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Abstract: In this study, a simple and accurate solution for the temperature distribution of convective-radiative 
straight rectangular fins with temperature-dependent thermal conductivity is presented using an analytical method 
called the Differential Transformation Method (DTM). The governing differential equation for the temperature 
distribution in present problem contains two nonlinear terms, one due to temperature-dependent thermal 
conductivity and the other due to surface radiation. Here, the concept of differential transformation method is briefly 
introduced and then it is used to derive solutions of highly nonlinear equation. The obtained results from DTM are 
compared with those from the numerical solution to verify the accuracy of the proposed method. The investigations 
reveal that the differential transformation method can achieve suitable results in predicting the solution of such 
strong nonlinear problem. After this verification, the effects of some physical applicable parameters in this problem 
such as convection-conduction parameter, thermal conductivity parameter and the radiation-conduction parameter 
on efficiency of the fin are presented and discussed. 
 
Keywords: Convection-conduction parameter, differential transformation method, fin efficiency, nonlinear heat 

transfer equation, radiation-conduction parameter, temperature-dependent thermal conductivity  

 
INTRODUCTION 

 
The fin assembly is commonly used to increase the 

rate of heat transfer from a hot primary surface. An 
array of rectangular fins has wildly used 
in industrial and engineering applications to enhance 
heat dissipation and better cooling of devices. The 
arrangement is most effective in a natural convection 
environment where the convection heat transfer 
coefficient is low. In this circumstance, the radiative 
component of heat loss from the fins is comparable to 
the natural convection heat loss. The fin heat transfer 
model must therefore include simultaneous surface 
convection and radiation. Furthermore, if the 
temperature change from the base to the tip of the fin is 
large, then for an accurate prediction of the 
performance of the fin, the model must also incorporate 
the variation of thermal conductivity with temperature. 
The differential equation for the temperature 
distribution in a convective-radiative fin with 
temperature-dependent thermal conductivity contains 
two nonlinear terms, one due to temperature-dependent 
thermal conductivity and the other due to surface 
radiation. Even with one nonlinear term, the equation 
does not admit an exact analytical solution. 

Consequently, the fin equation has been solved either 
numerically or using a variety of approximate analytical 
methods. Aziz and Enamul-Huq (1973) considered a 
pure convection fin with temperature-dependent 
thermal conductivity and developed a three term regular 
perturbation expansion in terms of the thermal 
conductivity parameter. The analysis was extended by 
Aziz (1977) to include a uniform internal heat 
generation in the fin. Arslanturk (2005) used the 
Adomian Decomposition Method (ADM) to obtain the 
temperature distribution in a pure convection fin with 
thermal conductivity varying linearly with temperature. 
The same problem was solved by Ganji (2006) and 
Ganji and Rajabi (2006) using the homotopy 
perturbation method originally proposed by He (1999). 
Coskun and Atay (2008) and Miansari et al. (2008) 
used the Variation Iteration Method (VIM) to analyze 
some nonlinear fin problems. Khani and Aziz (2010) 
considered a trapezoidal fin with both the thermal 
conductivity and the convection heat transfer 
coefficient varying as functions of temperature and 
reported an analytic solution generated using the 
Homotopy Analysis Method (HAM). Chowdhury and 
Hashim (2008) and Chowdhury et al. (2009) 
investigated a rectangular fin with power law surface 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(8): 1354-1359, 2013 

 

