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Abstract: In this study, we research the problem of network revenue management with customer choice based on
the Origin-Destination (O-D) demands. By dividing customers into different segments according to O-D pairs, we
consider a network capacity control problem where each customer chooses the open product within the segment he
belongs to. Starting with a Markov Decision Process (MDP) formulation, we approximate the value function with an
affine function of the state vector. The affine function approximation results in a new Linear Program (LP) which
yields tighter bounds than the Choice-based Deterministic Linear Program (CDLP). We give a column generation
procedure for solving the LP within a desired optimality tolerance and present numerical results which show the
policy perform from our solution approach can outperform that from the CDLP.
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INTRODUCTION

Traditionally, revenue management systems have
been built upon the independent demand model
assumption. This assumption views demands for
products are completely independent of the capacity
controls being applied by the seller. But among both
practitioners and researchers, there is growing interest
in modeling customer choice behavior in revenue
management problems, which stems partly from the
dissatisfaction with the limitations of the independent
demand model.

Under the independent demand model assumption,
Adelman (2007) studied an Approximate Dynamic
Programming (ADP) approach for computing dynamic
bid-prices. The idea is to formulate the underlying
dynamic program as a LP by making an affine
functional approximation to the value function.

In most of capacity control models of network
revenue management, uncertain demands are
considered for each product (each product for a specific
fare class). However, the exploration of models based
on stochastic demands between O-D pairs will probably
become increasingly important as opportunities for
code-sharing within strategic partnerships increases the
breadth of choice in customers itinerary selections.
Motivated by this consideration and the work of
Adelman (2007) and Liu et al. (2011) provided an

independent demand model which is developed with O-
D demands. The model can be used to compute
dynamic bid-prices and provides stronger bounds and
better policy performance than the Deterministic Linear
Program (DLP) approximation based on the O-D
demands. This study will focus on researching the
network capacity control problem with customer choice
based on the O-D demands and developing a column
generation algorithm to solve the problem within a
desired optimality tolerance. Our numerical study
shows the policy perform from our solution approach
can outperform that from the CDLP.

LITERATURE REVIEW

There have been a lot of independent demand
models for solving the network revenue management
problem. For a detailed discussion of these models,
(Talluri and Van Ryzin, 2004b). Due to the deficiency
of independent demand models, many researchers have
studied the problems with rich customer choice
behavior.

Several researches have been done on choice
behavior for single-leg revenue management problems.
Belobaba (1987a, b) propose the buy-up heuristics to
modify the expected marginal seat revenue (EMSR)
heuristics. Belobaba and Weatherford (1996), Brumelle
et al. (1990) and Zhao and Zheng (2001) also consider
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seat allocation model with passenger diversion. All
these models mentioned above are two-class model.
Talluri and Van Ryzin (2004a) provide an exact
analysis of the optimal control policy under a general
discrete choice model which is more than two classes.

The earliest work on choice behavior in networks
is due to Belobaba and Hopperstad (1999). The work
clearly demonstrates the significant impact that
passenger choice behavior has on the performance of
revenue management systems. Zhang and Cooper
(2005) consider seat allocations for multiple flights on
the same flight segment. Van Ryzin and Vulcano
(2008) propose a simulation-based optimization
approach to network capacity control problem under a
general choice scheme. Gallego et al. (2004) provide a
CDLP model to analyze revenue management for
flexible fare products. Motivated by the work of
Gallego et al. (2004) and Liu and Van Ryzin (2008)
study a linear programming formulation which is the
same as the model proposed in Gallego et al. (2004)
and provide a column generation algorithm to solve the
problem for the multinomial logit choice model with
disjoint consideration segments (MNLD). Bront et al.
(2009) focus on the more general version of CDLP
model, where customers belong to overlapping sets.
They also provide a column generation algorithm to
solve the problem for the multinomial logit choice
model with overlapping consideration segments. Zhang
and Adelman (2009) extended the ADP approach of
Adelman (2007) to the customer choice setting and
compared it to Liu and Van Ryzin (2008).

