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Research Article 
Covariance Intersection Fusion Kalman Estimators for Multi-Sensor System with  

Colored Measurement Noises 
 

Wen-Juan Qi, Peng Zhang and Zi-Li Deng 
Institute of Electronic Engineering, Heilongjiang University, Harbin 150080, China 

 

Abstract: For multi-sensor system with colored measurement noises, using the observation transformation, the 
system can be converted into an equivalent system with correlated measurement noises. Based on this method, using 
the classical Kalman filtering, this study proposed a Covariance Intersection (CI) fusion Kalman estimator, which 
can handle the fused filtering, prediction and smoothing problems. The advantage of the proposed method is that it 
can avoid the computation of the cross-covariances among the local filtering errors and can reduce the 
computational burden significantly, as well as the CI fusion algorithm can be used in the uncertain system with 
unknown cross-covariances. Based on classical Kalman filtering theory, the centralized fusion and three weighted 
fusion (weighted by matrices, scalars and diagonal) estimators are also presented respectively. Their accuracy 
comparisons are given. The geometric interpretations based on covariance ellipses are also given. The experiment 
results show that the accuracy of the CI fuser is higher than that of the each local smoothers and is lower that that of 
the centralized fusion Kalman smoother or the optimal fuser weighted by matrix. The MSE curves show that the 
accuracy of the CI fuser is close to the optimal fuser weighted by matrix in most instances, which means that our 
proposed method has higher accuracy and good performance. 
 
Keywords: Covariance intersection fusion, colored measurement noises, the centralized fusion, weighted fusion  

 
INTRODUCTION 

 
Multisensor information fusion filtering has been 

widely applied to many fields, including guidance, 
navigation, GPS positioning and so on. Now the 
commonly used method of information fusion is 
centralized and distributed fusion Kalman methods. The 
centralized fusion Kalman filters can give the globally 
optimal state estimation by directly combing all the 
local measurement equations, but the computation 
burden is larger. Distributed fusion Kalman filters are 
given by three weighted fusion algorithms with the 
matrix weights, scalar weights or diagonal matrix 
weights (Deng  et  al.,  2005;  Sun  et  al., 2010; Deng 
et al., 2012). Compared with the centralized fuser, the 
weighted fuser can reduce the calculation burden, but 
they are globally suboptimal. 

The above weighting fusion filters require to 
calculate the cross-covariances of local filtering errors. 
However, in many theoretical and application problems, 
the cross-covariance is unknown, or the computation of 
the cross-covariances is very complicated (Sun et al., 
2010).  

In order to overcome the above drawback and 
limitation, the covariance intersection fusion Kalman 
method is presented in Julier and Uhlman (1997, 2009), 
which can avoid computing local cross-covariance and 
can solve the fused filtering problems for multi-sensor 

systems with unknown cross-covariance. The accuracy 
comparison in Deng et al. (2012) is given only for 
systems with uncorrelated white measurement noises. 
In this study, a Covariance Intersection (CI) fusion 
Kalman estimator is presented for multi-sensor system 
with colored measurement noises, whose accuracy is 
higher than that of each local Kalman estimator and is 
lower than that of the centralized fusion estimator or the 
optimal Kalman fuser weighted by matrices and the 
accuracy comparison is given. 

 
PROBLEM FORMULATION 

 
Consider a multi-sensor tracking system with 

colored measurement noises: 
 

( ) ( ) ( )1x t x t w tΦ Γ+ = +                                          (1) 

 

( ) ( ) ( )i i i
z t H x t tη= + , 1,2 ,i L= L                            (2) 

 

( ) ( ) ( )1i i i it P t tη η ξ+ = + , 1, 2 ,i L= L                   (3) 

 

where,  

t  =  The discrete time 

x (t) ∈ R
n
  =   The state 

zi (t)∈ ���   =  The measurement of the thi sensor 
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w(t) ∈ ��, ξi(t) ∈ ���  =  White noises with zero mean 
and variance Q and Qξi, 
respectively 

ηi (t) ∈ ���   = The   colored   measurement 

noise of the thi sensor 

Φ, Γ, �	
, �
   = The   known   appropriate 
dimension constant matrices 

 
From Eq. (2) introducing the observation 

transformation: 
  

( ) ( ) ( )1i i i iy t z t P z t= + −                     (4) 

 
we have the new measurement equation: 
 

( ) ( ) ( )i i i
y t H x t v t= +                  (5) 

 

i i i iH H PHΦ= −                     (6) 

 

( ) ( ) ( )i i iv t H w t tΓ ξ= +                  (7) 

 
From (7) we easily obtain w(t) and vi(t) are 

correlated noise with zeros mean and variance: 
  

T T

i i i iR H Q H QξΓ Γ= +                  (8) 

 

( ) ( )T T TEij i j i jR v t v t H Q HΓ Γ = = 
                             (9) 

 

( ) ( )T T TE ii iS w t t Q Hv Γ  = =                      (10) 

 
where, E is the mathematical expectation operator and 
the superscript T denotes the transpose. 

