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Abstract: In this study, we research the problem of network revenue management with customer choice based on 
the Origin-Destination (O-D) demands. By dividing customers into different segments according to O-D pairs, we 
consider a network capacity control problem where each customer chooses the open product within the segment he 
belongs to. Starting with a Markov Decision Process (MDP) formulation, we approximate the value function with an 
affine function of the state vector. The affine function approximation results in a new Linear Program (LP) which 
yields tighter bounds than the Choice-based Deterministic Linear Program (CDLP). We give a column generation 
procedure for solving the LP within a desired optimality tolerance and present numerical results which show the 
policy perform from our solution approach can outperform that from the CDLP. 
 
Keywords: Choice behavior, dynamic programming, linear programming, network revenue management 

 
INTRODUCTION 

 
Traditionally, revenue management systems have 

been built upon the independent demand model 
assumption. This assumption views demands for 
products are completely independent of the capacity 
controls being applied by the seller. But among both 
practitioners and researchers, there is growing interest 
in modeling customer choice behavior in revenue 
management problems, which stems partly from the 
dissatisfaction with the limitations of the independent 
demand model. 

Under the independent demand model assumption, 
Adelman (2007) studied an Approximate Dynamic 
Programming (ADP) approach for computing dynamic 
bid-prices. The idea is to formulate the underlying 
dynamic program as a LP by making an affine 
functional approximation to the value function. 

In most of capacity control models of network 
revenue management, uncertain demands are 
considered for each product (each product for a specific 
fare class). However, the exploration of models based 
on stochastic demands between O-D pairs will probably 
become increasingly important as opportunities for 
code-sharing within strategic partnerships increases the 
breadth of choice in customers itinerary selections. 
Motivated by this consideration and the work of 
Adelman (2007) and Liu et al. (2011) provided an 

independent demand model which is developed with O-
D demands. The model can be used to compute 
dynamic bid-prices and provides stronger bounds and 
better policy performance than the Deterministic Linear 
Program (DLP) approximation based on the O-D 
demands. This study will focus on researching the 
network capacity control problem with customer choice 
based on the O-D demands and developing a column 
generation algorithm to solve the problem within a 
desired optimality tolerance. Our numerical study 
shows the policy perform from our solution approach 
can outperform that from the CDLP. 
 

LITERATURE REVIEW 
 

There have been a lot of independent demand 
models for solving the network revenue management 
problem. For a detailed discussion of these models, 
(Talluri and Van Ryzin, 2004b). Due to the deficiency 
of independent demand models, many researchers have 
studied the problems with rich customer choice 
behavior. 

Several researches have been done on choice 
behavior for single-leg revenue management problems. 
Belobaba (1987a, b) propose the buy-up heuristics to 
modify the expected marginal seat revenue (EMSR) 
heuristics. Belobaba and Weatherford (1996), Brumelle 
et al. (1990) and Zhao and Zheng (2001) also consider 



 
 

Res. J. Appl. Sci. Eng. Technol., 6(4): 660-667, 2013 
 

661 

seat allocation model with passenger diversion. All 
these models mentioned above are two-class model. 
Talluri and Van Ryzin (2004a) provide an exact 
analysis of the optimal control policy under a general 
discrete choice model which is more than two classes. 

The earliest work on choice behavior in networks 
is due to Belobaba and Hopperstad (1999). The work 
clearly demonstrates the significant impact that 
passenger choice behavior has on the performance of 
revenue management systems. Zhang and Cooper 
(2005) consider seat allocations for multiple flights on 
the same flight segment. Van Ryzin and Vulcano 
(2008) propose a simulation-based optimization 
approach to network capacity control problem under a 
general choice scheme. Gallego et al. (2004) provide a 
CDLP model to analyze revenue management for 
flexible fare products. Motivated by the work of 
Gallego et al. (2004) and Liu and Van Ryzin (2008) 
study a linear programming formulation which is the 
same as the model proposed in Gallego et al. (2004) 
and provide a column generation algorithm to solve the 
problem for the multinomial logit choice model with 
disjoint consideration segments (MNLD). Bront et al. 
(2009) focus on the more general version of CDLP 
model, where customers belong to overlapping sets. 
They also provide a column generation algorithm to 
solve the problem for the multinomial logit choice 
model with overlapping consideration segments. Zhang 
and Adelman (2009) extended the ADP approach of 
Adelman (2007) to the customer choice setting and 
compared it to Liu and Van Ryzin (2008). 