As mentioned, most of capacity control models of
network revenue management are based on product
demands. Higle (2007) and Burak ef al. (2008) propose
several stochastic programming approximations, where
demands are observed at O-D pair level. Liu et al.
(2011) also develop their model based on uncertain
demands between O-D pairs.

PROBLEM FORMULATION

In this section, we provide the basic formulations
and notation we will use throughout the study. We first
present a known formulation of the network revenue
management problem as a Markov decision process.
We then formulate the CDLP based on the O-D
demands.

Markov Decision Process Formulation: The model is
a finite-horizon discrete-time Markov decision process.
The objective is to maximize the total expected
revenue.

We begin with a flight network, which is
comprised of m flight legs, indexed by the seti €1 ={1,
..., m}. The network has/O-D pairs. The set of O-D
pairs in the entire network is denoted by n € N =
{1,...,I}. Flight legs can be combined to create routes
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which serve various O-D pairs in the network.
Typically, there are multiple routes that can serve a
given O-D pair. The firm sells k products (Each product
is defined by a route and fare class combination). The
set of products is denoted by set j €J ={1, ....k}. Let
J, cJ be the set of products which belong to O-D pair

n, then J=U,_,J,. Furthermore, we haveJ, nJ, =& for

n # n. The fare for product jis f;.
Define the incidence matrix A = [a;;], where ;=
lif productjuses legiand aq,,=0otherwise; The,th

column of A, denoted A, is the incidence vector for
product j. We let A’ denote the set of legs used by
product j.

Time is discrete, there are Tperiods and the index ¢
represents an arbitrary time (with the time indices
running forward, so t =T is the time of service).

Within each time period t, at most one customer
arrives. The probability of having an arrival in each
time period is denoted by A and no customer arrives
with probability 1 - A. Assuming that an arriving
customer first chooses which O-D pair he belongs to
and then chooses the product within the given segment.
From the firm’s perspective, each arriving customer
belongs to segment n with probability p, , with
probability ' p, =1. Hence, the arriving stream of

segment-n customers is a Poisson process with rate
A=Ay and the total arrival rate A verifies2=3" 4.

When a customer arrives, the firm must decide
what products to offer. Let S € J he the set of the total
available products which are offered by the firm. Given
the set S, let P,(S) denote the probability that a
segment-ncustomer chooses the product jeJ,NS. To
determine the purchase probability Py(S), define a
preference vectorv, >0, which indicates the customer
“preference weight” for each product contained in J,
and the no-purchase preference value v,,o. Then:

v,

Vi t Vo

P

"

($)=
z;/‘sjnﬁs
If jeJ,NSor j&J,, then v,; = 0 (and hence
P,(S) = 0). Let Pi(S) be the probability that the
product j € S is chosen by an arriving customer. Noting
that the seller ex ante cannot distinguish which segment
each arriving customer belongs to, then:

P (8)= anPn/ (S):

neN

Let Py(S) denote the no-purchase probability
and by total probability 2, P (S)+R(S)=1, ie.,

R (S) :l_zne.vp"zjdp”’ (S) :
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The state of the network is described by a vector x
= (Xy,...,Xn) of remaining leg capacities, the initial state

is denoted by vector vector ¢ = (¢; ,...,cn). Vectorx
satisfies:
_ ({c}ift =1,
XX = {{x € ZM: x; € {0,1,..,¢;}vi}ift =2,..,T

If a single unit of product j € S is sold, the state of
the network changes to x-A’, ignoring cancellations and
no-shows.

Let v(x) be the maximum total expected revenue
over periods ¢,...T starting at state x at the beginning of
period t. Then v(x) must satisfy the Bellman equations:

v, (x)= g%{z A, Y By (S)(f;+ v (x=4"))

jes

+[,1[12p”213,j (S)JHE]VM (x)}

neN Jjes

(1

:£ﬁ§>{; L3p, (S)[fj ~(V ()= (X‘Aj))}}

jes
+v,, (x), Vt,xe X,

with the boundary condition vr.(x) = 0 Vx. In the
above, the second equation follows from the fact that
A=Ap, and the set:

J(x)={jes:x> 4}

is the set of products that can be offered when the state
is X.