Based on the observation transformation, the 
system with colored noises (1)-(3) is transformed into 
the system with correlated measurement noises (1) and 
(5). The aim is to find the local, centralized fusion, 

three weighted fusion and CI fusion smoothers �
(�|� +
�) i = 1, 2, …, L, c, m, s, d, CI, N>0. And compare 
their accuracies.  
 
The local steady-state kalman filters: Assume that the 
system (1) and (5) is completely observable and 
completely stable, then the local steady-state Kalman 

filter of the thi sensor is given as: 

 

( ) ( ) ( )
( )

ˆ ˆ1 | 1 |

1

ii f i n fi i i i

fi i

x t t x t t J y t

y t

Ψ Ι Κ Η

Κ

 + + = + − 

+ +
       (11) 

 

fi n fi i iI K HΨ Φ = −  , 
i i iJΦ Φ Η= −                            (12) 

 
1

i i i
J S RΓ −= , ( ) 1

T T

fi i i i i i iK H H H RΣ Σ
−

= +                  (13) 

 

where, ∑i is the one-step predicting error variance and 

satisfies the steady-state Riccati equation: 

( )
( )

1
T T T

1 T T

i i i i i i i i i i i i

i i i

H H H R H

Q S R S

Σ Φ Σ Σ Σ Σ Φ

Γ Γ

−

−

 = − +  

+ −

             (14) 

 
The local filtering error variances are given as: 

 

( )0 , 1, 2 ,i n fi i iP I K H i LΣ = − =  L                            (15) 

 
and the local filtering error cross-covariance satisfies 
the Lyapunov equation: 
 

( ) ( ) T0 0
ij fi ij fj fij

P PΨ Ψ ∆= + , , 1, ,i j L= L , i j≠         (16) 

 
T

T T T

T T

T T T T

T
T T

fij fi fi ij j i n fj j

n fi i i ij j fj fj

n fi i i i j j

i ij j n j j fi ij fj

R J S

J R S K

Q J S S J

J R J I K H K R K

∆ Ψ Κ Γ Ι Κ Η

Ι Κ Η Γ Ψ

Ι Κ Η Γ Γ Γ Γ

   = − −  

   + − −   

 + − − −  

  + × − + 

             (17) 

 
The local steady-state kalman predictors: For multi-
sensor system (1) and (5), the local steady-state Kalman 

one-step predictor of the thi  sensor is given as: 

 

( ) ( ) ( )ˆ ˆ1 | | 1i pi pi ix t t x t t K y tΨ+ = − +                  (18) 

 

pi pi iΨ Φ Κ Η= − , ( )T 1

pi i i i i
K H S QξΦΣ Γ −= +            (19) 

 
Τ

i i i i iQ Rε Η Σ Η= +                            (20) 

 
The local one-step predictor error variances are 

computed by Eq. (14) 
The local one-step predictor error cross-covariance 

satisfies the Lyapunov equation: 
 

T

ij pi ij pj pijΣ Ψ Σ Ψ ∆= + ,  , 1, ,i j L= L , i j≠               (21) 

 
T

T T

j

pij pi

i ij pj

Q S

S R

Γ
∆ Γ Κ

Κ

  
 = −     −    

             (22) 

 

and the N-step predictor of the thi sensor is: 

 

( ) ( )1ˆ ˆ| 1 | , 2
N

i ix t t N x t N t N NΦ − −+ = + + + ≤ −        (23) 

 

The N-step predictor error variances and cross-

covariance are given as the following formula: 

 

( ) ( ) ( )
2

T T
1 1 T

0

N
N N k k

i i

k

N QΡ Φ Σ Φ Φ Γ Γ Φ
− −

− − − −

=

= + ∑ ， 2N ≤ −     (24) 

 