As mentioned, most of capacity control models of 
network revenue management are based on product 
demands. Higle (2007) and Burak et al. (2008) propose 
several stochastic programming approximations, where 
demands are observed at O-D pair level. Liu et al. 
(2011) also develop their model based on uncertain 
demands between O-D pairs. 
 

PROBLEM FORMULATION 
 

In this section, we provide the basic formulations 
and notation we will use throughout the study. We first 
present a known formulation of the network revenue 
management problem as a Markov decision process. 
We then formulate the CDLP based on the O-D 
demands. 
 
Markov Decision Process Formulation: The model is 
a finite-horizon discrete-time Markov decision process. 
The objective is to maximize the total expected 
revenue. 

We begin with a flight network, which is 
comprised of m flight legs, indexed by the set i  I ={1, 
…, m}. The network has l O-D pairs. The set of O-D 
pairs  in  the entire  network  is  denoted  by  n   N = 
{1,…,l}. Flight legs can be combined to create routes 

which serve various O-D pairs in the network. 
Typically, there are multiple routes that can serve a 
given O-D pair. The firm sells k products (Each product 
is defined by a route and fare class combination). The 
set of products is denoted by set j  J ={1, …,k}. Let

nJ J⊆  be the set of products which belong to O-D pair
n , then n N nJ J∈=U . Furthermore, we have 'n nJ J∩ =∅  for 
n ≠ ̀ . The fare for product jis fj. 

Define the incidence matrix A = [αi,j], where αi,j= 
1if product j uses leg i and , 0i ja = otherwise; The j th 
column of A, denoted Aj, is the incidence vector for 
product j. We let Aj denote the set of legs used by 
product j. 

Time is discrete, there are Tperiods and the index t
represents an arbitrary time (with the time indices 
running forward, so t = T is the time of service). 

Within each time period t, at most one customer 
arrives. The probability of having an arrival in each 
time period is denoted by λ and no customer arrives 
with probability 1 - λ. Assuming that an arriving 
customer first chooses which O-D pair he belongs to 
and then chooses the product within the given segment. 
From the firm’s perspective, each arriving customer 
belongs to segment n with probability pn , with 
probability 

1
1l

nn
p

=
=∑ . Hence, the arriving stream of 

segment- n  customers is a Poisson process with rate 
λn=λpn and the total arrival rate  λ verifies

1

l
nn

λ λ
=

=∑ . 
When a customer arrives, the firm must decide 

what products to offer. Let S  J he the set of the total 
available products which are offered by the firm. Given 
the set S, let Pnj(S) denote the probability that a 
segment-ncustomer chooses the product nj J S∈ ∩ . To 
determine the purchase probability Pnj(S), define a 
preference vector 0nv ≥ , which indicates the customer 
“preference weight” for each product contained in Jn 
and the no-purchase preference value vn0. Then: 

 

( )
0

.
n

nj
nj

nj nj J S

v
P S

v v
∈ ∩

=
+∑

 

 
If nj J S∉ ∩ or nj J∉ , then vnj = 0 (and hence 

Pnj(S) = 0). Let Pj(S) be the probability that the 
product  S is chosen by an arriving customer. Noting 
that the seller ex ante cannot distinguish which segment 
each arriving customer belongs to, then: 
 

( ) ( ).j n nj
n N

P S p P S
∈

= ∑  

 
Let  P0(S)  denote  the   no-purchase probability 

and by total probability ( ) ( )0 1jj S
P S P S

∈
+ =∑ , i.e., 

( ) ( )0 1 n njn N j S
P S p P S

∈ ∈
= −∑ ∑ . 
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The state of the network is described by a vector x 
= (x1 ,…,xm) of remaining leg capacities, the initial state 
is denoted by vector vector c = (c1 ,…,cm). Vector x
satisfies: 

 
 if  1,                                                          

 :  0, 1, … ,  if 2, … ,  

 
 If a single unit of product j S∈ is sold, the state of 

the network changes to x-Aj, ignoring cancellations and 
no-shows. 