The value function at initial state C can be
computed by the linear program:

(P0) min v, (c)

sty (x) ZZ&,ZR,, (S)[f, _(Vm (%)= (X_Aj))}

neN  jeS

+,(x), WhxeX,ScJ(x)
with decision variables v/(x) V¢, x. It is easy to be shown
by induction that any feasible solution ¥, (-)to (P0) is an

upper bound on v,(.) which solves the optimality Eq.
(1). Adelman (2007) for relevant proof.

CDLP Formulation: In general, (1) and (P0O) are
intractable because of the high-dimensional state space.
To circumvent this complexity, the standard approach
to revenue management is to approximate the dynamic
programming with a LP.

Let R,(S) denote the revenue from one arriving
customer who belongs to segment n when the set S is
offered. Then:
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R,(S)=2./B;(S). VneN,ScJ. ()

jes

Given offer set S, let Qni(S) denote the resource
consumption rate on leg i €I={l,...,m}which can be
used by products which belong to segment n, when a
customer arrives. Then the vector Qu(S) = (Q.i(S),
...Qun(S))" is the vector of resource consumption rate
of segment n. Furthermore, if let P,(S)= (P.i(S),
....Pud(S))" be the vector of purchase probabilities of
segment n, then:

On(8) = AP\(S)

Since the demands are deterministic and the
purchase probabilities are time homogeneous, only the
total time each set Sis offered matters. Let t(S) be the
total time the set S is offered, then we have the
following LP:

(LP)Z,, = max > [Z AR, (S)Jt(S) (3)

ScJ \ neN

5.t sz;: (Z 2,0, (S)]t(S)g ¢ “4)

J \neN

1(S)=T %)

vScJ (6

If S = @, the decision variable t (@,)means the total
time that no products are offered. We allow the
variables t(S) to be continuous. (LP) is similar to the
CDLP model proposed in Gallego et al. (2004), but we
consider demands at O-D pair level. The dual of (LP)
is:

minzTc+Tu

Tp
stz Y 2,0,(S)+u=D AR, (S), VScJ,
neN neN
720,

where 7 is the vector of dual prices on (4) and pis the
dual price on (5), respectively.

(LP) can be solved by column generation
techniques efficiently (Liu and Van Ryzin, 2008).

FUNCTIONAL APPROXIMATION

As mentioned, (P0) is intractable because of the
enormous size of the state space. The only practical
approach is to try to approximate the decision problem.
In this section, first, we use a set of affine functions to
approximate vi(.) and then give the resulting primal-
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dual formulations. Second, we establish the relationship
between the dual formulation and the (LP).

Formulation: Consider the affine functional

approximation:

0+Z u I’

iel

O]

where, 6, is a constant offset and x,; estimates the
marginal value of a seat on leg; in periodz. We assume
O1+1 = 0 and 7.y ; = 0,Vi. Plugging (7) into (PO) yields
that:

(Pl)mln@ +Z7r“ c;

iel

s.t. g —

,+,+z[m 7, [x ALY P (S

iel neN  jeS

234> P(S

neN  jeS

)

)f» VixeX,ScJ(x).

The dual of (P1) is:

CHPS. ®)

>

eX,.S<J(x)

PR ACY

Z]

eX, .5/ (x)

( Z@ﬁ@%JWr ©)

Fnes =27,

X

1 ifr=1
z %—],x,& vr:?,,]:

xeX,,.5)(y)

z %,xS

xeX, .S/ (x)

(10)
y20.

The constraints (10) means:

z 7/sz 1, vt

xeX, SCJ (1 1)

Therefore the decision variables y,xs can be
interpreted as approximated state-action probabilities;
1.e., Yixs 1S the probability that the state is x and the sets
S is offered at time t. The constraints (9) is a flow
balance constraint.