( ) ( ) ( )
2

T T
1 1 T

0

N
N N k k

ij ij

k

N QΡ Φ Σ Φ Φ Γ Γ Φ
− −

− − − −

=

= + ∑ , N≤ −2       (25) 

 
where the ∑i and ∑ij are the one-step error variances 
and cross-covariance which are obtained by the Eq. 
(14) and (21). 
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The local steady-state kalman smoothers: For multi-

sensor system (1) and (5), the local steady-state Kalman 

N-step smoother of the thi  sensor is given as: 

 

( ) ( ) ( ) ( )
0

ˆ ˆ| | 1 , 0
N

i i i i

k

x t t N x t t k t k NΚ ε
=

+ = − + + >∑ , 1,2 ,i L= L                            

                                                        (26) 

 

( ) Τ Τ 1
, 0, ,

k

i i pi i ik Q k NεΚ ΣΨ Η −= = L                         (27) 

 

where, we define that Ψ�
�� =  �Ψ�
� ��, ∑i 
is the one-step 

predicting error variance and �
(�|� − 1�) is the local 

steady-state one-step predictor. 

N -step error variance matrix and error cross-

covariance of smother are obtained by: 

 

( ) ( ) ( )T

0

N

i i i i i

k

N k Q kεΡ Σ Κ Κ
=

= −∑  , 0N >                (28) 

 

( ) ( ) ( )

( ) ( ) ( )

T Τ Τ

0 0

Τ

0 0

, , 0

N N
r s

ij ij i i pi ij ij pj j j

r s

N N

i ij j

r s

N r s

r r s s N

Ρ Σ Κ Η Ψ Σ Σ Ψ Η Κ

Κ Ε Κ

= =

= =

= − −

+ >

∑ ∑

∑∑

      (29) 

 

where, ∑ij 
is the one-step predicting error cross-

covariance and Eij (r, s) = E�� (� + !)�"�(� + #)$ . 
when min (r, s)>0, we have: 

 

( )
( )

( )

min ,

Τ Τ

1

T

Τ Τ

T T

,

r s

r s r k

ij i pi ij pj j i pi pi

k

j s k

pj j ij rs

i ij pj

r s

Q S
R

S R

Ε Η Ψ Σ Ψ Η Η Ψ Γ Κ

Γ
Ψ Η δ

Κ

−

=

−

 = + − 

  
× +   −    

∑
       (30) 

 

when min (r, s) = 0: 

 

( ) Τ0,0
ij i ij j ij

RΕ Η Σ Η= +                             (31) 

 

( ) Τ 1,0 r r

ij i pi ij j i pi j pi ij
r S RΕ Η Ψ Σ Η Η Ψ Γ Κ−  = + −         (32) 

 

( ) ( )T 1Τ Τ T T T T0,
ss

ij i ij pj j i ij pj pj j
s S RΕ Η Σ Ψ Η Γ Κ Ψ Η− = + −          (33) 

 

The centralized fusion steady-state kalman 

estimators: Introducing the augmented measurement 

equation: 

 

( ) ( ) ( )c c c
y t H x t v t= +                 (34) 

 

with the definitions: 

 

( ) ( ) ( )
T

T T

1 , ,c Ly t y t y t =  L                             (35) 

 
T

T T

1
, ,

c L
H H H =  L                                  (36) 

 

( ) ( ) ( )
T

T T

1
, ,

c L
v t v t v t =  L               (37) 

 
For the system (1) and (34), the centralized fusion 

steady-state Kalman filter is given as:  
 

( ) ( ) ( )
( )

ˆ ˆ1 | 1 |

1

c fc c n fc c c c

fc c

x t t x t t J y t

y t

Ψ Ι Κ Η

Κ

 + + = + − 

+ +
          (38) 

 

fc n fc c c
Ψ Ι Κ Η Φ = −  ,

c c c
JΦ Φ Η= −                     (39) 

 
1

c c c
J S RΓ −= ,

1
T T

fc c c c c c cRΚ Σ Η Η Σ Η
−

 = +                   (40) 

 

1 1

1

L

c

L L

R R

R

R R

 
 =  
  

L

M O M

L

, [ ]1 , ,c LS S S= L                            (41) 

 
where,  ∑c 

satisfies the steady-state Riccati equation: 
 

( )
( )

1
T T T

1 T T

c c c c c c c c c c c c

c c c

H H H R H

Q S R S

Σ Φ Σ Σ Σ Σ Φ

Γ Γ

−

−

 = − +  

+ −

           (42) 

 
The centralized fusion error variance is given by: 

 

( ) [ ]0
c n c c c

P KΙ Η Σ= −                                            (43) 

