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Decay of Temperature Fluctuations in Dusty Fluid Homogeneous Turbulence Prior 
to The Final Period 
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Abstract: Using Deissler’s method we have studied the decay of temperature fluctuations in dusty fluid 
homogeneous turbulence before the final period and have considered correlations between fluctuating quantities at 
two- and three- point. The equations for two and three point correlation in presence of dust particles is obtained and 
the set of equations is made to determinate by neglecting the forth order correlation in comparison to the second and 
third order correlations. For solving the correlation equations are converted to spectral form by taking their Fourier 
transform. Finally integrating the energy spectrum over all wave numbers, the energy decay law of temperature 
fluctuations in homogeneous turbulence before the final period in presence of dust particle is obtained. 
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INTRODUCTION 

 
Interest in motion of dusty viscous fluid has 

developed rapidly in recent years. Such situations occur 
in movement of dust-laden air, in problems of 
fluidization, in the use of dust in gas cooling system 
and in sedimentation problem in tidal rivers.  

Taylor (1935) has been pointed out that the 
equation of motion of turbulence relates the pressure 
gradient and the acceleration of the fluid particles and 
the mean-square acceleration can be determined from 
the observation of the diffusion of marked fluid 
particles. The behavior of dust particles in a turbulent 
flow depends on the concentration of the particles and 
the size of the particles with respect to the scale of 
turbulent fluid. Saffman (1962) derived an equation that 
describes the motion of a fluid containing small dust 
particle, which is applicable to laminar flows as well as 
turbulent flow. Kishore and Sarker (1990) studied the 
rate of change of vorticity covariance in MHD turbulent 
flow of dusty incompressible fluid. Also Rahman 
(2010) studied the Rate of change of vorticity 
covariance in MHD turbulent flow of dusty fluid in a 
rotating system. Kishore and Sinha (1988) also studied 
the rate of change of vorticity covariance of dusty fluid 
turbulence. Corrsin (1951b) had made an analytical 
attack on the problem of turbulent temperature 
fluctuations using the approaches employed in the 
statistical theory of turbulence. His results pertain to the 
final period of decay and for the case of appreciable 
convective effects, to the “energy” spectral from in 
specific wave- number ranges.  

Deissler (1958, 1960) developed a theory for 
homogeneous turbulence, which was valid for times 
before the final period. Following Deissler’s theory 

Loeffler et al. (1961) studied the decay of temperature 
fluctuations in homogeneous turbulence before the final 
period. Sarker and Azad (2006), Azad and Sarker 
(2006, 2008, 2009) and Azad et al. (2006),  also studied 
the decay of temperature fluctuations in homogeneous 
and MHD dusty fluid turbulence. Azad et al. (2012) 
studied transport equatoin for the joint distribution 
function of velocity, temperature and concentration in 
convective tubulent flow in presence of dust particles. 
Bkar et al. (2012) considered first-order reactant in 
homogeneou dusty fluid turbulence prior to the ultimate 
phase of decay for four-point correlation in a rotating 
system. Molla et al. (2012) studied the decay of 
temperature fluctuation in homogeneous turbulenc 
before  the  final  period  in a Rotating System. Sarker 
et al. (2012) measured Homogeneous dusty fluid 
turbulence in a first order reactant for the case of multi 
Point and multi time prior to the final period of decay.  

They had considered dust particles and Coriolis 

force in their won works. In their study, they considered 

two- and three -point correlations and neglecting 

fourth- and higher-order correlation terms compared to 

the second- and third-order correlation terms. Sinha 

(1988) had considered the effect of dust particles on the 

acceleration of ordinary turbulence. Kishore and Singh 

(1984) had studied the statistical theory of decay 

process of homogeneous hydro- magnetic turbulence. 

Dixit and Upadhyay (1989a) also had deliberated the 

effect of coriolis force on acceleration covariance in 

MHD turbulent dusty flow with rotational symmetry. 

Kishore and Golsefied (1988) considered the effect of 

Coriolis force on acceleration covariance in MHD 

turbulent flow of a dusty incompressible fluid. They 

had also considered dust particle in their won study.  
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In the present study, by analyzing the above 
theories we have studied the decay of temperature 
fluctuations in homogeneous turbulence prior to the 
final period in presence of dust particle considering the 
correlations between fluctuating quantities at two- and 
three- point and single time. In solving the problem, it 
seems logical to use the approach which has already 
been employed with success for studying turbulence. In 
this study, Deissler’s method is used to solving the 
problem. Through the study we have obtained the 
energy decay law of temperature fluctuations in 
homogeneous dusty fluid turbulence prior to the final 
period. In this result, it is shown that the energy decays 
more rapidly than clean fluid.  
 
