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Abstract: Traditional upper bound analyses for plane-strain compression leads to low load prediction values, for a 
large ratio range of contact Length (L) to thickness (h). These predicted load values are based on deformation fields 
consisted of rigid regions separated by planes upon which discrete shear occurs. In this study, the relatively simple 
deformation fields consisted of odd number of triangles such like, 1, 3 and 5, are used. A general minimum solution 
for this class of upper bounds is derived and found to occur when the base of the center triangle (w) [= 2L/ (n+1)], 
where n is an odd integer ≥3. Consequently, whether still lower values would occur with this class of field when the 
ratio(R), of the field triangles side lengths is varied, has been systematically investigated. Thus, the upper bound 
loads are calculated over a wide range of the ratio (R) and the deformation field parameters. These parameters 
include the thickness (h) the contact Length (L) and the base of the center triangle (w). It is found that, all the 
minimum load values occur at unity R ratio and the minimum values of h, L and w. The minimum values obtained 
for hopt, Lopt and wopt are 1.466, 3.266 and 2.0 units, respectively. Also, the corresponding overall minimum 
optimal upper bound value found is P/2k = 1.93. 
 
Keywords: Fields, metal forming, plane-strain compression, plasticity, upper bound method 

 
INTRODUCTION 

 
In metal forming, engineering plasticity, offers 

various methods recommended for predicting the loads 
needed to effect the shape change desired. These 
methods include the four distinct approaches namely: 
uniform work or energy; slab or equilibrium force 
balance; upper and lower bounds; slip line field. 

The calculation of the exact loads or forces to 
cause plastic flow of metals is often difficult, if not 
impossible. Exact solutions require that both stress 
equilibrium and a geometrically self-consistent pattern 
of flow are satisfied simultaneously everywhere 
throughout the deforming body and on its surface. 
Fortunately, limit theorems permit force calculations, 
which provide values that are known to be either lower 
or higher than the actual forces. These calculations 
provide lower or upper bounds. A lower-bound solution 
will give a load prediction that is less than or equal to 
the exact load needed to cause a body to experience full 
plastic deformation. Several texts (Johnson and Mellor, 
1973; Calladine, 1969) may be consulted for greater 
detail on lower bound However, in metal-forming 
operations, it is of greater interest to predict a force that 
will surely cause the body to deform plastically to 
produce the desired shape change. This can be achieved 
through the use of the upper bound approach. Actually, 
an upper-bound analysis predicts a load that is at least 

equal to or greater than the exact load needed to cause 
plastic flow. Upper-bound analyses focus upon 
satisfying a yield criterion and assuring that shape 
changes are geometrically self-consistent. Hence, to 
avoid time-consuming complexities in calculating the 
load that is at least large enough to cause plastic flow; it 
is often resorted to the upper bound approach. Johnson 
and Mellor (1973) discuss the use of the upper bound 
theorem in detail as it applies to plane strain operations 
while (Avitzur, 1968; Caddell and Hosford, 1980, 
1983) use an upper bound approach in analyzing a 
number of ax symmetric operations.  

Over the last few decades, since the early works on 
forming operations by Kudo (1960, 1961) and Rowe 
(1965), the upper bound method has been in use by a 
large number of investigators. Amongst those are: Fox 
and Lee (1989), Na and Cho (1989), Cho and Kim 
(1990), Mulki and Mizuno (1996), Kimura and Childs 
(1999), Pater (1999), Garmestani et al. (2001) and Chai 
(2003). Later more related works on the use of upper 
bound method in some tenacious patterns are reported, 
notably, the work of Bona (2004), Es-Saheb (2004) and 
Moller et al. (2004), as well as Ebrahimi and 
Najafizadeh (2004). Also, in the civil engineering field, 
the upper bound method is widely used in predicting 
and estimating the loads in the foundations and footings 
of different shapes, as reported in the last few years, by 
Zhu and Michalowski (2005), Merifield and Nguyen 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(5): 761-767, 2013 

 

762 

(2006), Gourvenec et al. (2006), Gourvenec (2007), 
Zhang (2008), Dean (2008) and Yilmaz and Bakir 
(2009) and most recently by Arabshahi et al. (2010), as 
well as Majidi et al. (2011) and Veiskarami et al. 
(2011). 

