly

comparable with the determined optimal path

calculation time shown in Table 7.

Table 6: Comparison of optimization results in the IEEE 14-bus power system

Modification process C-PSO CI-PSO LDI-PSO GA Type 1 PSO B-DE R-DE SFLA

1 1 1 2 3 4 3 1 1

2 6 6 4 10 1 5 6 6

3 3 7 3 9 6 7 9 7

4 7 3 8 6 8 6 4 3

5 14 9 1 7 3 1 10 8

6 10 10 6 4 10 9 7 9

7 4 14 14 8 9 15 8 10

8 8 8 9 14 11 8 11 14

9 11 4 11 1 14 4 5 4

10 9 11 10 11 2 11 14 11

11 12 12 7 13 12 10 15 13

12 13 13 19 12 7 14 17 12

13 15 20 13 20 5 13 18 2

14 5 5 20 19 19 20 16 19

15 20 15 12 2 15 12 24 20

16 2 18 5 15 13 18 13 15

17 17 25 15 5 20 19 3 5

18 19 21 18 17 18 21 12 18

19 24 17 25 21 25 24 22 17

20 18 24 21 18 21 25 23 24

21 21 22 24 25 24 16 25 25

22 25 16 17 24 17 23 20 21

23 16 2 22 16 22 22 21 22

24 22 23 16 22 16 2 2 23

25 23 19 23 23 23 17 19 16

Convergence time

(p.u.)

341.39 261.63 305.57 93.85 207.16 87.99 88.71 871.6

Building process

time (p.u.)

14643 15002 15280 14731 15038 14157 13704 14296

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1718

Fig. 7: IEEE 14-bus network and line tags showing the order of the global optimal path

Table 7: Optimization results for short-circuited networks case study

Modification process Line number

1 4

2 3
3 11

4 1

5 6
6 9

7 14

8 7
9 12

10 8

11 19
12 10

13 13

14 2
15 20

16 15

17 21
18 18

19 16

20 25
21 5

22 22

23 17
24 24

25 23

Convergence time (p.u.) 16.13
Building process time (p.u.) 14920

As another instance, a simulation on a bigger

network such as IEEE 118-bus benchmark (Christie,

1999b) is performed. If the aim is to calculate sag

voltages caused by all short circuits each time occurred

in each line of the network, then 186 different

possibilities for fault occurrence exist with respect to

the network toplogy in Z-matix calculation (The

network contains 186 lines). Taking the advantage of

the proposed method, for only one time, only one

optimal path should be calculated which is applicable

for all of these cases. Therefore, the time taken for

computation of the optimal path by implementing the

proposed method is not of great concern especially in

large networks.

Similar to the 14-bus case, the unique optimal path

in the 118-bus system is obtained by minimizing the

average time of Z-matix computation of all the

mentioned topology alterations. To give an insight to

the effectiveness of the applied method, the average Z-

matrix computation time of 1000 randomly generated

paths in the 118-bus system is calculated as 301228 p.u.

and compared to the case of applying the calculated

optimal path. The result indicates that we gain 51.2%

saving time.

CONCLUSION

In this study, four different algorithms including

PSO and three of its modified versions, i.e., GA, SFLA,

DE and one of its modified versions are implemented

and compared to find the best element order in the

direct Z-Matrix building method and minimize the

calculation time. To demonstrate the performance of the

proposed method, it has been applied to IEEE 14-bus

test system. Based on the test results, the best

optimization method to determine the optimal path is

discussed. Furthermore, as the most significant

application of Z-Matrix is in fault analysis and

calculation of voltage sags and because during a fault

occurrence in any of test network elements, the network

topology changes, the proposed method is arranged to

find the optimal path considering all possible network

Res. J. Appl. Sci. Eng. Technol., 6(10): 1711-1719, 2013

1719

alterations to avoid the requirement for repeating the

calculation process for each single line fault. Taking the

advantage of the proposed method, for only one time,

only one optimal path should be calculated which is

applicable for all of the mentioned network alterations

and any further short-circuit computation. This is better

demonstrated with the 118 bus case study. Results

demonstrate the effectiveness and capability of this

method to considerably reduce the time consumption

for Z-matrix modification which is useful especially in

large-scale power systems.

REFERENCES

Abedi, S., A. Alimardani, G. Gharehpetian, G. Riahy

and S. Hosseinian, 2012. A comprehensive method
for optimal power management and design of
hybrid RES-based autonomous energy systems.
Renew. Sust. Energ. Rev., 16(3): 1577-1587.

Amiri, B., M. Fathian and A. Maroosi, 2009.
Application of shuffled frog-leaping algorithm on
clustering. Int. J. Adv. Manuf. Technol., 45:
199-209.