CORRELATION AND SPECTRAL EQUATIONS 
 

For an incompressible fluid with constant 
properties and for negligible frictional heating, the 
energy equation may be written at the point P: 
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where, 

��   =  Instantaneous values of temperature 
��� =  Instantaneous velocity 
ρ  =  Fluid density 
Cp  =  Heat capacity at constant pressure 
k  =  Thermal conductivity 
xi  =  Space co-ordinate 
t  =  Time 
 

Separate these instantaneous values into time 
average and fluctuating components as TTT +=

~
 and 

iii uuu +=~  Eq. (1) may be written  
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where, 
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From the case of homogeneity it follows that  

0=
∂
∂

ix

T  and in addition the usual assumption is made 

that �� is independent of time and that ;0=iu  
Thus Eq. 

(2) simplifies to: 
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where, ,
γ
ν

=Ρr
 Prandtl number, ν  = Kinematic 

Viscosity. 

Eq. (3) holds at the arbitrary point P. For the point 

P the corresponding equation can be written: 
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Multiplying Eq. (3) by T, Eq. (4) by T and taking 

time average and adding the two equations gives 
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The continuity equation is: 
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Substitution of Eq. (6) into (5) yields: 
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By use of a new independent variable: 
  

iii xxr −′=   i.e.,  
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This equation is converted into spectral form by 

use of the following three dimensional Fourier 
transforms:  
 

( ) ( ) ( )[ ] KdrKiKrTT ˆˆ.ˆexpˆˆ ∫
∞

∞−

′=′ ττ
                         (9)

 

 

( ) ( ) ( )[ ] ˆˆ.ˆexpˆˆ KdrKiKrTTu ii ∫
∞

∞−

′=′′ ττφ
                    (10)

 

 
And by interchanging P and p:  
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Substitution of Eq. (9-11b) into Eq. (8) leads to the 

spectral equation:  

 

 

                                                                            (12) 

 

Equation (12) is analogous to the two point spectral 

equation governing the decay of velocity fluctuations 

and therefore the quantity ττ′(k) may be interpreted as a 

temperature fluctuation “energy” contribution of 

thermal eddies of size 1/k. Eq. (12) expresses the time 

derivative of this “energy” as a function of the 

convective transfer to other wave numbers and the 

“dissipation” due to the action of thermal conductivity. 

The second term on the left hand side of Eq. (12) is the 

so called transfer to term while the term on the right 

hand side is “dissipation” term. 

  

Three points correlation and spectral equations: In 

order to obtain single time and three point correlation 

and spectral equation we consider three points Ρ′Ρ,  

and  Ρ ′′  with position vectors r̂  and r′ˆ are considered. 

 

 
 

For the two points Ρ′  and Ρ ′′ we can write a 

relation according to Eq. (7): 
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Eq. (13) multiplied through by u, the j-th velocity 

fluctuation component at point. Then the equation can 

be written in a rotating system at the point Ρ : 
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The momentum equation at point Ρ , in presence of 

dust particles: 
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Here, 

uj  =  Turbulent velocity component 

vj  =  Dust velocity component 

 

ρ
kN

f =  (Dimension of frequency) 

N, constant number density of dust particle 

Substituted Eq. (15) into Eq. (14) the result on 

taking time averages is:  
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Making use of the relations 
iiiiii xxrandxxr ′−′′=′−′=  

allows Eq. (16) can be written as:  
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Six-dimensional Fourier transforms for quantities 

this equation may be defined as: 
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Interchanging the points P' and P" shows that: 
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Using Eq. (18-20b) into Eq. (17) then the 

transformed equation can be written as: 

P′
P

P ′′

r̂

r ′ˆ



 

 

Res. J. Appl. Sci. Eng. Technol., 6(8): 1490-1496, 2013 

 

1493 

 
( )

( ) ( )

( ) ( )

( ) θθγθθα
ρ

θθββ

θθββ

θθβ
υ

νθθβ

′′′−′′′′++′′′

+′+′′′′′+−

=′′′






 −′Ρ++′Ρ+Ρ+

Ρ
+

∂

′′′∂

jjjij

iiijii

j
r

riirr

r

j

fkki

kkikki

f
p

kkkk
t

1

121 22

(21)

 

 
If the derivative with respect to x is taken of the 

momentum Eq. (16) for point P and taking time average 
the resulting equation is: 
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In terms of the displacement vectors randr ′ˆˆ  

this becomes: 
 

TT
rrrrrr

TTuu
rrrrrr

jjjjjj

ij

ijijij

′′′Ρ












∂∂
∂

+
∂′∂

∂
+

′∂′∂
∂

−=

′′′












∂∂
∂

+
∂′∂

∂
+

′∂′∂
∂

222

222

2
1

2

ρ
   (23)

 

 
Taking the Fourier transform of Eq. (23) and then 

solving for θθα ′′′  we get: 
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Eq. (24) can be used to eliminate θθα ′′′  from Eq. (21): 