1355 

heat flux and made a comparative assessment of HAM, 
HPM and ADM. Other methods proposed for solving 
nonlinear fin problems include the Optimal Homotopy 
Asymptotic Method (OHAM) used by Marinca and 
Herisanu (2008) and the Generalized Approximation 
Method (GAM) advocated by Khan (2009). The 
problem of a convective-radiative fin with temperature-
dependent thermal conductivity, which is the focus of 
present work, was solved by Aziz and Benzies (1976) 
using a double series in two perturbation parameters, a 
thermal conductivity parameter εc and a radiation-
conduction parameter εr. They obtained the first six 
terms of the perturbation series. The same problem was 
solved by Chiu and Chen (2003) using ADM, as well as 
by Malekzadeh et al. (2006) utilizing the Differential 
Quadrature Element Method (DQEM). Recognizing the 
complexities and limitations of the approximate 
analytical procedures, Bouaziz et al. (2001) and Aziz 
and Beers-Green (2009) have opted in favor of a 
numerical approach to study nonlinear fin problems. 
Recently Bouaziz and Aziz (2010) have introduced a 
new concept called the Double Optimal Linearization 
(DOLM) to derive simple and accurate expressions for 
predicting the thermal performance of a convective-
radiative fin with temperature constant and dependent 
thermal conductivity. 

An accurate review of the most approximate 
methods used for solving present problem, like HPM, 
ADM and VIM cited in the foregoing paragraphs 
reveals that these methods give accurate predictions 
only when the nonlinearities are weak. The methods 
such as HPM, HAM, ADM and VIM, if routinely 
implemented, can sometimes lead to erroneous results. 
Furthermore, the methods like DOLM and HAM often 
involve a complex mathematical analysis. Finally, the 
approximate analytical methods do not lend themselves 
to easy use by designers and practicing engineers who 
prefer simpler yet accurate expressions to evaluate the 
temperature distribution in the fin and the fin 
efficiency. 

Our motivation in the present study is to 
investigate the temperature field of a convective- 
radiative fin with temperature dependent thermal 
conductivity using the DTM. We also intend to 
compare the results of simulation using the DTM with 
the results of simulation using the numerical method 
(shooting method, coupled with fourth-order Runge-
Kutta).  
 

PROBLEM STATEMENT AND 

MATHEMATICAL FORMULATION 

 
According to Fig. 1, consider a straight fin of 

rectangular profile area A, length L, constant thermal 
conductivity k0 and surface emissivity ε. The fin is 
attached to a primary surface at fixed temperature Tb 
and    loses    heat   by   simultaneous    convection   and 
radiation to the surrounding medium. The sink 
temperatures   for   convection   and  radiation  are   T∞  

 
 
Fig. 1: Geometry of a straight fin 

 
and Ts, respectively. The convective heat transfer 
coefficient h is assumed to be a constant. The heat loss 
from the tip of the fin compared with the top and 
bottom surfaces of the fin is taken to be negligible. 
Since the transverse Biot number should be small for 
the fin to be truly effective, the temperature variation in 
the transverse direction can be neglected. Thus heat 
conduction occurs only in the longitudinal direction.  
 

Governing equation: For the problem just described, 

the appropriate differential equation and the boundary 

conditions may be written as (Aziz and Benzies, 1976): 
 

   (1)  
 

                                          (2) 
 

where x is measured from the tip of the fin. For 

simplicity, the case of T∞ = Ts = 0 is treated. With the 

introduction of following dimensionless quantities: 
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Appling Eq. (3) to (1) and (2) gives:  
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               (5) 
 

Assuming that the thermal conductivity of the fin varies 

linearly with temperature, we have: 

 

                             (6) 

 

where, the constant β is a measure of the thermal 

conductivity variation with temperature. Equation (6) 

may be written in dimensionless form as: 
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where, εc = βTb. The governing differential equation in 
this case becomes (Aziz and Benzies, 1976): 
 

              (8) 
  
With the boundary conditions given by Eq. (5) for 
convective-radiative fin with temperature-dependent 
thermal conductivity. 
 
Fin efficiency: The heat transfer rate from the fin is 
found by using Newton's law of cooling: 
 

                 (9)  

  
The ratio of actual heat transfer from the fin 

surface to the other side while whole fin surface is at 
the same temperature is called the fin efficiency: 

 

    (10) 

 
ANALYTICAL APPROXIMATIONS  

BY MEANS OF DTM 
 

 The differential transformation method is an 
analytical method for a vast variety of differential 
equations including ODEs and PDEs (Zhou, 1986). 
This method uses polynomials form to approximate the 
exact solutions. We now take a brief review to the 
DTM. The differential transform of the k

th
 derivative of 

function f (t) is defined as follows (Zhou, 1986): 
 