Bergen, R. and V. Vittal, 2000. Power Systems
Analysis. 2nd Edn., Prentice-Hall Inc., NJ, USA,
pp: 619.

Christie, 1999a. The IEEE 14-Bus Test System
(Online). Retrieved from: http: // www. ee.
Washington .edu/ research/ pstca/ pf14/pg_
tca14bus.htm

Christie, 1999b. The IEEE 118-Bus Test System
(Online). Retrieved from: http:// www. ee.
washington. edu/research /pstca/pf118/ pg_tca118
bus. htm.

Elbeltagi, E., T. Hegazy and D. Grierson, 2005.
Comparison among five evolutionary-based
algorithms. Adv. Eng. Info., 19(1): 43-53.

Glover, J.D. and M.S. Sarma, 1994. Power System
Analysis and Design. Cengage Learning, United
States.

Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Reading
Mass, Addison-Wesley Publishing Co., NY.

Grainger, J.J. and W.D. Stevenson, 1994. Power
System Analysis. McGraw-Hill, New York.

Guochen, C., 1995. Fast calculation of power system
with variation structure at any complex fault. Proc.
Chinese Soc. Electr. Eng., 5(15): 354-360.

Kennedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceeding of the IEEE International
Conference on Neural Networks (ICNN), 4:
1942-1948.

Makram, E.B., K.P. Thornton and H.E. Brown, 1989.
Selection of lines to be switched to eliminate
overloaded lines using a Z-matrix method. IEEE
T. Power Syst., 4(2): 653-657.

Miller, B.L. and D.E. Goldberg, 1995. Genetic

algorithms, tournament selection and the effects of

noise. Comp. Syst., 9: 193-212.

Peterson, W.L. and E.B. Makram, 1989. A Z-matrix
building algorithm for unbalanced power systems
with mutually coupled lines. Proceeding of the 21st
Southeastern Symposium on System Theory.
Tallahassee, FL, pp: 9-12.

Peterson, W.L., E.B. Makram and T.L. Bakdwin, 1989.
A generalized PC based bus impedance matrix
building algorithm. Proceeding of the IEEE Energy
and Information Technologies in the Southeast, 2:
432-436.

Price, K. and R. Storn, 1997. Differential evolution: A
simple and efficient heuristic for global
optimization over continuous spaces. J. Glob.
Optimiz., 11: 341-359.

Price, K.V., R. Storn and J.A. Lampinen, 2005.
Differential Evolution: A Practical Approach to
Global Optimization. Natural Computing Series,
Springer, Berlin, Germany.

Ranjbar, A.H., H. Omranpour, M. Abedi and
G.B. Gharehpetian, 2008. A novel approach for a
Z-matrix building process using genetic algorithm.
Proceeding of the IEEE 2nd International Power
and Energy Conference, Johor Bahru, pp:
1161-1165.

Reitan, K.D., 1980. A new method using the bus-
impedance matrix model for short-circuits
calculations. Proc. IEEE, 68(8): 1027-1030.

Reitan, K.D. and K.C. Kruempel, 1969. Modification of
the bus impedance matrix for system changes
involving mutual couplings. Proc. IEEE, 57(8):
1432-1433.

Shi, Y. and R. Eberhart, 1998. A modified particle
swarm optimizer. Proceeding of the IEEE World
Congress on Computational Intelligence, pp:
69-73.

Shipley, R.B., N. Sato, D.W. Coleman and C.F. Watts,
1966. Direct calculation of power system stability
using the impedance matrix. IEEE T. Power Ap.
Syst., 85(7): 777-782.

Tianmin, F. and L. Baozhu, 2009. A novel algorithm
for Building Z-matrix of Electric Power Network
including CCVS. Proceeding of the Asia-Pacific
Power and Energy Engineering Conference
(APPEEC), Wuhan.

Valle, Y.D., G.K. Venayagamoorthy, S. Mohagheghi,
J. Hernandez and R.G. Harley, 2008. Particle
swarm optimization: Basic concepts, variants and
applications in power systems. IEEE T. Evolut.
Comput., 12(2): 171-195.

Varadarajan, M. and K.S. Swarup, 2008. Differential
evolutionary algorithm for optimal reactive power
dispatch. Int. J. Elect. Power Energy Syst., 30:
435-441.

Wei, L., B. Hai, F. Jiyue and X. Xiao, 2005. Problem of
loss allocation based on power components theory.
Proc. Chinese Soc. Electr. Eng., 25: 157-160.

Yue, Q., W. Yu and F. Lu, 2004. A novel algorithm for
building Z-Matrix. Proceeding of the IEEE PES
Power Systems Conference and Exposition, 1:
124-129.

