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Abstract: This study presents a novel and comparative approach to select an optimal path during direct Z-Matrix 
building process using Evolutionary Algorithms (EAs). The proposed evolutionary methods are based on selection 
of series and shunt elements (i.e., lines, transformers and generators) in optimal order for minimizing computation 
time. The proposed evolutionary methods are tested on IEEE 14-bus benchmark and the results are compared. The 
proposed method is also arranged to find the optimal path considering all possible network alterations due to all 
possible faults to avoid the requirement for repeating the calculation process for each single line fault. The 
comparative results indicate the feasibility and effectiveness of the method to find the optimal path in Z-matrix 
building process and considerably diminishing the time consumption for Z-matrix modification. 
 
Keywords: Computation time, evolutionary algorithms, IEEE 14-bus benchmark, impedance matrix, optimal path  

 
INTRODUCTION 

 
Bus impedance matrix (Z-matrix) plays an 

important role in the field of power system analysis and 
operation. However, the process of Z-matrix building is 
complicated and more time consuming compared to bus 
admittance matrix formulation (Peterson et al., 1989). 
Nevertheless, the information contained in Z-matrix is 
more pronounced (Peterson and Makram, 1989; 
Grainger and Stevenson, 1994; Bergen and Vittal, 
2000; Tianmin and Baozhu, 2009). For instance, the 
diagonal element related to specific bus in Z-matrix 
presents thevenin impedance at this bus. 

Z-matrix has many effective and useful 
applications in the field of fault analysis, voltage sag 
calculations, contingency study, economic dispatch and 
relay setting (Guochen, 1995). In addition, Z-matrix 
reflects a linear relationship between injected current 
and bus voltages for distribution network analysis 
(Shipley et al., 1966; Reitan and Kruempel, 1969; 
Reitan, 1980; Makram et al., 1989; Glover and Sarma, 
1994; Wei et al., 2005). 

Z-matrix building process is most commonly based 
on direct and indirect methods. Indirect method requires 
Y-matrix inversion. Y-matrix formation is relatively 
simple, however, adding and removing an element due 
to system modification would require repetitive matrix 
inversion. 

In order to find new and modified version of Z-
matrix, this event leads to complicated and time 

consuming process especially in a large electric power 
system. Direct method which is appeared in most 
electrical text books can be applied for Z-matrix 
building using a step-by-step procedure, while in each 
step one element can be added accordingly. The 
important advantage of this method is that, after Z-
matrix building termination any changes or 
modification can be implemented to existing Z-matrix 
by simple algorithms to produce a new Z-matrix 
(Grainger and Stevenson, 1994; Miller and Goldberg, 
1995.  

Yue et al. (2004) presented a decomposition 
method based on spanning tree and two decomposition 
matrices. However, this method is not able to cope with 
mutual inductances and is not well suited for strongly 
meshed power networks. 

In spite of the importance of the Z-matrix, its 
usefulness has been primarily constrained by the 
computational burden due to building process. Direct 
method for Z-matrix building is based on a step by step 
procedure which in each step, different choices 
regarding different element to be added are on the table. 
Thus, different paths related to available choices 
provide different computation time in Z-matrix building 
process. Therefore, among all available paths including 
set of elements to be added, only one path can be 
nominated as optimal path with minimum computation 
time. The most recent report based on detecting the 
optimal path in Z-matrix building process is appeared in 
(Ranjbar et al., 2008), which employs Genetic 
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Algorithm (GA) for optimization purposes. However, 
there is no comparison with other evolutionary 
algorithms for result validation. Furthermore, the 
network alterations due to short circuit in the lines of 
the network and its influence on the calculation time are 
not taken into consideration. 

In the present study, an effort has been made to 
present a comparative and novel approach for detecting 
the optimal path during Z-matrix building process for 
efficient short circuit computation in large power 
systems. The aim is to develop an optimization problem 
to find the best element order in the direct Z-Matrix 
building method and minimize the calculation time. 
Considering all possible network alterations due to fault 
occurrence in all network lines, it is noteworthy to state 
that based on the proposed method, for only one time, 
only one unique overall optimal path should be 
determined which is applicable for all of the mentioned 
network alterations and any further short-circuit 
computation, resulting in considerable improvement in 
computational efficiency. In order to nominate a 
solution method to the optimization problem with best 
convergence quality and speed, four popular 
evolutionary optimization algorithms are employed and 
compared, including: conventional Particle Swarm 
Optimization (PSO) as well as its three modified 
versions, Genetic Algorithms (GAs), Shuffled Frog 
Leaping Algorithm (SFLA) and Differential Evolution 
(DE) algorithm and its modified version. 