 
For the system (1) and (34), the centralized fusion 

steady-state Kalman N-step predictor is given as: 
  

( ) ( )1ˆ ˆ| 1 |N

c c
x t t N x t N t NΦ − −+ = + + + , 2N ≤ −        (44) 

 

pc c pc cK HΨ Φ= − ,
pc c fc

K Φ Κ=                 (45) 

 

( ) ( ) ( )
2

T T
1 1 T

0

N
N N k k

c c

k

N QΡ Φ Σ Φ Φ Γ Γ Φ
− −

− − − −

=

= + ∑ , 2N ≤ −      (46) 

 
For the system (1) and (34), the centralized fusion 

steady-state Kalman smoother is given as: 
  

( ) ( ) ( ) ( )
0

ˆ ˆ| | 1 , 0
N

c c c c

k

x t t N x t t k t k NΚ ε
=

+ = − + + >∑          (47) 

 

( ) Τ Τ 1
, 0, ,

k

c c pc c ck Q k NεΚ Σ Ψ Η −= = L                         (48) 

 

pc pc c
Ψ Φ Κ Η= −                   (49) 

 

( )T 1

pc c c c c
K H S QξΦΣ Γ −= +                 (50) 

 

 Τ

c c c c c
Q Rε Η Σ Η= +                           (51) 

 

1 1

1

L

c

L L

R R

R

R R

 
 =  
  

L

M O M

L

, [ ]1
, ,

c L
S S S= L                           (52) 
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where, �%(�|� − 1�) is the certralized fusion steady-state 

one step predictor: 

 

( ) ( ) ( )ˆ ˆ| 1 1| 2 1
c pc c pc c

x t t x t t K y tΨ− = − − + −               (53) 

 

The fused error variance is given by:   

 

( ) ( ) ( )T

0

N

c c c c c

k

N k Q kεΡ Σ Κ Κ
=

= −∑                                   (54) 

 

The three weighted fusion steady-state kalman 

estimators: When the local smoothing error variance 

Pi(N) (i = 1, …, L) and cross-covariances Pij(N) (i≠j) 

are exactly known, the three weighted fusion steady-

state Kalman estimators are given as follows: 

The optimal fusion estimator weighted by matrices 

is: 

  

( ) ( )
1

ˆ ˆ| |
L

m i i

i

x t t N x t t NΩ
=

+ = +∑ , 0, 0, 0N N N= < >           (55) 

 

with the constraints ∑ Ω
'
( =  )*. 

The optimal matrix weights are given by: 

 

( ) 1
T 1 T 1

1 , , L e P e e PΩ Ω
−− −  = L                                (56) 

 

where, e
T
 = [In, …, In],P = (Pij (N))nL×Ln

 
the optimal 

fused error variance matrix is: 

  

( ) ( ) 1
T 1

m
P N e P e

−−=                     (57) 

 

The optimal fusion smoother weighted by scalars is: 

  

( ) ( )
1

ˆ ˆ| |
L

s i i

i

x t t N x t t Nω
=

+ = +∑                   (58) 

 

with the constraints ∑ +
 = 1'
( . 

The optimal scalar weights are given by: 

  

[ ] ( ) 1
T 1 T 1

1 tr tr, L e P e e Pω ω
−− −=L                    (59) 

 

where, the symbol tr denotes the trace of matrix and e
T
 

= [1, …, 1], Ptr = (trPij (N))L×L. 

The optimal fused error variance is given as: 

 

( ) ( )
1 1

L L

s i j ij

i j

P N P Nω ω
= =

= ∑∑                                    (60) 

 

The optimal fusion smoother weighted by diagonal 

matrix is: 

  

 ( ) ( )
1

ˆ ˆ| |
L

d i i

i

x t t N A x t t N
=

+ = +∑                                 (61) 

 

with the constraints: 

( )1 , ,i i inA diag a a= L ，
1

1, 1, ,
L

ij

i

a j n
=

= =∑ L          (62) 

 

The optimal diagonal matrix weights are given by: 

 

( ) ( )
1

1 1
T T

1 , , ii

j Lj

iie P e Pa ea
−− − =  




 L                      (63) 

 

where e
T
 = [1, …, 1], P

ii
 = ( )ii ii

sk L L
P P

×
= , , 1, ,s k L= L , 

ii

skP  is the ( ),i i diagonal element of skP  and the fused 

error variance is given by: 

 

( ) ( ) T

1 1

L L

d i ij j

i j

P N A P N A
= =

= ∑∑                  (64) 