Let vt(x) be the maximum total expected revenue 
over periods t,…T starting at state x at the beginning of 
period t. Then vt(x) must satisfy the Bellman equations: 

 

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )
( )

1( )

1

1 1( )

1

max

             1 1

        max

             ,     , 

j
t n nj j tS J x n N j S

n nj t
n N j S

j
n nj j t tS J x n N j S

t t

v x p P S f v x A

p P S v x

P S f v x v x A

v x t x X

λ

λ λ

λ

+⊆
∈ ∈

+
∈ ∈

+ +⊆ ∈ ∈

+

⎧
= + −⎨

⎩
⎫⎛ ⎞⎛ ⎞ ⎪+ − + −⎜ ⎟ ⎬⎜ ⎟⎜ ⎟⎝ ⎠ ⎪⎝ ⎠ ⎭

⎧ ⎫⎪ ⎡ ⎤= − − −⎨ ⎬⎣ ⎦⎪ ⎭⎩
+ ∀ ∈

∑ ∑

∑ ∑

∑ ∑

     (1) 

 
with the boundary condition vT+1(x) = 0 x. In the 
above, the second equation follows from the fact that 
λn=λpn and the set: 
 

( ) { }: jJ x j J x A= ∈ ≥  

 
is the set of products that can be offered when the state 
is x. 

The value function at initial state C can be 
computed by the linear program:  

 
(P0) 

( )
( )1min   

v
v c

•  
 

( ) ( ) ( ) ( )( )
( ) ( )

1 1

1

s.t. 

                   ,      , ,

j
t n nj j t t

n N j S

t t

v x P S f v x v x A

v x t x X S J x

λ + +
∈ ∈

+

⎡ ⎤≥ − − −⎣ ⎦

+ ∀ ∈ ⊆

∑ ∑   

 
with decision variables vt(x) t, x. It is easy to be shown 
by induction that any feasible solution ( )ˆtv ⋅ to (P0) is an 
upper bound on vt(.) which solves the optimality Eq. 
(1). Adelman (2007) for relevant proof. 

 
CDLP Formulation: In general, (1) and (P0) are 
intractable because of the high-dimensional state space. 
To circumvent this complexity, the standard approach 
to revenue management is to approximate the dynamic 
programming with a LP. 

Let Rn(S) denote the revenue from one arriving 
customer who belongs to segment n when the set S is 
offered. Then: 

( ) ( ), , .n j nj
j S

R S f P S n N S J
∈

= ∀ ∈ ⊆∑   
               

(2) 

 
Given offer set S, let Qni(S) denote the resource 

consumption rate on leg i I={1,…,m}which can be 
used by products which belong to segment n, when a 
customer arrives. Then the vector Qn(S) = (Qn1(S), 
…,Qnm(S))T is the vector of resource consumption rate 
of segment n. Furthermore, if let Pn(S)= (Pn1(S), 
…,Pnk(S))T be the vector of purchase probabilities of 
segment n, then: 

 
Qn(S) = APn(S)  
 
Since the demands are deterministic and the 

purchase probabilities are time homogeneous, only the 
total time each set Sis offered matters. Let t(S) be the 
total time the set S is offered, then we have the 
following LP: 

 

(LP) ( ) ( )LP
                

m ax n n
t S J n N

Z R S t Sλ
⊆ ∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑
           

(3) 

 

( ) ( )s.t.  n n
S J n N

Q S t S cλ
⊆ ∈

⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

∑ ∑               (4) 

 
( )

S J

t S T
⊆

=∑                   (5) 

 
( ) 0,       t S S J≥ ∀ ⊆                              (6) 

 
If S = , the decision variable t ( ,)means the total 

time that no products are offered. We allow the 
variables t(S) to be continuous. (LP) is similar to the 
CDLP model proposed in Gallego et al. (2004), but we 
consider demands at O-D pair level. The dual of (LP) 
is: 

 

( ) ( )
,

min

s.t. ,    ,

      0,

n n n n
n N n N

c T

Q S R S S J
π µ

π µ

π λ µ λ

π

Τ

Τ

∈ ∈

+

+ ≥ ∀ ⊆

≥

∑ ∑  

 
where π is the vector of dual prices on (4) and µis the 
dual price on (5), respectively. 

(LP) can be solved by column generation 
techniques efficiently (Liu and Van Ryzin, 2008).  
 