 

 

PROBLEM FORMULATION 

 
Basic concepts: The Z-matrix describes the 
relationship between bus voltages vector and injected 
current (Ranjbar et al., 2008), as follows: 

 

Bus Matrix BusV Z I=                                       (1) 
 

The diagonal elements of the Z-matrix, called 
driving-point impedance or Thevenin impedance are 
defined as: 
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The off-diagonal elements named the transfer 
impedance are defined as: 
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Using these definitions the conventional direct 
method of Z-matrix building has been developed 
(Grainger and Stevenson, 1994; Tianmin and Baozhu, 
2009). This method deals with elements one by one and 
categorizes them into 4 types: 

 
 
Fig. 1: The procedure of line injection 
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Type 1: Adding an element from a new bus to the 

reference bus. 

Type 2: Adding an element from a new bus to an 

existing bus. 

Type 3: Adding an element from an existing bus to the 

reference bus. 

Type 4: Adding an element between two existing 

buses. 

 

Fitness function: In order to evaluate the computation 

time of each possible order of elements, a fitness 

function dependent on the type of the current element 

should be defined. As mentioned, there are four types 

of elements to be added in Z-matrix building process. 

Figure 1 illustrates the mechanism of each type of 

element injection into Z-matrix. Type 3 and type 4 

require a Kron reduction afterwards. Equation (4) to (7) 

represent the calculation time of each type of element 

respectively: 

 

T1 = tR                                                           (4) 

 

2 R A RT   2nt t t= + +
                         (5) 

 

( )2

3 R M D S R A RT   2nt n t t t t t t= + + + + + +
      (6) 

 

( ) ( )2

4 R S M D S R

A S R

T   2n t t n t t t t

2t 2t t

= + + + + +

+ + +
           (7) 

 

In these equations, n is the dimension of the matrix 

when an element is assembled, tR, tS, tA, tD and tM are 

the required time for replacement, subtraction, addition, 

division and multiplication operators, respectively. 

Each element is connected between two buses. 

Depending on the type of element to be added (type 1 

to 4) one of the Eq. (4) to (7) is taken into 

consideration, correspondingly. So the fitness function 

for each candidate solution can be defined as follows: 

 

Ztime = 0              (8) 

 

For each element in order of the candidate solution, 

if the bus is type i: 

 

Ztime = Ztime + Ti                          (9) 

 

The value of tR, tS, tA, tD and tM depend on the 

architecture of each computer and the software in use. 

In this study, to determine these operational times, a 

simple method is implemented. A matrix with the same 

dimension as Z-bus matrix with random complex 

variables is defined. 

Then, each operation is performed on every 

element of this matrix. This procedure is repeated for 

100000 iterations for each operation and the total 

calculation time is obtained. Finally, the average time 

of each operation per element is determined and also 

normalized. 

 

EVOLUTIONARY ALGORITHMS 

 

In this following, Genetic Algorithm, Particle 

Swarm Optimization algorithm, Shuffled Frog Leaping 

algorithm and Differential Evolution algorithm and 

some of their modified versions are briefly presented. 

 

Genetic algorithm: Genetic Algorithm (GA) is a 

particular class of evolutionary algorithms. This search 

technique is used in finding exact or approximate 

solutions to optimization problems. Every solution is 

represented in the form of a string called chromosome 

which consists of a set of variables called genes. Each 

chromosome is evaluated by the objective function 

(Elbeltagi et al., 2005). 

The GA used in this study, begins with a set of 

chromosomes randomly generated within the feasible 

space. In each iteration, GA tries to improve the 

chromosome with worst fitness by generating an 

offspring through crossover or mutation procedures. 

Crossover is a natural process between parent 

chromosomes and is given a rate ranging from 0.6 to 1 

(Elbeltagi et al., 2005). Figure 2 illustrates the 

crossover operation between two randomly chosen 

parents. The offspring may be affected by mutation. In 

this case, some genes change by chance. This makes the 

chromosomes spread out the search space and may 

avoid being trapped in local minimum. Mutation rate is 

usually assumed less than 0.1 (Goldberg, 1989). 

 

Particle swarm optimization: Particle Swarm 

Optimization (PSO) is a multi-agent search technique, 

which  is  inspired  by  the social behavior of a flock of 

birds searching for food (Kennedy and Eberhart, 1995). 