 

The Covariance Intersection (CI) fusion steady-state 

kalman smoother: When the local smoothing error 

variance ( )1, ,iP i L= L  are exactly known, but the 

cross-covariances ( ),ijP i j≠ are unknown, using the CI 

fusion algorithm ,the CI fusion Kalman smoother 

without cross-covariances is presented as follows: 

 

( ) ( ) ( ) ( )1

1

ˆ ˆ| |
L

CI CI i i i

i

x t t N P N P N x t t Nω −

=

+ = +∑
 

            (65) 

 

( ) ( )
1

1

1

L

CI i i

i

P N P Nω
−

−

=

 
=  

 
∑                    (66) 

 

with the constraints ∑ +
 = 1,'
(  +
 ≥ 0, where, the 

optimal weighted coefficients +
(1, … , /) are 

determined by minimizing the performance index such 

that: 

  

( )
[ ]

( )
1

1

1

0,1
1

1

min tr min tr
i i

L

L

CI i i

i

P N P N
ω ω

ω ω

ω
−

−

∈
=+ + =

   
=   

   
∑

L

           (67) 

 

This is a nonlinear optimization problem with 

constraints in Euclidean space
LR , it can be solved by 

“fmincon” function in MATLAB toolbox. 

The cross-covariances can be obtained by the local 

steady-state Kalman smoothing formula (29), so the 

actual fused error variance ( )CIP N is given by: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T

1 1

1 1

E | |CI CI CI

L L

CI i i ij j j CI

i j

P N x t t N x t t N

P N P N P N P N P Nω ω− −

= =

 = + + 

 
=  

 
∑∑

% %

        (68) 

 

Form Eq. (66) the PCI (N) only depend on the local 

error variance Pi (i = 1, …, L), but is independent on 

cross-covariances Pij, (i ≠ j). Form (68) the actual error 

variance �012(�) not only depend on the local error 
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variance Pi(i = 1, …, L) but also dependent on cross-

covariances Pij, (i ≠ j). So PCI (N) is the common upper 

bound of the actual fused error variance. 

 

The accuracy comparison of local and fused kalman 

smoothers: For the multi-sensor system (1)and (5)with 

exactly known local error variances Pi(i = 1, …, L) and 

cross-covariance Pij, (i ≠ j), the accuracy relations based 

on error covariance matrix and their trace are given as: 

 

( ) ( ) ( ) ( ) ( )tr tr tr tr trc m d s iP N P N P N P N P N≤ ≤ ≤ ≤        (69) 

 

( ) ( ) ( ) ( ) ( )tr tr tr tr trc m CI CI iP N P N P N P N P N≤ ≤ ≤ ≤         (70) 

 

( ) ( ) ( ) ( )c m CI CIP N P N P N P N≤ ≤ ≤                       (71) 

 

( ) ( ) ( ) ( ),
m d m s

P N P N P N P N≤ ≤ , ( ) ( )m i
P N P N≤      (72) 

 

where, the matrix inequality A≤B means that B−A≥0 is 

positive semi-definite. 

 

Remark1: the accuracy of the local and fused 

smoothers is defined as the trace of their error 

variances, the smaller trace means higher accuracy and 

the larger trace means lower accuracy. 

 

SIMULATION RESULTS 

 

Consider the 3-sensor tracking system with colored 

measurement noises: 

 

( ) ( ) ( )1x t x t w tΦ Γ+ = +                                     (73) 

 

( ) ( ) ( )i i i
z t H x t tη= + , 1,2,3i =                               (74) 

 

( ) ( ) ( )1
i i i i

t P t tη η ξ+ = + , 1, 2,3i =                            (75) 

 

In the simulation, we take: 

T0 = 0.2, Φ =  31 T50 1 6 , Γ = 70.5:5":5
;, �	 = �1 0$, 

�	" 31 0
0 16, �	< = �1 0$, N = 0, −2, 2, P1 = 0.3, P2 = diag 

(0.16, 0.3), P3 = 0.4, t = 1, …, 300, Q = 1, Qζ1 = 1, Qζ2 

= diag (2, 0.15), Qζ1 = 0.49 

 

The accuracy comparison of the local, the 

centralized fuser, three weighted fusers and the CI fuser 

are compared in Table 1.  