In this study, the effect of the deformation field 

geometry parameters on the upper bound load 

predictions for plane strain compression operation is 

investigated and presented. The deformation fields 

considered are the well-known fields, which consists of 

a number of triangles. Though, other deformation fields 

are suitable as long as they are kinematically 

admissible. Also, the parameters studied, include the 

number of triangles in the field of deformation 

involved, the contact Length (L), the thickness (h), the 

ratio of the triangles lengths (R) and the base length of 

the center triangle (w). Thus, the effect of these 

parameters on the derived general minimum upper 

bound solution occurrence and the corresponding 

triangles sides’ length ratio are systematically 

investigated. These issues have not been investigated 

before.  

However, for convenience and benefit completion, 

first, a brief description of the upper bound analysis, the 

energy dissipation on a plane of discrete shear and 

traditional upper bounds for plane strain compression 

will be presented in the next sections.  

 

UPPER-BOUND ANALYSIS 

 

The upper-bound theorem may be stated as flows: 

Any estimate of the collapse load of a structure made 

by equating the internal rate of energy dissipation to the 

rate at which external forces do work in some assumed 

pattern of deformation will be greater than or equal to 

the correct load. 

The bases of an upper-bound analysis can be 

summarized as follows: 

  

• An internal flow field is assumed and must account 

for the required shape change. As such, the field 

must be geometrically self-consistent  

• The energy consumed internally in this 

deformation field is calculated using the 

appropriate strength properties of the work material  

• The external forces (or stresses) are calculated by 

equating the external work with the internal energy 

consumption  

 

For a mathematical proof that such solutions 

predict loads equal to or greater than the exact load to 

cause plastic deformation, various sources (Johnson and 

Mellor, 1973) may be consulted. With such solutions, 

the assumed field can be checked for complete 

consistency by drawing a velocity vector diagram, 

which is commonly called a hodograph. 

In applying the upper-bound technique to 
metalworking operations, several simplifying 
assumptions are invoked:  

• The work material is isotropic and homogeneous 

• The effects of strain hardening and strain rate on 
flow stress are neglected 

• Either frictionless or constant shear stress 
conditions prevail at the tool work piece interface  

• Most of the cases considered will be those where 
the flow is 2 dimensional (plane strain), with all 
deformation occurring by shear on a few discrete 
planes. Elsewhere the material is considered to be 
rigid. If shear is assumed to occur on intersecting 
planes that are not orthogonal, these planes cannot 
in reality, be planes of maximum shear stress. 
Many such fields can be posed and the closer such 
a field is to the true flow field, the closer the upper-
bound prediction approaches the exact solution 

 

ENERGY DISSIPATION ON A PLANE OF 

DISCRETE SHEAR 
 

Figure 1a shows an element of rigid metal, ABCD, 
moving at unit velocity, V1 and having unit width into 
the study. AD is set parallel to yy'. As the element 
reaches the plane yy' it is forced to change direction, 
shape and velocity. Thus, to the right of yy' the element 
has the shape A'B'CD' and velocity V2, at an angle θ2 
to the horizontal. Fig. 1b is the hodograph; the absolute 
velocities on either side of yy' are V1 and V2 and they 
are drawn from the origin, O. Both V1 and V2 must 
have the horizontal component. Vx; otherwise, material 
approaching and leaving yy' would differ in volume; 
this would violate the concept of incompressibility. 

The velocity V*12 is the vector difference between 
V1 and V2 and is the velocity discontinuity along yy'. It 
is assumed that V*12 occurs along the line (or plane) 
yy'. 