               (11) 

  
where,  
f (t) : The base function  
F (k) : The transformed function  
 
The differential inverse transform of F (k) is defined as: 
 

               (12) 

  
Equation (11) and (12) give the following: 
 

              (13) 

 
This shows that differential transform is derived from 
Taylor series expansion, but the method does not 
evaluate the derivatives symbolically. However, 
relative derivatives are calculated by an iterative way 
which is described by the transformed equations of the 
base function. We approximate f (t) by a finite series 
and Eq. (12) can be written as: 

                (14) 

 

The main steps of the DTM are the following. 

First, we apply the differential transform (11) to the 

given differential equation or a system of differential 

equations to obtain a recursive relation. Second, solving 

the recursive relation and then using the differential 

inverse transform (12) we obtain the solution of the 

problem. 

Using Eq. (11) and (12) the following theorems can 

be deduced as follow: 

 

• Theorem 1: If u (t) = x (t) ±y (t) then U (k) = X (k) ±�(�) 

• Theorem 2: If u (t) = αx (t), then U (k) = αX (k), 

where α is a constant   

• Theorem 3: If u (t) = (d
m

x (t)) /dt
m
, then U (k) = 

((m + k)!) /k! X (k + m)  

• Theorem 4: If u (t) = x (t) y (t), then " (�) = ∑ � ($) � (� − $)��  

• Theorem 5: If u (t) = t
n
, then " (�) =

& (� − ');  & (� − ') = )1, �  = '0 �  ≠ '- 
 

Taking differential transform from Eq. (8) for 

convective-radiative fin with temperature dependent 

thermal conductivity: 
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The boundary condition, Eq. (5), is transformed into: 
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For example for εr = 0 and εc = 0, f (t) can be expressed 

as: 

 

f (t) = 0.886818883970074 + 0.110852360496259 

t
2
  + 0.002309424177005 t

4
 + 0.000019245201475 

t
6
 + … 

 

for N = 0.5, εr = 0 and εc = 0.4: 
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Fig. 2: The influence of convection-conduction parameter N 

on the temperature distribution in a convective-

radiative  fin  of constant thermal conductivity, when 

εr = 0.2 

 

 
 
Fig. 3: The influence of convection-conduction parameter N 

on the temperature distribution in a convective-

radiative fin of constant thermal  conductivity,  when 

εr = 0.4 

 

Numerical simulation: The shooting method works by 

considering the boundary conditions as a multivariate 

function of initial conditions at some point, reducing 

the boundary value problem to finding the initial 

conditions that give a root. The advantage of the 

shooting method is that it takes advantage of the speed 

and adaptively of methods for initial value problems. 

The basic concept of the shooting method can be 

obtained from Roberts and Shipman (1972). In this 

study the shooting method, coupled with the fourth-

order Runge-Kutta scheme is used for solving the 

temperature field of convective-radiative fin.  

 

RESULTS AND DISCUSSION 

 

In this section the effects of physical parameters 

including thermal conductivity parameter (εc), 

radiation-conduction parameter (εr) and convection-

conduction parameter (N) on temperature distribution 

and fin efficiency will be presented. Figure 2 shows the 

temperature distributions in the fin obtained for the 

radiation-conduction parameter εr = 0.2. The curves for  

 
 

Fig. 4: The influence of convection-conduction parameter N 

on the temperature distribution in a convective-

radiative  fin  of constant thermal conductivity, when 

εr = 0.6 

 

 
 
Fig. 5: The influence of temperature-dependent thermal 

conductivity εc on the temperature distribution, when 

N = 0.5 and εr = 0.2 

 

different values of convection-conduction parameter N 

show that DTM and the numerical results are 

completely coincident. The same accuracy can be 

observed for εr = 0.4 and εr = 0.6 in Fig. 3 and 4, 

respectively. It can be seen from Fig. 2 to 4 that for a 

certain value of convection-conduction parameter (N), 

global behavior of curves are repeated, in other words 

general behavior of curves for different values of εr are 

the same. According to Fig. 2 to 4 by increasing the 

convective heat transfer coefficient h, proportional to 

the conductive heat transfer coefficient k0, temperature 

field become more uniform and its value become closer 

to the base temperature Tb of the fin. Within the same 

procedure as Fig. 2 to 4 repeated for Fig. 5 to 7 where 

in which the effects of physical parameters on 

temperature field for the convective-radiative fin with 

temperature dependent thermal conductivity are shown. 