An optimal solution to (LP) specifies the total time
each set should be offered, but the sequence in which
the sets are offered is ambiguous. Let (n*, 0%)be the
optimal solution for (P1). Using the approximation:
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v, (x)—v,(x—Af) Zay T

iel

then we can select an offer set dynamically in period
tand state x by solving:

s DA DR (SN, =) (12)

Relationship to (LP): To derive (LP) from (D1),
define:

= z 7/t,x,S’ VSQJ.

txeX,

The objective function (3) follows immediately
from (2) and (8). Now fix; and sum (9) over¢ to obtain:

)3
S) a;; ] Victxs

t.xeX,.ScJ(x)
Canceling terms and rearranging yields:

XVixs =Gt

5= 2 4,2 By

neN Jjes

=27 xe X, .su(x)[

G = z 2/1 Z l,;/'}/t,x,S
t=1,--T-1,xeX,.Sc/(x)neN  jeS
+ Z X1 xS (13)
xeXT,SgJ(x)
If 7.s>0, we have x2a,VijeS, so
%2, 4> B /(S)a,,vi. Therefore, (13) implies:
. SAA(Sa - T TR )(5h
IIEN jss ScJ \neN

which yields (4). In addition, summing (10) over t, we
derive > _ 1(S)=T.

The arguments above show that Z;p > Zp. As
mentioned, any feasible solution to (P0) gives an upper
bound to the optimal value from the Eq. (1). We
summarize the results in the following proposition.

Proposition 1: Any feasible solution to (D1) yields a
feasible solution to (LP) having the same objective
value. Hence Z;p> Zp; >v; (c).

Liu and Van Ryzin (2008) show that the bound Z;p
is asymptotically optimal, i.e., converges to v;(c), as
demands, capacity and time horizon scale linearly, that
is, Zy pis also asymptotically optimal.

COLUMN GENERATION ALGORITHM

The program (D1) has a large number of variables
but relatively few constraints, so we can solve it via
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column generation. Denote the reduced profit of y;xs
by:

=2 42.5,(5)],

S ]

_ZI:” X 7[”1,
Proposition 2: A feasible solution to (D1) is:

iel
R 1 ifx=¢,5=0,
7/1‘,,\’,5 =

0 otherwise,

6+6

1

~2 42 b (S)a

neN jes

Vi, xe X,,ScJ(x).

Proof: For all t and i, the left-hand side of (9) is:
Z xﬂ;t,x,s = ci};t,c,g =

x,ScJ(x)

Likewise, for all t >1, the right-hand side of (9) is:

(xi )ai,j j 79171..&5

= Ciytfl,c,g

2

xeX, .ScJ(x)

2 A2E (S

n jes

=C..

i+ 0

Given an initial feasible solution to (D1) supplied
by Proposition 2, denoting the resulting prices by 0,r,
now solve:

@tS ”E%()Z/IZP

neN  jeS§

ﬂ- x 7Z’t+l i i
iel

VYA

neN jes
: 1 t+l i )

max
t.xeX, .Sc(x)

_Z&Z%(S)“/

neN  jeS

{r5ee)

x—0+6

1+

If the optimal function value is nonpositive, then
we have attained optimality; otherwise, we add the
column to the existing set of columns for (D1). For
fixed t >1 , this is equivalent to solving the following
optimization problem:

t+l!) 1

f Zalj t+lz

iel

-0, +6,

t+1

(S0) max 3.2 P,

nEN Jjes

-Z(

iel

<x ‘v’lJeS

{ nfs ¥

Under the multinomial logit (MNL) model, a
choice set S can be represented by an availability
vector. We let the binary vector u€ {0,1}*e the
characteristic vector of set S. It indicates which
products are offered at any period, uj =1 if j€ S and u; =
0 otherwise. So we can then express (S0) in terms of the
binary variables u;:

st a

i,

Zjej,, UV (f/ - Zie[ ai,.iﬂf”’i)
Z/'EJ” J

(S1) max} 4,

neN u 'vnj + VnO

_Z( t+11)xi_9t+0t+l
iel
s.t. a,ju/Sx,, Vi, Jj,
{01}, VY,

X, € {O,...,c}.}, Vi.

