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Abstract: This study focuses on the defect detection of rolling element bearings using a novel method. In the 

bearing fault diagnosis, the fault feature extraction is also a key issue for successful fault detection. However, the 

vibration signals acquired by accelerometers are often mixed with noise signals. These mixtures may influence the 

fault feature extraction and hence deteriorate the performance of the fault diagnosis. To address this problem, a 

novel method is presented in this study to enhance the performance of the fault diagnosis of rolling element 

bearings. In this new method, the Kernel Independent Component Analysis (KICA) was firstly employed to fuse 

multi-sensor signals to eliminate noise signals. Then a RBF network was used to classify the fault patterns. To 

improve the fault identification, the Genetic Algorithm (GA) was adopted to optimize the parameters of the RBF 

network. Experiment tests on a rolling bearing fault diagnosis set-up have been carried out to verify the performance 

of the proposed method. The test results show that show the KICA can remove the noise effectively and the GA 

optimized RBF network can provide accurate fault detection results. In addition, the new method has been compared 

with the single RBF network model and ICA-RBF model. The comparison indicates that the proposed KICA-RBF 

model outperforms the other two rivals with a fault detection rate of 92.3%. 
 
Keywords: Fault diagnosis, KICA, RBF, rolling element bearings 

 
INTRODUCTION 

 
As a key part in rotating machinery, the rolling 

element bearings are prone to damage and failure. 
According to statistics (Li et al., 2010), the failures of 
rotating machinery caused by rolling bearing damages 
accounted for about 30% of all broken-downs. 
Therefore, it is essential to detect the rolling bearing 
faults in time to prevent damages of rotating machinery. 
Although a large number of research literatures have 
been done for rolling bearing fault diagnosis (Hasan 
and Kenneth, 2004; Loparo, 2004; Kankar et al., 2011), 
the noise removal problem is always a hot topic in this 
research field. To eliminate the noise mixed along the 
sensors, several methods have been proposed by the 
scholars. These methods include the Wavelet de-
noising (Li et al., 2011a), Kalman filter (Li et al., 
2012d), etc. However, these methods only can analyze 
one sensor at a time. Although the 2-D Fourier de-
noising can analyze two orthogonal signals 
simultaneously, it cannot handle more than two sensors. 
In fact, the vibration of the rolling bearings transmits 
from different directions in the space (Li et al., 2012a). 
Hence, it is reasonable to analyze the bearing vibration 
using multiply sensors and process the signals at one 
time. In such a situation, multi-signal fusion problem 
has become an urgent and practical technology and 

received worldwide attentions. How to develop and use 
the multi-sensor signals to detect bearing damage is the 
hot  spot  in  the  research  field  of  fault diagnosis (Li 
et al., 2010, 2012a, b, c).  

The inner race crack, outer race crack, cage crack 
and roller erosion are the most representative rolling 
bearing fault types. These four defect types cover 
almost all known rolling bearing faults. The serious 
challenge on these four fault types is that the 
contamination of noise in the bearing vibration data. 
Usually, there are several sources mixed into the 
bearing vibration data that one need to separate them 
out before the fault diagnosis. To overcoming this 
problem, some useful noise removal methodologies 
have been presented in the literatures. Li et al. (2011a) 
used the Wavelet de-noising approach to remove the 
noise components in the vibration of a gearbox. 
Experiment tests have shown effective performance of 
the noise elimination on the fault diagnosis of 
gearboxes. Li et al. (2012d) used the Kalman filter to 
eliminate the noise components in the vibration of 
rolling bearings. They carried out the experiment tests 
and the test results showed that the Kalman filter can 
effectively remove the noise signals and hence enhance 
the fault diagnosis of rolling bearings. In addition, since 
the full spectrum (Lee and Han, 1998; Goldman and 
Muszynska, 1999) is capable of processing a two-
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dimensional signal measured from two orthogonal 
sensors, it has been adopted to integrate information 
from two sensors. However, these methods only can 
handle less than two sensors. For a higher number of 
sensors, novel approaches should be exploited. This is 
because the transmission of vibration is not limited in a 
direction and location, but distributes in every direction. 
Fortunately, the Independent Component Analysis 
(ICA) is a competent technology for the separation of 
different sources and has powerful ability in fusion of 
multiply sensors, i.e., more than two sensors (Li et al., 
2012a, b). Hence, the application of ICA has been 
found in the field of fault diagnosis. However, the 
popular Fast ICA algorithm (Li et al., 2012a, b) is not 
effective for the nonlinear case such as the case of 
rolling bearing. This is because in practice the bearing 
vibration is the nonlinear mixture of several sources. 
Some study has been done using the linear ICA 
algorithms to solve the fault diagnosis in mechanical 
systems, but little study has addressed the nonlinear 
ICA problem on the fault diagnosis of rolling bearings. 
Since the Kernel ICA (KICA) (Bach and Jordan, 2002) 
can overcome the shortcomings of nonlinear ICA to 
deal with the nonlinear BSS problems, it is very urgent 
to test the performance of KICA in the fault diagnosis 
of rolling bearings. 