FUNCTIONAL APPROXIMATION 
 

As mentioned, (P0) is intractable because of the 
enormous size of the state space. The only practical 
approach is to try to approximate the decision problem. 
In this section, first, we use a set of affine functions to 
approximate vt(.) and then give the resulting primal-
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dual formulations. Second, we establish the relationship 
between the dual formulation and the (LP). 
 
Formulation: Consider the affine functional 
approximation: 
 

( ) , ,t t t i i
i I

v x xθ π
∈

≈ +∑                                         (7) 

 
where, θt is a constant offset and πt,i estimates the 
marginal value of a seat on leg i in period t . We assume 
θT+1 = 0 and πT+1,i = 0, . Plugging (7) into (P0) yields 
that: 
 

(P1) 1 1,,
min i i

i I
c

θ π
θ π

∈

+∑
 

 

( )

( ) ( )

1 , 1, ,s.t. 

     ,    , , .

t t t i i t i i n nj i j
i I n N j S

n nj j t
n N j S

x x P S a

P S f t x X S J x

θ θ π π λ

λ

+ +
∈ ∈ ∈

∈ ∈

⎡ ⎤⎛ ⎞
− + − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
≥ ∀ ∈ ⊆

∑ ∑ ∑

∑ ∑

 

 
The dual of (P1) is: 
 

(D1) ( )
( )

D1 , ,
, ,

max
t

n nj j t x S
t x X S J x n N j S

Z P S f
γ

λ γ
∈ ⊆ ∈ ∈

⎛ ⎞
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⎝ ⎠
∑ ∑ ∑

              
(8) 

 

( )

( )
( )1

, ,
,

,
,

1, ,

s.t.  

   if 1,

   , ,

                 .    2,..., ,   

t

t

i t x S
x X S J x

i

i n nj i j
x X S J x n N j S

t x S

x

c t

x P S a i t

t T

γ

λ

γ
−

∈ ⊆

∈ ⊆ ∈ ∈

−

=

⎧ =
⎪

⎛ ⎞⎪ − ∀⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ ∀ =⎩

∑
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(9) 

 

( ) ( )1

, , 1, ,, ,

1   if 1,
,  2,..., ,

     0.

t
t

t x S t x Sx X S J x x X S J x

t
t Tγ γ

γ
−

−∈ ⊆
∈ ⊆

=⎧⎪=⎨ ∀ =
⎪⎩

≥

∑ ∑             (10) 

 
The constraints (10) means: 

 

( )
, ,

,

1,    .
t

t x S
x X S J x

tγ
∈ ⊆

= ∀∑
  

                         (11) 

 
Therefore the decision variables γt,x,S can be 

interpreted as approximated state-action probabilities; 
i.e., γt,x,S is the probability that the state is x and the sets 
S is offered at time t. The constraints (9) is a flow 
balance constraint. 

An optimal solution to (LP) specifies the total time 
each set should be offered, but the sequence in which 
the sets are offered is ambiguous. Let (π*, θ*)be the 
optimal solution for (P1). Using the approximation: 

 

( ) ( ) *
, ,j

t t ij t i
i I

v x v x A a π
∈

− − ≈∑  

 
then we can select an offer set dynamically in period 
tand state x by solving: 

 

( )
( ) ( )*

, 1,max .n nj j i j t ii IS J x n N j S
P S f aλ π +∈⊆

∈ ∈

−∑ ∑ ∑                (12) 

 
Relationship to (LP): To derive (LP) from (D1), 
define: 
 

( ) , ,
,

, .
t

t x S
t x X

t S S Jγ
∈

≡ ∀ ⊆∑      

 
The objective function (3) follows immediately 

from (2) and (8). Now fix i  and sum (9) over t to obtain: 
 

( )

( )
( )1

, ,
, ,

, 1, ,
2, , , ,

     .

t

t

i t x S i
t x X S J x

i n nj i j t x S
t T x X S J x n N j S

x c

x P S a

γ

λ γ
−

∈ ⊆

−
= ∈ ⊆ ∈ ∈

= +

⎛ ⎞
−⎜ ⎟

⎝ ⎠

∑

∑ ∑ ∑
L

 

 
Canceling terms and rearranging yields: 
 

( )
( )

( )