In fact, (S1) is a Mixed Integer Non-Linear
Programming (MINLP) problem. Solving such a
problem is most challenging, since there is no a direct
method capable of doing it efficiently. In the following,
we transform (S1) into a Mixed Integer Linear
Programming (MILP) problem. The advantage of this
transformation is that any mixed integer programming
(MIP) software package can be used to solve (S1):

Let;

1
a =

e VneN,
) jes, 4V Vo

z.=au

n’js

VneN,jelJ,.

nj

For allne N, jeJ,, variablez, can be represented
by the following linear inequalities: (1), -z, < K —Ku,;

@)z, <a,; (3)z,<Ku;; (4)z,20, where K is a large
number (1.e., greater thane,). Furthermore, by the
definition of «,andz,, we have:

Zvn/zm +v,,a,=1, VneN, (14)

Jjed,

a,>20, VneN.

Then (S1) can be rewritten as:

(

I+lz)

f zat_/ l+l¢

iel

-0,+6,

t+1

(S2) max Z}t Z v,

% neN jed,

-2(7

iel

|3
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st.oa, u, <x, Vi,j,

Zv Zy T V0, =1,

jeJ,

a,—z,<K-Ku,

VneN,

VneN,jelJ,
z,<a, VneN,jeJ,
z,<Ku;, VneN,jeJ,
z,20, VneN,jel,

a,20, VneN,

uje{O,l}, YJ,

xl.e{O,...,ci}, Vi.

Because a”:l/( uy, +v, ), it is enough to take K >

jed, i m

1/v where \_/:mm{vﬂj n=L..,5j =0,1,...,k} )

Theorem 1: (S1) is equivalent to (S2); i.e., both
optimization problems have the same optimal objective
value and an optimal solution to one can be obtained
from an optimal solution of the other. So we only need
to solve (S2) to find the maximum reduced profit for
each t>1.

Proof: Since (S2) is obtained from (S1) through change
of variables, it can be shown that an optimal solution to
(S1) is a solution to (S2) and both optimization
problems have the same optimal objective value at the
solution.

Suppose (%,4,Z,&) is an optimal solution to (S2).
Then (%,4) clearly satisfies the constraints in (S1).

Furthermore, Vne N, jeJ,:

/ =
Vgt 20, G

V4

n
Vi TVl

Sl

= |l

2

n

i

2 jer, B Vo
= Z>

where the last equation follows from (14). It then
follows that the two optimization problems have the
same objective value at the given solution. Combining
the results in all cases yields Theorem1. Where the last
equation follows from (14). It then follows that the two
optimization problems have the same objective value at
the given solution. Combining the results in all cases
yields Theorem 1.

Define:

®, = max o, Vit

veX, SCi(x) S’

to be the maximum reduced profit for periodz under 6,n.
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Proposition 3: Consider the restricted version of (D1)
containing only decision variables 7;.s, whose indices
are in a subset & of all possible indices. Let (7.(0.7))
denote the corresponding optimal primal-dual pair for
this restricted problem and let@ bew computed with

respect to @ and 7. Let Z: denote its optimal objective
value. Then:

2433

t=1

I/\

Proof: Consider any feasible y to (D1) and any
numbers 6; and m;,Vt,i. Multiply both sides of (8) by m;
and add 0, for each t, i, then add the resulting equations
together with:

J?’ xS

21N =26 =0,= 2 O, Vs

t.x,8

< Z wt*]/t,x,S

t,x,8

=zwf[zy,,x,sj
t x,S
e

t

Z(y)= Z[Z p, )P,

t,x,S\ neN Jjes

we obtain:

where the last equality follows from (11). This relation
is true for all feasible solutions y. Particularly, for an
optimal solution y* to (D1), there is objective value
Z(y*) =Zp,. Furthermore, from strong duality applied to
the restricted problem, we have:

Z”]zz_ ]:

(7)=2..