In order to handle the nonlinear BSS problem to 
eliminate noise signals in the fault diagnosis of rolling 
bearings, a novel method based on the integration of 
KICA and artificial neural network has been proposed 
in this study. The KICA was firstly used to fuse 
multiply sensors to extract inherit bearing vibration 
signal with noise removed. Then the RBF network was 
employed to identify the fault types. In order to enhance 
the detection rate of the RBF network, the GA was 
adopted to optimize the parameters of the network. To 
verify the new method, experiments have been carried 
out in a rolling bearing test bed. The analysis results 
show that the noise can be eliminate efficiently by the 
KICA and the fault diagnosis rate is up to 92.3%. 
Hence, the proposed method is useful for the fault 
diagnosis of rolling bearings.  

 
THE PROPOSED DIAGNOSIS METHOD 

 
Since the bearing vibration signal is corrupted by 

noise thoroughly, which is often unable to be described 
by analytical equations, the KICA (Bach and Jordan, 
2002) is employed to remove the noise. The concept of 
the kernel trick allows ICA to be able to solve nonlinear 
BSS problems, which is very suitable for the case of 
rolling bearing fault detections. In this study the KICA 
and RBF network are employed for the rolling bearing 
fault detection. Moreover, to improve the generalization 
of the RBF network, the GA algorithm is adopted to 
optimize the RBF parameters. The theories about the 
proposed method are briefly described below. 
 
The Kernel Independent Component Analysis 
(KICA): Assuming p unknown independent sources s =  

 
 
Fig. 1: The principle of the BSS 

 

[s1 s2 … sp]
T
 ∈R

p
, the measured signals x = [x1 x2 … 

xq]
T
 ∈R

q
 (p≤q) are linear combination of s, i.e.: 

 

x = A.s                           (1) 

 
where, A∈ R

q×p
 is the mixing matrix. The principle of 

the ICA and its BSS process is shown in Fig. 1. 
The aim of ICA is to find a transformation matrix 

B ∈ R
p×q

 to make y = B • x ≈ s. Linear ICA is unable to 
deal with nonlinear BSS. To overcome this problem, 
Bach and Jordan (2002) proposed the KICA to 
maximize independence of nonlinear mixtures using the 
kernel correlation minimized. For details of KICA, one 
can refer to Bach and Jordan (2002).  
 
The GA optimized RBF network: In general, there 

exists a certain relationship between the fault features 

and fault types. A neural network classifier can find this 

connection. Since the RBF network has better nonlinear 

mapping capability than BP network (Li et al., 2011b), 

this study used the RBF network to establish rolling 

bearing fault detection model. However, the efficiency 

of the neural network relies on its structure. It is very 

important to determine improper structure of the neural 

network. The traditional way obviously can't satisfy the 

need of network high-dimensional data which relies on 

expert experience to set network structure parameters. 

Therefore, this study adopts Genetic Algorithm (GA) to 

optimize the parameters of the RBF network to lighten 

the impact of network parameters on the detection rate. 

The parameters of a RBF network are the hidden 
node number, width and centre value of the base 
function. In order to obtain optimal network structure 
parameters, the GA was employed to optimize the 
above mentioned parameters. The GA has three main 
operators, including selection, crossover and mutation. 
The goal of these operations is to pick out best values 
of these parameters from generation to generation in the 
iteration. The processes of the GA optimization can be 
expressed as follows: 
 
1. Code the hidden node number, width and centre 

into GA chromosomes by binary coding to form a 
GA individual. Several individuals form a 
population space 

2. Initialize the individuals 
3. Calculate the fitness values of the individuals 
4. Do crossover and mutation to generate new 

individuals in new population space 
5. Decode the new population space to calculate the 

Fitness values of the new individuals 
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Fig. 2: The diagram block of the fault diagnosis of rolling bearings 

 

 
 
Fig. 3: The rolling bearing experimental tester 

 

 
 
Fig. 4: The time and frequency spectra of roller erosion 

 
6. If the results can satisfy the termination conditions, 

then stop the optimization process. Otherwise, 
return step (4) for iteration 

 
The workflow of the fault diagnosis: The workflow of 
the fault diagnosis in this study is given as follows: 
  

• Record the vibration signals of the rolling bearing 
using multiply sensors. 

• Do the BSS on the sensor signals using KICA to 
fuse the multi-signal into one useful signal. 

• Extract the features of the separated signal. These 
features include the Root Mean Square (RMS), 
mean frequency, skewness and kurtosis. 

• Train the RBF network using the features to get a 
fault detection model. Optimize the RBF model 
using GA. 