Each bird in the flock is called a particle and the flock 

is referred to as a swarm. Each particle travels through 

multidimensional search space looking for the best 

position (global optimum), by adjusting its position 

according to its own experience as well as the 

experience of its adjacent particles (Elbeltagi et al., 

2005). 

In this notation, X and V are particle coordinates 

and its corresponding velocity in the search space, 

respectively. The best position of a particle and the best 

position of all particles are recorded and represented as 

Pbest and Gbest, respectively. In each iteration, the 

velocity and position of particles are calculated as 

follows: 
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Fig. 2: Genetic algorithm offspring generating process 

 
Table 1: Parameters of PSO versions 

PSO parameters  C-PSO CI-PSO LDI-PSO T-1 PSO 

Inertia weight (w) 1 0.729844 0.9-0.4 0.7290 
Learning factor c1 2 2.01 2 1.4944 
Learning factor c2 2 2.01 2 1.4944 

 
( 1) ( ) ( )i i iX t X t V t+ = +

                          (11) 
 
where,  
c1 & c2 : Learning factors  
w : Called the inertia weight  
 
The iteration process continues until the termination 
condition is satisfied. Conventional PSO (C-PSO), 
Inertia Constant PSO (IC-PSO), Linearly Decreasing 
Inertia PSO (LDI-PSO) and Type 1 PSO (T-1 PSO) 
(Shi and Eberhart, 1998; Valle et al., 2008) are applied 
in this study. Table 1 indicates the parameters of these 
algorithms. 
 
Shuffled frog leaping algorithm: The SFL algorithm 
originally developed as a population-based met 
heuristic to perform an informed heuristic search using 
mathematical functions to find a solution of a 
combinatorial optimization problem (Amiri et al., 
2009). It combines the benefits of both the genetic-
based Memetic Algorithm (MA) and the social 
behavior-based particle swarm optimization algorithm. 

In SFL algorithm, there is a population of possible 

solutions defined by a set of frogs that is divided into 

subgroups called memeplexes, each performing a local 

search. After a defined number of memetic evolution 

steps, ideas are passed among memeplexes in a 

shuffling process. The local search and the shuffling 

process continue until defined convergence criteria are 

satisfied (Elbeltagi et al., 2005).  
At first, an initial population of P frogs is created 

randomly within the feasible space. For an S variable 
problem, the i

th
 frog is represented as Xi = (xi1, xi2,…, 

xiS).  Then,   the   frogs   are   sorted  in  a descending  

 
 
Fig. 3: Shuffled frog leaping algorithm improvement attempts 

 
order according to their fitness. Then, the whole 
Population (P) is separated into m memeplexes, each 
containing n frogs. In this procedure, the first frog 
moves to the first memeplex, the second frog moves to 
the second memeplex, frog m moves to the m

th
 

memeplex and frog m+1 goes back to the first 
memeplex, etc. Within each memeplex, position of 
frogs with the best and worst fitnesses is determined as 
Xb and Xw, respectively. Also, position of frog with the 
global best fitness is determined as Xg. Then, in each 
memeplex, a process is applied to improve only the frog 
with the worst fitness (not all frogs) in each cycle as 
follows: 

 

() ( )i b wD Rand X X= × −
                               (12)  

 

NEWw w iX X D= +
                              (13)   

      
where, Rand() is a random number between 0 and 1. 
This operation is shown in Fig. 3. As the first attempt, if 
this process generates a better solution, the worst frog 
will be replaced. Otherwise, the calculations in (12) and 
(13) are repeated with replacement of Xb by Xg (second 
attempt). If no improvement becomes possible in this 
case, then a new solution is randomly generated within 
the feasible space to replace the worst frog (third 
attempt). Then, the calculations continue for a specific 
number of iterations (Elbeltagi et al., 2005).  

After a pre-specified number of memetic 

evolutionary steps within each memeplex, to ensure 

global exploration, ideas passed within memeplexes are 

combined in the shuffling process (Amiri et al., 2009). 

The local search and the shuffling process continue 

until convergence criteria are satisfied. Figure 3 shows 

the main idea of this algorithm. 