<

As a result, we obtain:

2433

I/\

For (D1), Proposition 3 gives an upper bound on
the optimality gap between an optimal solution and a
given feasible solution. To ensure that the objective
value of the current solution 7based on columns & is
within Q of an optimal solution, i.e., Zp/Z:< 1 +€, it
suffices to ensure that:
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Algorithm Column generation
Set ¢={{re.z)yvi} |
problem (D1{£)), and sete; =« for all?.

solve the restricted
whilex,« ~z,ado
forallze{y,..,7}
compute @ = max e, s
selectan (%5 )cargmaxe,
update &<« &u{(£x,.5)}
solve (D1(&))

Fig. 1: Column generation algorithm for solving (P1) to
within an optimality tolerance of Q

Fig. 2: Hypothetical airline network with five legs, six O-D
pairs and ten routes

We employ this as a stopping criterion for the
algorithm. The full algorithm is described in Fig. 1.

Let (n*, 0*)be the optimal solution for (P1). For the
MNL choice model, (12) reduces to:

*
z,e/n Uy (f/ - ZieI alli”’“"')
max Z/In .

uefoiza))vies 1oy Zjej Uy, +v,
g

(15)

A control policy in period t and state x can be
computed by solving (15).The constraint ;€ {0, 1{x >
A’} }in (15) incorporates the constraint on capacity. The
maximization in (15) can be solved efficiently using
simple ranking procedure (Liu and Van Ryzin, 2008).

NUMERICAL RESULTS

Figure 2 illustrates a hypothetical airline network
which consists of five legs, six O-D pairs and ten
routes. Furthermore, two fare classes (Business and
Leisure) are offered for each route. Business fares are
drawn from the Poisson distribution with mean 200 and
Leisure fares are drawn from the Poisson distribution
with mean 100. For simplicity, we considered
stationary demands with the probability 0.2 for having
no customer arrival in a period. We generated problem
instances with T € {20, 50, 100, 200, 500}. For each
instance, we set the initial capacity, c, to be the same
for each leg.

Table 1: Bound and policy results

Capacity (D1) (LP) ADP Mean LP Mean
T per leg Bound Bound (S.E) (S.E)
20 3 1636.90 2199.20  1456.40 1300.90
(135.21) (122.24)
50 7 3753.50 4542.40  3468.40 2554.80
(302.75) (220.36)
100 15 9761.60 11961.00 9132.80 8624.30
(608.42) (523.50)
200 29 16214.00  23906.00 13480.00 12004.00
(985.34) (853.72)
500 76 41352.00 57634.00 33208.00 31342.00
(1362.20)  (1330.40)

We tested the following methods:

e ADP: Solve (D1) — (P1) once. Given a set of
dynamic bid prices, use the policy given by (12).

e LP: This method implements the static (LP)
solution. As mentioned, the optimal solution to
(LP) gives the total time to offer each set, but the
sequence in which the sets are offered is
ambiguous. We assumed that sets were offered
according to the order that the solutions to (6) were
generated.

The numerical experiments also studied the upper
bound given by (D1) as compared with (LP). We solved
(D1) with an optimality tolerance of Q=5% and
simulated each instance 100 times for each policy,
using the same sequence of customer demands across
different policies. The results are shown in Table 1.

CONCLUSION

Currently, data from past sales typically provide
the basis for forecasting future demands. This data is
itinerary based and customer choices regarding selected
itineraries can be difficult to discern. In our model, the
demands are for O-D pairs rather than specific
itineraries within the network. We also explicitly
recognize that a given O-D pairs can be served by
multiple itineraries. As a result, current itinerary-based
demand forecasting techniques can be used-with the
added step of aggregating demands over the various
itineraries that service an O-D pair.

In this study, we consider a network capacity
control problem where customers choose the open
product according to their O-D pair. Starting with a
Markov Decision Process (MDP) formulation, we make
an affine functional approximation to the optimal
dynamic programming value function. Then, we derive
the program (D1) which yields tighter bounds than the
CDLP based on the O-D demands. We give a column
generation procedure for solving (D1) within a desired
optimality tolerance. The numerical results also show
our conclusion and the policy perform from our
solution approach can outperform that from the CDLP.
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