 
Solution for times before the final period: To obtain 
the equation for final period of decay the third-order 
fluctuation terms are neglected compared to the second-
order terms. Analogously, it would be anticipated that 
for times before but sufficiently near to the final period 
the fourth-order fluctuation terms should be negligible 
in comparison with the third-order terms. If this 
assumption is made then Eq. (24) shows that the term 

θθα ′′′  associated with the pressure fluctuations, should 

also be neglected. Thus Eq. (21) simplifies to: 
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where, θθγθθβ ′′′=′′′
jjR and 1-R = S, R and S are 

arbitrary constant. 
Inner multiplication of Eq. (25) by k and 

integrating between t0 and t gives: 
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Now, letting 0=′r  in equation (18) and comparing 

the result with the equation (10) shows that  
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Substituting of Eq. (26) and (27) into Eq. (12), we 

obtain:  
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Now, ( )321
ˆ kdkdkdKd ′′′≡′  can be expressed in terms 

of ξandk ′  as (Deissler, 1958): 
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Substituting Eq. (29) into (28) yields:  
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In order to find the solutions completely and 

following Loeffler et al. (1961), we assume that: 
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where 0δ constant depending on the initial condition. 

The negative sign is placed in front of 0δ in order to 

make the transfer of energy from small to large wave 

no. for positive value of 0δ . Substituting Eq. (31) into 

Eq. (30):  
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Multiplying both sides of Eq. (32) by 2k  and 

defining the spectral energy function: 
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 and the resulting equation is:  
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Integrating Eq. (33a) w.r.toξ , we have:  
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Again integrating Eq. (33b) w.r.to k ′ we have 
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    (34) 
 

The Eq. (33) indicates that w must begin as 
4k for 

small k . The condition of w is fulfilled by the Eq. (34). 

It can be shown, using Eq. (34) that: 

 

∫
∞

=
0

0dkw

                                                          (35)

 

 

It was to be expected physically since w is a 

measure of the transfer of “energy” and the total energy 

transferred to all wave numbers must be zero. 

The necessity for Eq. (35) to hold can be shown as 

follows if Eq. (10) is written for both k and -k and 

resulting equations differentiated with respect to ir  and 

added, the result is, for: 
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Since according to the Eq. (32), (33) and (12),
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ˆˆ2 2 ττφττφπ ′−−′≡   so the Eq. (35) can 

be written as 
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The linear Eq. (33) can be solved for w as: 
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where, J(k)  is an arbitrary function of k. 

For large times, Corrsin (1951b) has shown the 

correct form of the expression for E to be: 
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where N0 is an constant which depends on the initial 
conditions. Using Eq. (37) to evaluate J(k) in Eq. (36) 

yields: 
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Now, substituting the values of w and J(k) as given 

by the Eq. (34) and (38) into Eq. (36) gives the 

equation. 
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where, 
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Putting 0ˆ =r  in Eq. (9) and we use the definition 

of E given by the equation (39), the result is:  
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Substituting Eq. (39) into (42) gives:  
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R is a function of Prandtl no. 
Eq. (43) is the decay law of temperature fluctuation 

in homogeneous turbulence in presence of dust particle 
prior to the ultimate period. The first term of the right 
side of Eq. (43) corresponds to the temperature energy 
for two-point correlation and the second terms 
represents the energy for the three -point correlation. 
This second term becomes negligible at large times 
leaving the final period decay law previously found by 

Corrsin (1951b). 
2T  is the total “energy” (the mean 

square of the temperature fluctuations).  
 

RESULTS AND DISCUSSION 
 

Loeffler et al. (1961) derived the following 
equation of the decay of temperature fluctuations in 
homogeneous turbulence before the final period: 
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In their study, they considered two- and three-point 

correlations and neglecting fourth- and higher-order 

correlation terms compared to the second- and third-

order correlation terms. 

Following Loeffler et al. (1961), Molla et al. 

(2012) studied the decay of temperature fluctuation in 

homogeneous turbulenc before the final period in a 

Rotating System and derivrd the following equation: 
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In their study they had considered corriolis force. 

In the present study, I have studied the decay of 

temperature fluctuations in homogeneous turbulence 

prior to the final period taking dust particle and 

considered the correlations between fluctuating 

quantities at two- and three- point and single time. In 

this study, I have used Deissler’s (1958) method to 

solving the problem. Through the study we have 

obtained the following energy decay law of temperature 

fluctuations in homogeneous dusty fluid turbulence 

prior to the final period. In this result, it is shown that 

the energy decays more rapidly than clean fluid.  
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In the absence of the dust particle, i.e. 0=f , then 

the Eq. (47) becomes 
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Same as Eq. (45) which was obtained earlier by 

Loeffler et al. (1961).  

Due to the effect of dust particle in homogeneous 

turbulence, the temperature energy decays more rapidly 

then the energy for clean fluid prior to the ultimate 

period. For large times, the second term in the Eq. (47) 
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becomes negligible leaving the -3/2 power decay law 

for the ultimate period.  
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