 

Differential evolution algorithm: Differential 

evolution algorithm, introduced by Price et al. (2005), 

is a simple population based, stochastic evolutionary 

algorithm for global optimization and is capable of 

handling non-differentiable, nonlinear and multi-modal 

objective functions (Varadarajan and Swarup, 2008). In 

DEA, the population consists of real-valued vectors 

with  dimension  D  that  equals  the  number  of  design  
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parameters. The size of the population is adjusted by 
the parameter Np (Price et al., 2005). The initial 
population is uniformly distributed in the search space. 
Each variable k in an individual i in the generation G is 
initialized within its boundaries xk,min and xk,max. At each 
generation, two operators, namely mutation and 
crossover (recombination), are applied to each 
individual; thus producing the new population. Then, a 
selection phase takes place, where each individual of 
the new population is compared to the corresponding 
individual of the old population and the best of them is 
selected as a member of the population in the next 
generation. In the following, the evolutionary operators 
are briefly described. The first step is the mutation that 
can be described as follows: 

 

, 1 1, 2, 3,V .( )i G r G r G r GX F X X+ = + −
            (14) 

 
where,  
Xri,G : Randomly chosen vector among the population 

in the generation G  
F : A constant within (0, 2) 
Vi,G+1 : The trial vector  
 
If Xr1,G is replaced by Xbest,G, another form of the 
presented DE (R-DE) called B-DE will be formed 
(Abedi et al., 2012). In the second step called the 
crossover step, Eq.  (15) is used to determine the trial 
vector that may replace the current vector in the next 
population with the probability of Crossover constant 
(CR) which is between 0 and 1 (Price and Storn, 1997): 

 

, , 1 ,

, , 1

, , 1

j i G j i

j i G

j i G

V if rand CR or j i
U

X otherwise

+

+
+

≤ =
= 
      (15) 

 
where, randj,I is a random number generated within the 
range 0 and 1. Finally, the selection phase is performed 
and the generated vector is tested by being compared 
with the best vector of prior iteration. These steps are 
repeated in times of a defined number of iterations or 
the algorithm is terminated if the stop circumstances are 
confirmed. 
 
OPTIMAL PATH FINDING METHODOLOGY 
USING EVOLUTIONARY ALGORITHMS 

 
In order to implement each EA method, a vector 

containing the element order of a specified network is 
defined and a set of such vectors is developed to form a 
population; this is a common concept in all the 
algorithms used. When the population is generated, the 
aforementioned fitness function should be calculated 
for every vector considering the following constraints. 

There are two uncommon constraints to be 
considered in the optimization process using any of the 
mentioned evolutionary algorithms. First, every vector 
of elements order has to start with a generator to 
establish the connection to the reference bus.  

The second constraint, which is very hard to satisfy 
in case of employing evolutionary algorithms, is that 
every element to be added in each step of the Z-matrix 
building process should have a direct or indirect path to 
the reference bus through the previously added 
elements. In other words, at least one of the buses of the 
new element should be one of the buses that are already 
added. Hence, there are three significant defects in 
employing any EA for this optimization problem. 

Firstly, generally when an evolutionary method 
generates a new population, the values in every vector 
of the population are not integers. This problem may be 
overcome by rounding the variables. 

Secondly, even if the variables are integers, it is 
possible that some variables have the same value. It is 
obvious that no two variables in each vector must be 
equal with each other. 

Thirdly, even if the variables are integers and 
mutually different, it is very improbable that the vector 
satisfies both the constraints together. 

To overcome these difficulties, a novel method in 
vector generation in each population is proposed. This 
method can be applied in any evolutionary algorithms 
that are used for the optimization problem. 

In this problem, the second constraint is severe on 
the solution vector which determines a specified 
relation between each element with the previous one. In 
other words, since in building Z-matrix, an element 
could be added only under one of the four underlying 
conditions, the operators in evolutionary algorithms 
(crossover, …) should generate new vectors, which 
satisfies this constraint on each element. However, 
generating a high-dimensional vector from existing 
ones which satisfies this constraint on each element of a 
vector is very improbable. The main reason that in this 
study, each employed optimization method is briefly 
described is to clarify this issue. This might take a great 
deal of trails until a vector with satisfying property 
(mentioned constraint) on all elements is generated. 