• Test the performance of the RBF model 
 
A diagram block of the workflow is illustrated in Fig. 2. 

 

EXPERIMENT TESTS AND RESULTS 
 

In order to evaluate and validate the performance 
of the proposed fault diagnosis method for rolling 
bearings, experiment tests have been implemented in a 
bearings, experiment  tests  have been implemented in a 

 
 
Fig. 5: The time and frequency spectra of inner race crack 

 

 
 
Fig. 6: The time and frequency spectra of outer race crack 

 

 
 
Fig. 7: The time and frequency spectra of cage crack 

 
rolling bearing set-up. Figure 3 shows the experiment 
device. The experiment test platform mainly consists of 
a 1 kW induction motor driver, a flexible coupling, a 
sliding bearing box, a rolling bearing box with SKF 
6205 rolling element bearing and 4 accelerometers. The 
accelerometers are mounted on the surface of rolling 
bearing box at four different directions. Hence, the 
accelerometers can collect the bearing vibration data 
from four directions. 

In order to simulate the rolling bearing faults, we 
have prepared four fault types, i.e., inner race crack, 
outer race crack, cage crack and roller erosion. For 
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Table 1: The fault detection results 

Detection model 

Training 

------------------------------------------------------------------- 

Testing 

------------------------------------------------------- 
Detection rate (%) Uncertainty (%) Detection rate (%) Uncertainty (%) 

GA-RBF 81.3 9.3 80.0 9.7 

ICA plus GA-RBF 85.7 6.7 84.3 6.7 

KICA plus GA-RBF 92.3 3.3 92.3 3.7 

 
Table 2: Optimization performance of GA to the RBF model 

KICA-GA-RBF 

------------------------------------------- 

KICA-RBF 

-------------------------------------- 

Detection rate Uncertainty Detection rate Uncertainty 

92.3 3.7 90.7 4.7 

 

every fault type, the rolling bearing has been tested for 

10 h. The accelerometers sample the vibration signals 

every 10 min. The sample frequency is 10 kHz.  

Figure 4 to 7 shows the time and frequency spectra 

of the tested rolling bearings after the KICA processing. 

It can be seen from the figures that the KICA can keep 

the characteristics of the bearing vibration with the 

noise depressed. The spectra vary with the change of 

the bearing working conditions. As a result, useful 

features of the bearing vibration signals can be 

extracted. In this study, we have calculated the RMS, 

mean frequency, skewness and kurtosis of the vibration 

signals. These features will be input into the RBF 

model for the fault type recognition. 

We have collected 60 samples for each fault in the 

experiments. Half of the samples are used to train the 

RBF network and the rest are applied to testing the 

trained RBF model. The GA is employed in the training 

of the RBF network. Table 1 shows the fault detection 

results. In the experiments, we have compared the 

performance of the RBF model, ICA-RBF model and 

KICA-RBF model. We also compared the GA 

optimization. Table 2 shows the optimization 

performance. 
It can be seen from Table 1 that the performance of 

the proposed method is the best one among the three 
models. Owing to the nonlinear BSS processing, the 
inherit characteristics of the nonlinear signals of the 
rolling bearings can separated by the KICA. However, 
since the linear ICA is unable to deal with the nonlinear 
case, the fusion performance of the multiply sensors is 
not good as the KICA. As a result, the diagnosis rate of 
the ICA based model is less than the KICA based RBF 
model. Nevertheless, according to the diagnosis results, 
the BSS processing can enhance the fault detection 
performance. By comparing the BSS based model to 
the single RBF model, it can be seen that the detection 
rate has been increased by 4.4% or better while the 
uncertainty rate has been raised by 2.6%. This indicates 
great improvement of the fault detection performance.  

In Table 2, it can be seen that after the GA 

optimization, the detection rate has been increased by 

1.6% and the uncertainty rate has been raised by 1.0%. 

As a result, the GA can help the RBF find proper 

parameters and hence eliminate the influence of these 

variables on the detection result. Therefore, the 

proposed method shows promising performance on the 

fault diagnosis of rolling element bearings. 

 

CONCLUSION 

 

Since the measured vibration signals can be 

considered as mixtures of bearing vibration and 

disturbance noise, it is essential to adopt information 

fusion technology to make full use of multiply sensors. 

Useful diagnostic information can be extracted under 

the guidance of the information fusion. The fault 

detection and diagnosis then can be achieved reliably 

using artificial neural networks. To address the 

mentioned issue, a new fault diagnosis method based on 

the integration of KICA and GA-RBF network is 

proposed in this study. The innovation of this study is 

that it adopts the nonlinear BSS and evolutionary 

algorithm to improve the fault detection ability of the 

RBF network. A series of experiments have been 

carried out to verify the proposed method. The analysis 

results demonstrate that the new method can detect the 

bearing faults precisely. Future study will use this new 

method in practice. 
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