, , ,
1, , 1, ,

, ,
,

        .
t

T

i n nj i j t x S
t T x X S J x n N j S

i T x S
x X S J x

c P S a

x

λ γ

γ
= − ∈ ⊆ ∈ ∈

∈ ⊆

=

+

∑ ∑ ∑

∑
L

         (13) 

 
If 0, ,t x Sγ > , we have , , ,i i jx a i j S≥ ∀ ∈ , so

( ) , , i n nj i jn N j S
x P S a iλ

∈ ∈
≥ ∀∑ ∑ . Therefore, (13) implies: 

 

( ) ( ) ( )
( )

, , ,
, ,

, ,
t

i n nj i j t x S n ni
t x X S J x n N j S S J n N

c P S a Q S t S iλ γ λ
∈ ⊆ ∈ ∈ ⊆ ∈

⎛ ⎞
≥ = ∀⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑  

 

which yields (4). In addition, summing (10) over t, we 
derive ( ) .

S J
t S T

⊆
=∑  

The arguments above show that ZLP ≥ ZPI. As 
mentioned, any feasible solution to (P0) gives an upper 
bound to the optimal value from the Eq. (1). We 
summarize the results in the following proposition. 

 
Proposition 1: Any feasible solution to (D1) yields a 
feasible solution to (LP) having the same objective 
value. Hence ZLP ≥ ZPI ≥v1 (c). 

Liu and Van Ryzin (2008) show that the bound ZLP is asymptotically optimal, i.e., converges to v1(c), as 
demands, capacity and time horizon scale linearly, that 
is, ZLP is also asymptotically optimal.  
 

COLUMN GENERATION ALGORITHM 
 

The program (D1) has a large number of variables 
but relatively few constraints, so we can solve it via 
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column generation. Denote the reduced profit of γt,x,S 
by: 

 
( )

( )

, ,

, 1, , 1        .

t x S n nj j
n N j S

t i i t i i n nj i j t t
i I n N j S

P S f

x x P S a

ω λ

π π λ θ θ

∈ ∈

+ +
∈ ∈ ∈

=

⎡ ⎤⎛ ⎞
− − − − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑ ∑
 

 
Proposition 2: A feasible solution to (D1) is: 
 

( ), ,

1  if , ,
ˆ   , , .

0  otherwise,t x S t

x c S
t x X S J xγ

= =∅⎧
= ∀ ∈ ⊆⎨
⎩

 

 
Proof: For all t and i, the left-hand side of (9) is: 
 

, , , ,
, ( )

ˆ ˆ .i t x S i t c i
x S J x

x c cγ γ ∅
⊆

= =∑  

 
Likewise, for all t >1, the right-hand side of (9) is: 
 

( )
( )1

, 1, ,
,

ˆ
t

i n nj i j t x S
x X S J x n j S

x P S aλ γ
−

−
∈ ⊆ ∈

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

 

1, ,ˆi t cc γ − ∅=  

 
.ic=  □ 

 
Given an initial feasible solution to (D1) supplied 

by Proposition 2, denoting the resulting prices by θ,π, 
now solve: 

 

( ) ( )
( )

( )

( )
( )

, ,, , , ,

, 1, , 1

, 1,, ,

max max

                          

                       max

t t

t

t x S n nj jt x X S J x t x X S J x n N j S

t i i t i i n nj i j t t
i I n N j S

n nj j i j t it x X S J x i I

P S f

x x P S a
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∈ ∈
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∈ ∈ ∈

+∈ ⊆
∈

=

⎡ ⎤⎛ ⎞
− − − − +⎢ ⎥⎜ ⎟
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∑

( ), 1, 1                          .
n N j S

t i t i i t t
i I

xπ π θ θ
∈ ∈

+ +
∈

⎞
⎜ ⎟
⎝ ⎠

− − − +

∑ ∑

∑

 

 
If the optimal function value is nonpositive, then 

we have attained optimality; otherwise, we add the 
column to the existing set of columns for (D1). For 
fixed t >1 , this is equivalent to solving the following 
optimization problem: 
 

(S0)
 

( )
( )

( )