Therefore, in this method, instead of generating 
vectors of all elements altogether and checking the 
constraints to be satisfied, the vector is discretized into 
1×1 arrays each containing only one element number 
and every step of the optimization algorithm is 
performed on this scalar. For example, in GA, 
crossover operator is performed on a single gene. Then 
the constraints are checked for each single scalar. This 
means that it should be checked that the resulted value 
by the operator, which is the number of a bus, is a bus 
connected to the previously added to the Z-matrix or is 
one of the generators. In this case, if the generated 
scalar does not satisfy the constraints, the performed 
steps is repeated only for the same scalar not for the 
total array. If after for example 100 times the steps 
repeated and the constraints are still unsatisfied, only 
the current scalar is randomly generated. After 
generating this element (gene), the next one will be 
produced. This procedure is illustrated in the flowchart 
shown in Fig. 4. 
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Fig. 4: Proposed method to handle the constraints 

 

Case study-single network: The proposed Z-matrix 

building method was tested on IEEE 14-bus benchmark 

(Christie, 1999a). As the algorithm requires the buses 

numbered,  the  number  of  individuals is given in 

Table 2. The parameters tR, tS, tA, tD and tM are 

calculated on a E-7200 Pentium with a 2 GBs RAM on 

MATLAB 7.6. Table 3 depicts the per unit values of 

each  operation  time.   The   chosen   base   value   is  

tR = 4.42e-8 sec. 

Figure 5 and 6 demonstrate the iterative 

convergence of best run for each EA method. With 

regard  to  the  randomness  of  the heuristic algorithms,  

Table 2: Numbering of IEEE 14-bus power system 

Element number From bus To bus

1 0 1 

2 0 8 

3 0 2 

4 0 3 

5 0 6 

6 1 5 

7 1 2 

8 2 3 

9 2 5 

10 2 4 

11 3 4 

12 4 7 

13 4 9 

14 4 5 

15 5 6 

16 6 11 

17 6 12 

18 6 13 

19 7 8 

20 7 9 

21 9 14 

22 9 10 

23 10 11 

24 12 13 

25 13 14 

 

Table 3: Calculation time of each operator (P.U.) 

Replacement Addition Subtraction Multiply Division

1 0.8042 0.7702 7.9876 8.1566 

 

 
 
Fig. 5: Iterative convergence of employed EAs 

 

 
 
Fig. 6: Iterative convergence of employed EAs 
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Table 4: Statistical results of different EAs through 50 trials 

Compared 

algorithm 

Best Z-matrix 

time (p.u.) 

Mean Z-matrix 

time (p.u.) 

Worst Z-matrix 

time (p.u.) 

C-PSO 14643 15930 16705 

CI-PSO 15002 16080 16710 

LDI-PSO 15280 16021 16876 

T-1 PSO 15038 16249 17112 

GA 14731 16313 17270 

B-DE 14157 14950 15572 

R-DE 13704 15039 15691 

SFLA 14296 15566 16328 

 

Table 5: Convergence time comparison among applied evolutionary 

algorithms 

Compared 

algorithm 

Shortest 

convergence 

time 

Average 

convergence 

time 

Longest 

convergence 

time 

C-PSO 58.69 266.15 1181.90 

IC-PSO 78.89 209.11 362.26 

LDI-PSO 58.50 229.06 467.85 

T-1 PSO 73.74 451.13 1131.50 

GA 57.68 125.91 1956.00 

R-DE 66.74 90.41 113.69 

B-DE 67.81 92.94 111.98 

SFLA 33.45 697.31 1213.80 

 

after 50 independent runs is shown in Table 4 and 5. 

Moreover, the average computation time of randomly 

generated paths for this network is computed as 32258 

p.u. which is distinctly comparable with the determined 

optimal path calculation time shown in Table 4. 

The result of implementation of each optimization 

algorithm on the benchmark to find the optimal path is 

presented in Table 6. Considering fitness and 

convergence time of different algorithms, Table 4 to 6 

depict that R-DE is the most efficient method for this 

application. GA and SFLA are the next efficient 

algorithms. Figure 7 demonstrates the IEEE 14-bus 

diagram and the global optimal path of Z-matrix 

building resulted by DE algorithm.                         

 

Case study-short-circuited networks: In some 

applications of Z-Matrix such as fault analysis and 

voltage sag calculation after a fault, the network 

topology is altered. To determine a unique optimal path, 

applicable in all possible network topologies, the 

objective function should be modified such that the 

average calculation time of all the networks is 

minimized. In other words, we are looking for one 

optimal path with no need to further determination of 

the optimal path as various faults occur. 

As a case study, the unique optimal path is 

determined for IEEE 14-bus power system. As DE had 

the best performance among the applied algorithms, 

only this method is employed in this part of the case 

study. The result of this optimization is presented in 

Table 7. Moreover, the average computation time of 

1000 randomly generated paths are calculated for 

comparison. This is done by sequentially selecting the 

elements randomly among the feasible solutions. For 

this network, the result is 29683 p.u., which is distinctly 

comparable with the determined optimal path 

calculation time shown in Table 7. 