The rate of energy dissipation on yy' must equal 
the work per volume times the volume per time 
crossing yy'. Because deformation is due to shear, the 
work per volume, w, equals the shear stress τ times the 
shear strain, γ. Here, τ must be the shear strength, k, of 
the metal and γ = dy/dx, thus: 

 w = k(dy/dx)                              (1) 
 
The volume crossing yy' in an increment of time, 

dt, is the length of line, S, along yy' times the depth of 
the plane perpendicular to yy' (unity) times Vx. Thus: 
 

vol/time = S  (1) Vx                (2) 
 
Combining Eq. (1) and (2) gives the rate at which 

work, W, is done to effect this shear deformation: 
 

 dW/dt = k(dy/dx) (SVx)               (3) 
 

Comparing Fig. 1a and b, dy/dx = V*12 / Vx so: 
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Fig. 1: (a) Basis for analysis of energy dissipation along a plane of intense shear discontinuity and (b) the hodograph
vector diagram 

 

Fig. 2: (a) A proposed upper-bound field and (b) the full hodograph for plane

(Caddell and Hosford, 1980) 

dW/dt = k S V*12   

     

For deformation fields involving more than one 

plane of discrete shear: 

 

dW/dt = Σ�
�  k Si V*i    

    

where, Si and V*i pertain to each individual plane.

Equation (5) is the form used in most problems 

involving upper bound calculations. It implies that an 
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(a) Basis for analysis of energy dissipation along a plane of intense shear discontinuity and (b) the hodograph

 
bound field and (b) the full hodograph for plane-strain compression with sticking friction, (n

 

             (4) 

deformation fields involving more than one 

              (5) 

where, Si and V*i pertain to each individual plane. 

Equation (5) is the form used in most problems 

involving upper bound calculations. It implies that an 

element deforms in a way that offers maximum plastic 

resistance. 

Most of the flow fields assumed in this study 

consist of a number of polygons, which are

rigid blocks. This means that the velocity of all the 

material inside a polygon is the same and is represented 

on the hodograph by the point that is common to the 

lines that bound the polygon on the proposed 

deformation field. The polygons are s

lines of velocity discontinuity and these discontinuities 

 
(a) Basis for analysis of energy dissipation along a plane of intense shear discontinuity and (b) the hodograph or velocity 

 

strain compression with sticking friction, (n = 1), 

element deforms in a way that offers maximum plastic 

Most of the flow fields assumed in this study 

gons, which are viewed as 

rigid blocks. This means that the velocity of all the 

material inside a polygon is the same and is represented 

on the hodograph by the point that is common to the 

lines that bound the polygon on the proposed 

deformation field. The polygons are separated by the 

tinuity and these discontinuities 
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as well as effects of boundary friction must be 

considered when summing the contributions to the total 

internal energy dissipation. 

 

TRADITIONAL UPPER BOUNDS FOR PLANE

STRAIN COMPRESSION

 
For plane-strain operations, as shown earlier, the 

usual approach to upper bounds is to imagine that all 

deformation occurs along discrete lines (actually planes 

in three dimensions). One such field for this problem is

shown in Fig. 2a, where the regions AOD and COB are 

dead-metal zones that move with the same velocity, 

VO, as the compression platens. Discrete shear occurs

on lines AO, BO, CO and DO and the corresponding 

hodograph is shown in Fig. 2b. With such a traditional 

upper bound, the rate of internal energy dissipation is k 

Σ IJ V*IJ where IJ are the lengths of the shear 

discontinuities in the physical space and V*IJ

velocity discontinuities. Equating the rate of external 

work to internal energy dissipation gives: 

 

2PLVo = 4k  AO V*AO                                   

 

Substituting AO = ½ (h
2 

+ L
2
)

1/2
 and V*

L
2
) 

½
 / h, the upper bound is: 

 

 P/ (2k) = ½ (h/L + L/h)  

 

For large values of L/h, better upper

solutions are obtained with fields consisting of more 

than one triangle along the work metal

the lowest solutions corresponding to an odd number 

(3, 5 . . .) of triangles. Only with an odd number is there 

a dead-metal cap in the center, which does not slide 

against the platens. Figure 3 shows the field consisting 

of three triangles and the corresponding hodograph, for 

the upper right quarter of the field. Thus, the general 

solution is: 

 

 P / (2k) = 3h/2L + L/2h + w2/2hL –

                    

where, w is the base of the center triangle. The lowest 

value of P/2k occurs when w = L/2 and is:

 

 P/2k = 3h/2L + 3L/8h   

 