As seen in these figures, although the nonlinearity of 

the problem increases, still accuracy of the results 

obtained by DTM is noticeable. Figure 8 shows the fin 

efficiency as a function of the convection-conduction 

parameter (N), for different values of the thermal 

conductivity parameter (εc) in certain value of radiation 

conduction    parameter    (εr    =   0.4).     As   expected  
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Fig. 6: The influence of radiation-conduction parameter εr on 

the temperature distribution in a convective-radiative 

fin of temperature-dependent thermal conductivity, 

when N = 1 and εc = 0.4 

 

 
 
Fig. 7: The influence of convection-conduction parameter N 

on the temperature distribution in a convective-

radiative fin of temperature-dependent thermal 

conductivity, when εr = 0.4 and εc = 0.4 

 

 
 
Fig. 8: Variation of the fin efficiency with the convection-

conduction parameter (N) for different values of the 

thermal conductivity parameter εc, when εr = 0.4   

 

physically, increasing the value of thermal conductivity 

makes the convective-radiative fin more efficient. 

Furthermore by increasing the ratio of the convective 

heat transfer coefficient h, to the conductive heat 

transfer coefficient k0, temperature distribution of the 

fin become farther apart from the  fin  base  temperature 

 
 
Fig. 9: Variation of the fin efficiency with the convection-

conduction parameter (N) for different values of the 
radiation-conduction parameter εr, when εc = 0.4 

 

 
 
Fig. 10: Variation of the fin efficiency with the radiation-

conduction parameter εr for different values of the 
thermal conductivity parameter εc, when N = 0.5 

 

 
 
Fig. 11: Variation of the fin efficiency with the radiation-

conduction parameter εr for different values of the 
convection-conduction parameter N, when εc = 0.4 

 
Tb. Figure 9 presents the effects of the convection-
conduction parameter (N), on the fin efficiency for 
different values of εr for a certain value of εc. One of the 
more interesting points that can be seen from this figure 
is that for values greater than 1.5 of the convection-
conduction parameter (N), the fin efficiency is 
independent of the radiation-conduction fin parameter 
(εr). It means that for values greater than a certain value 
of N, the effects of radiation heat transfer mechanism 
for the fin can be negligible. Figure 10 shows the 
effects of radiation-conduction fin parameter (εr) and 
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thermal conductivity fin parameter (εc) on the fin 
efficiency. Figure 11 presents some interesting physical 
properties of heat transfer for a fin. In this figure 
variation of the fin efficiency with (εr) and N plotted. It 
can be seen that for N = 1.5, fin efficiency is 
approximately independent of (εr). But by decreasing N, 
the rate of decreasing of the fin efficiency becomes 
more apparent.  

 
CONCLUSION 

 
In this study, the Differential Transformation 

Method (DTM) has been applied to solve nonlinear 
differential equation arising in radiative-convective 
straight fins with temperature-dependent thermal 
conductivity problem. Comparison results obtained by 
DTM with those of numerical solution by shooting 
method, coupled with the fourth-order Runge-Kutta 
scheme, showed efficiency of this method to solve 
strong nonlinear equations. Finally, the effects of 
physical parameter for a radiative-convective straight 
fin were discussed. The results showed that for certain 
value of thermal conductivity parameter, decreasing the 
convection-conduction parameter, lead to increase the 
effects of radiation heat transfer mechanism on fin 
efficiency. Furthermore for fixed value of convection-
conduction parameter, uniform variation of the fin 
efficiently could be observed with the radiation-
conduction parameter. 
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