 
Table 6: Comparison of optimization results in the IEEE 14-bus power system 

Modification process C-PSO CI-PSO LDI-PSO GA Type 1 PSO B-DE R-DE SFLA 

1 1 1 2 3 4 3 1 1 

2 6 6 4 10 1 5 6 6 

3 3 7 3 9 6 7 9 7 

4 7 3 8 6 8 6 4 3 

5 14 9 1 7 3 1 10 8 

6 10 10 6 4 10 9 7 9 

7 4 14 14 8 9 15 8 10 

8 8 8 9 14 11 8 11 14 

9 11 4 11 1 14 4 5 4 

10 9 11 10 11 2 11 14 11 

11 12 12 7 13 12 10 15 13 

12 13 13 19 12 7 14 17 12 

13 15 20 13 20 5 13 18 2 

14 5 5 20 19 19 20 16 19 

15 20 15 12 2 15 12 24 20 

16 2 18 5 15 13 18 13 15 

17 17 25 15 5 20 19 3 5 

18 19 21 18 17 18 21 12 18 

19 24 17 25 21 25 24 22 17 

20 18 24 21 18 21 25 23 24 

21 21 22 24 25 24 16 25 25 

22 25 16 17 24 17 23 20 21 

23 16 2 22 16 22 22 21 22 

24 22 23 16 22 16 2 2 23 

25 23 19 23 23 23 17 19 16 

Convergence time 

(p.u.) 

341.39 261.63 305.57 93.85 207.16 87.99 88.71 871.6 

Building process  

time (p.u.) 

14643 15002 15280 14731 15038 14157 13704 14296 
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Fig. 7: IEEE 14-bus network and line tags showing the order of the global optimal path 

 
Table 7: Optimization results for short-circuited networks case study 

Modification process Line number 

1 4 

2 3 
3 11 

4 1 

5 6 
6 9 

7 14 

8 7 
9 12 

10 8 

11 19 
12 10 

13 13 

14 2 
15 20 

16 15 

17 21 
18 18 

19 16 

20 25 
21 5 

22 22 

23 17 
24 24 

25 23 

Convergence time (p.u.) 16.13 
Building process time (p.u.) 14920 

 

As another instance, a simulation on a bigger 

network such as IEEE 118-bus benchmark (Christie, 

1999b) is performed. If the aim is to calculate sag 

voltages caused by all short circuits each time occurred 

in each line of the network, then 186 different 

possibilities for fault occurrence exist with respect to 

the network toplogy in Z-matix calculation (The 

network contains 186 lines). Taking the advantage of 

the proposed method, for only one time, only one 

optimal path should be calculated which is applicable 

for all of these cases. Therefore, the time taken for 

computation of the optimal path by implementing the 

proposed method is not of great concern especially in 

large networks. 

Similar to the 14-bus case, the unique optimal path 

in the 118-bus system is obtained by minimizing the 

average time of Z-matix computation of all the 

mentioned topology alterations. To give an insight to 

the effectiveness of the applied method, the average Z-

matrix computation time of 1000 randomly   generated 

paths in the 118-bus system is calculated as 301228 p.u. 

and compared to the case of applying the calculated 

optimal path. The result indicates that we gain 51.2% 

saving time. 

 

CONCLUSION 
 

In this study, four different algorithms including 

PSO and three of its modified versions, i.e., GA, SFLA, 

DE and one of its modified versions are implemented 

and compared to find the best element order in the 

direct Z-Matrix building method and minimize the 

calculation time. To demonstrate the performance of the 

proposed method, it has been applied to IEEE 14-bus 

test system. Based on the test results, the best 

optimization method to determine the optimal path is 

discussed. Furthermore, as the most significant 

application of Z-Matrix is in fault analysis and 

calculation of voltage sags and because during a fault 

occurrence in any of test network elements, the network  

topology changes, the proposed method is arranged to 

find the optimal path considering all possible network 
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alterations to avoid the requirement for repeating the 

calculation process for each single line fault. Taking the 

advantage of the proposed method, for only one time, 

only one optimal path should be calculated which is 

applicable for all of the mentioned network alterations 

and any further short-circuit computation. This is better 

demonstrated with the 118 bus case study. Results 

demonstrate the effectiveness and capability of this 

method to considerably reduce the time consumption 

for Z-matrix modification which is useful especially in 

large-scale power systems. 
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