A field of five triangles and the corresponding 

hodograph are shown in Fig. 4. Here it is assumed that 

AB = BC. With this assumption, the lowest value 

occurs when w = L/3 and is: 

 

 P/ 2k = 5h/2L + L/3h   

 

A general minimum solution for this class of upper 

bounds is: 
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as well as effects of boundary friction must be 

considered when summing the contributions to the total 

TRADITIONAL UPPER BOUNDS FOR PLANE-

SSION 

strain operations, as shown earlier, the 

usual approach to upper bounds is to imagine that all 

deformation occurs along discrete lines (actually planes 

in three dimensions). One such field for this problem is 

gions AOD and COB are 

metal zones that move with the same velocity, 

VO, as the compression platens. Discrete shear occurs 

on lines AO, BO, CO and DO and the corresponding 

hodograph is shown in Fig. 2b. With such a traditional 

upper bound, the rate of internal energy dissipation is k 

Σ IJ V*IJ where IJ are the lengths of the shear 

discontinuities in the physical space and V*IJ are the 

velocity discontinuities. Equating the rate of external 

work to internal energy dissipation gives:  

                                          (6) 

V*AO = VO (h
2
 + 

              (7) 

, better upper-bound 

solutions are obtained with fields consisting of more 

than one triangle along the work metal-platen interface, 

the lowest solutions corresponding to an odd number 

(3, 5 . . .) of triangles. Only with an odd number is there 

metal cap in the center, which does not slide 

against the platens. Figure 3 shows the field consisting 

sponding hodograph, for 

e field. Thus, the general 

 – w/2             (8) 

is the base of the center triangle. The lowest 

/2 and is: 

             (9) 

A field of five triangles and the corresponding 

hodograph are shown in Fig. 4. Here it is assumed that 

AB = BC. With this assumption, the lowest value 

            (10) 

this class of upper 

 
Fig. 3: (a) Upper-bound field and (b) one quarter of 

hodograph for plane strain compression with sticking 

friction (n = 3) (Caddell and Hosford

 

 
Fig. 4: (a) Upper bound field and (b) one quarter of 

hodograph for plane strain compression with sticking 

friction, (n = 5) (Caddell and Hosford

 
P/2k = 1/hL {nh2/2 + C [L/ (n +1)] 2}

 

where, 

 

C = (3n + 1) /2 + Σ� � � 

� � ��	�
 /� 
 (2i 

 

and n is an odd integer >3. 

This minimum occurs when w 

somewhat different symbols, definitions, etc., Avitzur 

(1968) has earlier arrived at a solution that is equivalent 

to Eq. (11). 

 

bound field and (b) one quarter of 

hodograph for plane strain compression with sticking 

Caddell and Hosford, 1980) 

 

(a) Upper bound field and (b) one quarter of 
plane strain compression with sticking 

Caddell and Hosford, 1980) 

P/2k = 1/hL {nh2/2 + C [L/ (n +1)] 2} 

(2i –1)                 (11)  

w = 2L/ (n + 1). Using 

somewhat different symbols, definitions, etc., Avitzur 

(1968) has earlier arrived at a solution that is equivalent 
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Whether still lower values would occur with this 

class of field when the ratio of AB/BC = R is varied has 

not been yet investigated. This, as stated above and 

other issues is the subject of this study. 

 

THE RE-FORMULATION OF UPPER BOUNDS 

FOR PLANE-STRAIN COMPRESSION 

 

However, to carry out this investigation, the re-

derivation of the main governing equations given above 

is essential. This is needed in order to achieve a general 

equation for the upper bound loads solution, which 

incorporates all the influencing parameters. These 

parameters are: The contact Length (L); the thickness 

(h); the triangles sides lengths ratio (R) [= AB/BC] and; 

the base of the center triangle (w).  

From Fig. 4a and b and following the same 

procedure as above and simplify us arrived to the 

general equation for upper bound solution, given as: 

 

P/2k = (5/2) (h/L) + 1/ [4(1+R)
2
]{2(1+R+R

2
) (L/h) –2 

(1+R
2
) (w/h) +2(1+R+R

2
) (w

2
/hL)}             (12) 

 

where, R = AB/BC. 