, 1,,

, 1, 1

max

          

t
n nj j i j t ix X S J x n N j S i I

t i t i i t t
i I

P S f a

x

λ π

π π θ θ

+∈ ⊆ ∈ ∈ ∈

+ +
∈

⎛ ⎞
−⎜ ⎟

⎝ ⎠

− − − +
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∑
 

{ }
,s.t.     ,          , ,

          0,..., , .
i j i

i i

a x i j S

x c i
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∈ ∀
 

 
Under the multinomial logit (MNL) model, a 

choice set S can be represented by an availability 
vector. We let the binary vector u 0,1 ke the 
characteristic vector of set S. It indicates which 
products are offered at any period, uj =1 if j  and uj = 
0 otherwise. So we can then express (S0) in terms of the 
binary variables uj: 

 

(S1)

  

( )

( )

, 1,

,
0

, 1, 1

max

    

n

n

j nj j i j t ij J i I
nx u n N j nj nj J

t i t i i t t
i I

u v f a

u v v

x

π
λ

π π θ θ

+∈ ∈

∈ ∈

+ +
∈

−

+

− − − +

∑ ∑
∑ ∑
∑

 

 

{ }
{ }

,s.t.  ,       , ,

      0,1 ,       ,  

      0,..., ,  .

i j j i

j

i i

a u x i j

u j

x c i

≤ ∀

∈ ∀

∈ ∀

 

 
In fact, (S1) is a Mixed Integer Non-Linear 

Programming (MINLP) problem. Solving such a 
problem is most challenging, since there is no a direct 
method capable of doing it efficiently. In the following, 
we transform (S1) into a Mixed Integer Linear 
Programming (MILP) problem. The advantage of this 
transformation is that any mixed integer programming 
(MIP) software package can be used to solve (S1): 

 
Let; 

 

0

1 ,   ,
n

n
j nj nj J

n N
u v v

α
∈
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+∑

 

 
,   , .nj n j nz u n N j Jα= ∀ ∈ ∈  

 
For all , nn N j J∈ ∈ , variable njz can be represented 

by the following linear inequalities: (1) n nj jz K Kuα − ≤ − ; 
(2) nj nz α≤ ; (3) nj jz Ku≤ ; (4) 0njz ≥ , where K is a large 
number (i.e., greater than nα ). Furthermore, by the 
definition of nα and njz , we have: 
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Theorem 1: (S1) is equivalent to (S2); i.e., both 
optimization problems have the same optimal objective 
value and an optimal solution to one can be obtained 
from an optimal solution of the other. So we only need 
to solve (S2) to find the maximum reduced profit for 
each t >1. 
 
Proof: Since (S2) is obtained from (S1) through change 
of variables, it can be shown that an optimal solution to 
(S1) is a solution to (S2) and both optimization 
problems have the same optimal objective value at the 
solution.  

Suppose ( )ˆˆ ˆ ˆ, , ,x u z α  is an optimal solution to (S2). 
Then ( )ˆ ˆ,x u  clearly satisfies the constraints in (S1). 
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where the last equation follows from (14). It then 
follows that the two optimization problems have the 
same objective value at the given solution. Combining 
the results in all cases yields Theorem1. Where the last 
equation follows from (14). It then follows that the two 
optimization problems have the same objective value at 
the given solution. Combining the results in all cases 
yields Theorem 1. 
Define: 
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to be the maximum reduced profit for period t under θ,n. 

Proposition 3: Consider the restricted version of (D1) 
containing only decision variables γt,xS, whose indices 
are in a subset ξ of all possible indices. Let ( )( ), ,γ θ π%% %

denote the corresponding optimal primal-dual pair for 
this restricted problem and let *
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respect to θ%  and π% . Let Zξ denote its optimal objective 
value. Then: 
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Proof: Consider any feasible γ to (D1) and any 
numbers θt and πt,i, t,i. Multiply both sides of (8) by πt,i and add θt for each t, i, then add the resulting equations 
together with: 
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where the last equality follows from (11). This relation 
is true for all feasible solutions γ. Particularly, for an 
optimal solution γ* to (D1), there is objective value 
Z(γ*) =ZDI. Furthermore, from strong duality applied to 
the restricted problem, we have: 
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As a result, we obtain: 
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For (D1), Proposition 3 gives an upper bound on 

the optimality gap between an optimal solution and a 
given feasible solution. To ensure that the objective 
value of the current solutionγ%based on columns ξ is 
within Ω of an optimal solution, i.e., ZD1/Zξ≤ 1 +Ω, it 
suffices to ensure that: 
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