Form Table 1, we see that the accuracy of the 

centralized fuser trPc(N) is the highest, the actual 

accuracy �!�012(�) is higher than the local smoothers, 

but lower than the optimal fusion smoother weighted by 

matrix trPm(N). The accuracy weighted by scalars 

trPs(N) is close to that weighted by diagonal matrix 

trPd(N)  and  both  of  them  are lower than the accuracy  

Table 1: The accuracy comparison of the local and fused Kalman 

smoothers 

trP1(−2)
 

trP2(−2)
  

trP3(−2)
 

trPc(−2)
 

trPm(−2)
 

0.83743 0.75414 0.64807 0.2902 0.31242 

trPd(−2)
 

trPs(−2)
 �!�012(−2) trPCI(−2)

 
 

0.35446 0.39103 0.41673 0.60245  

trP1(0)
 

trP2(0)
 

trP3(0)
 

trPc(0)
 

trPm(−2)
 

0.57428 0.61503 0.43132 0.18285 0.20153 

trPd(0)
 

trPs(0)
 �!�012(0) trPCI(−2)

 
 

0.21842 0.25805 0.2703 0.4048  

trP1(2)
 

trP2(2)
 

trP3(2)
 

trPc(−2)
 

trPm(2)
 

0.40457 0.54129 0.29834 0.13706 0.152 

trPd(0)
 

trPs(0)
 �!�012(0) trPCI(0)

 
 

0.1564 0.18525 0.20226 0.27976  

 

 
 

Fig. 1: The variance ellipses of filters 

 

 
 

Fig. 2: The variance ellipses of predictors 

 

weighted by matrix. Table 1 verifies the accuracy 

relations (69) and (70). 

In order to give a geometric interpretation of the 

accuracy relations, the variance ellipse is defined as the 

locus of points {x: x
T
P

−1
x = c}, where P is the variance 

matrix and c is a constant. Generally, we select c = 1. It 

has been proved in Deng et al. (2012) that P1≤P2 is 

equivalent to that the variance ellipse of 1P is enclosed 

in that of 2P .the accuracy comparison of the variance 

ellipses is shown in Fig. 1-3.  

Form Fig. 1-3, we see that the covariance ellipse of 

Pm(N) is enclosed in the ellipse of �012(�) and the 

ellipse of ( )CIP N is enclosed in that of PCI(N). The 

ellipse of Ps(N) and Pd(N) encloses the ellipse of Pm(N). 

the ellipse of Pc(N) is enclosed in all ellipses for Pi(N), i  
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Fig. 3: The variance ellipses of smoothers 

 

 
 

Fig. 4: The MSE curves of the local and fused filters 

 

 
 

Fig. 5: The MSE curves of the local and fused predictors 

 

= 1, 2, 3, Pθ(N), m, s, d, �012(�) and PCI(N), which 

verifies the correctness of matrix relations (71) and 

(72). 

 
 

Fig. 6: The MSE curves of local and fused smoothers 

 

In order to verify the above theoretical accuracy 

relations, the Mean Square Error (MSE) value at time t , 

ρ = 200
 

for local and fused Kalman smoothers is 

defined as: 

  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

Τ

1

1
ˆMSE |

ˆ | , 0, 2, 2

j j

i i

j

j j

i

t x t x t t N

x t x t t N N

ρ

ρ =

= − +

× − + = −

∑                           (76) 

 

�

(>)(�|� + �)� or x

(j)
(t) denotes the jth

 
realization of  

�

(>)(�|� + �)�or x(t). 

The MSE curves of the local and fused estimators 

are shown in Fig. 4-6.  

Form Fig. 4-6, we see that the MSEi(t) values of 

the local and fused Kalman estimators are close to the 

corresponding theoretical trace values, when t is large 

enough, according to the ergodicity of the sample 

function, we have: 

 

( ) ( )MSE tr , ,
i i

t P N tρ→ →∞ →∞ 1,2,3, , ,i m s d=            (77) 

 

( ) ( )MSE tr , ,
CI CI

t P N tρ→ → ∞ → ∞               (78) 

 

Form Fig4-6, we see that the accuracy relations 

(69) and (70) hold. 

 

CONCLUSION 

 

For the multi-sensor system with colored 

measurement noises, it converted into an equivalent 

system with correlated noises by the observation 

transformation. Based on the classical Kalman filtering, 

the CI fuser without cross-covariance has been 

presented. The centralized fusion Kalman filter and 

three weighted fusers have been also presented and the 

accuracy comparisons of these fusers were given by a 

Mote-Carlo simulation example. In this study, the CI 

fusion results of the Deng et al. (2012) have been 

extended to the case with colored measurement noises. 
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