For R = 1, the above equation becomes: 

 

P/2k = (5/2) (h/L) + (6/16) (L/h)-w/ (4h) + (6/16) 

(w
2
/hL)                                                               (13) 

 

Now, differentiating Eq. (13) w.r.t. w and equate it 

to zero, gives; 1/ (4h) = (12/16) (w/hL), hence: wopt. = 

L/3. Then, substituting this value in Eq. (13) gives the 

minimum upper bound value as: 

 

 P/2k) min.= (5/2) (h/L) + L/(3h)            (14) 

 

This is the same as equation (10) above.  

 

Again, this is repeated for L and the lowest value of 

P/2k)min. occurs when: 

 

Lopt = {(16/6) [(5/2) h + (6/16) (w
2
/h)]}

½
              (15) 

 

Similarly, for h the lowest value of P/2k)min. occurs 

when: 

 

hopt = {(2/5) L [(6/16) L – w/4 + (6/16) (w
2
/L)]}

1/2
 (16) 

 

RESULTS AND DISCUSSION 

 

Thus, to investigate the effect of the ratio R on the 

upper bound loads the values of wopt. , Lopt. And hopt, 

are first calculated. The values found are Lopt. = 3.266 

units, (for h’s = 1 and w’s = 2 units), hopt. = 1.466 

units(for L’s = 4 and w’s = 1 units) and wopt. = 2 units 

(for  h’s = 1 and L’s = 6 units).  Figure 5 to 7  show  the  

 
 
Fig. 5: The ratio R variation effect on the upper bound load 

P/2k for the various values of L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: The ratio R variation effect on the upper bound load 

P/2k for the various values of h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7: The ratio R variation effect on the upper bound load 

P/2k for the various values of w 

effect of R variation on the upper bound loads for the 

various values of L, h and w respectively. Meanwhile, 

Fig. 8 and 9 display the variation of the upper bound 

loads with the thickness for the various values of w and 

L respectively. Finally, the effect of w on the upper 

bound loads for the different values of h is given in Fig. 

10. In all cases, it is clearly displayed that the minimum 

upper bound   loads, P/2k)min.,  occur   at  R = 1.  Also,   

the overall optimum minimum value of the upper bound 
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Fig. 8: The effect of the thickness, h, on the upper bound load 

P/2k for the various values of w  
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: The effect of the thickness, h, on the upper bound load 

P/2k for the various values of L 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10: The effect of the base of the center triangle, w, on the 

upper bound load P/2k for the various values of h 

 

load, P/2k)min opt, is found to be 1.93 and occurs at R = 1 

and the minimum values of Lopt. = 3.266, hopt. = 1.466 

and wopt. = 2.  

  

CONCLUSION 
 

For plane-strain compression a traditional upper 
bound analyses leads to load predictions that are low 
values, for a large range of the ratio of contact length to 
thickness. These load estimates are based on 

deformation fields consisted of rigid regions separated 
by planes upon which discrete shear occurs. The 
deformation fields used, which are consisted of odd 
number of triangles (i.e., 1, 3, 5, etc.), proved to be 
adequate for such analysis and operations. A general 
minimum solution for this class of upper bounds is 
derived and found to occur when w = 2L/ (n+1), where 
n is an odd integer ≥3. The systematic investigation of 
whether still lower values would occur with this class 
of field when the ratio(R) of the field triangles side 
lengths is varied has been conducted successfully. 
Thus, the upper bound loads are calculated over a wide 
range of the ratio (R) and the deformation field 
parameters such like, the thickness (h) the contact 
Length (L) and the base of the center triangle (w). It is 
found that, all the minimum load values occur at unity 
R ratio. The overall minimum upper bound load is 
found to be P/2k = 1.93. Furthermore, the minimum 
values of the investigated parameters are found to be 
Lopt = 3.266, hopt = 1.466 and wopt. = 2.0, respectively 
and all occur at R = 1.  

However, other deformation fields are suitable as 
long as they kinematically admissible. The comparison 
of the results of such fields with the obtained values is 
useful in assessing such operations in practice. An 
experimental program to investigate these issues is 
needed to completely verify the analysis. 
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