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Abstract: This study provides a numerical tool for modeling and analyzing of a two degree of freedom suspension 
system that is used in farm tractors. In order to solve the corresponding coupled system of equations, dynamic modal 
expansion method and matrix transformation technique were first used to formulate the problem and to obtain the 
natural frequencies and modes of the tractor rear axle suspension. Galerkin’s method over the entire time domain 
was then employed to analyze the modal equation of motion for the unforced response. It was shown through 
calculations that the algorithm over entire time domain could not be generalized for computer implementation. In 
order to develop a stand-alone algorithm implementable in any programming environment, Galerkin’s method was 
applied over smaller elements of time domain. The modal and vertical equations of motions describing the 
suspension system were then solved numerically for both with and without damping cases. The program was used 
successfully to solve the actual coupled equations and to plot the results. Finally, for the damped case, where 
stability of the system was expected, the numerical results were confirmed through Lyapunov stability theorem. 
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INTRODUCTION 

 
Suspension systems are necessary to improve ride 

comforts and to reduce vibrations that are harmful to 
health and deleterious to performance for the driver of 
an agricultural tractor. A research conducted by Lines 
et al. (1995) on whole tractor body during driving has 
compared unsuspended and suspended transmitted 
vibrations during different tasks and concluded that 
transports involve the highest vibration level and risk 
for the driver's safety. The subject of the transmitted 
vibrations of agricultural tractors to the driver and 
measuring the behavior of the seat vibrations has been 
widely discussed over the last 50 years (Rossegger and 
Rossegger, 1960; Matthews, 1964, 1977; Stayner, 1976; 
Mothiram and Palanichamy, 1985; Deboli and Potecchi, 
1986, Park and Stott, 1990; Hansson, 1996; Mehta and 
Tewari, 2000; Scarlett et al., 2007; Servadio et al., 
2007; Mehta et al., 2008). Experiments for improving 
tractor operator ride and optimization of the cabin 
suspension parameters have been studied by Hilton and 
Moran (1975), Hansson (1995), Marsili et al. (2002), 
Thoresson (2003) and Zehsaz et al. (2011). In farm 
tractors, the reason for free vibrations of the suspension 
system is due to the condition that these machines are 
subjected to work, which intensify transferring back 

and forth of the kinetic energy, in the suspension mass 
and the potential energy in the springs. It is therefore of 
interest to study this system when it is set off with an 
initial input which causes free vibrations at its natural 
frequency and then damp down to zero. It should be 
noted that this case is different from the forced 
vibration where the frequency of the vibration is the 
frequency of the applied force and with order of 
magnitude being dependent on the actual mechanical 
system. 

Various analytical approaches have been already 
utilized to extend tractor ride simulation and 
mathematical models for minimization of vibration 
responses (Stayner, 1972; Stayner et al., 1984; Patil and 
Palanichamy, 1988; Lehtonen and Juhala, 2006; Yang 
et al., 2009; Kolator and Białobrzewski, 2011). With 
the aim of providing improved isolation from vibrations 
on more than one axis in farm tractors, the development 
of more sophisticated suspension systems lead to more 
complex dynamic coupled initial or boundary value 
problems which can be solved with numerous available 
computer tools, such as MATLAB® (The MathWorks 
Inc, Natick, MA) ode45 or bvp4c built-in functions, 
however, in either case, these equation must be first 
reduced into an equivalent system of first-order 
ordinary differential equations. This step is necessary 
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because for example, MATLAB uses a variable step 
Runge-Kutta (Dormand and Prince, 1980) method for 
ode45 and three-stage LobattoIIIa formula (Shampine 
et al., 2000) for bvp4c to solve differential equations 
numerically, which is valid only for first order 
equations. This routine creates a limitation for writing a 
general computer algorithm since it requires the system 
of first order differential equations to be analytically 
updated each time as dynamics of the original 
suspension model changes (Roy and Andrew, 2011). 

As an alternative numerical approach for solving 
complex differential equations, Galerkin's Method 
(Kantorovich and Krylov, 1964) is widely used, 
especially for problems to which no analytical function 
exists or is known to exist. Some of the applications of 
Galerkin’s method through few numbers of trial 
functions over entire time domain have been discussed 
for agricultural engineering problems by Carson et al. 
(1979). 

Since the original dynamic equation of the tractor 
suspension system was coupled, the Vertical Equations 
of Motion (VEOM) in physical coordinates were first 
projected onto modal coordinates using eigenvalues and 
eigenvectors that were resulted from solving the un-
damped frequency eigen-problem. Galerkin’s method 
was then employed for solving the two uncoupled 
modal equations independently. It was shown that as 
the number of trial functions to approximate the modal 
equation increases in Galerkin’s method over the entire 
time domain, the power of terms starts growing and 
therefore makes this method unsuitable for 
implementation as a generalized algorithm. To develop 
a stand-alone algorithm that could be generalized for 
this problem and also implementable in any 
programming environment, Galerkin’s method was 
applied over adjustable same-sizes smaller elements of 
time domain. It was proven and shown that this 
modification provides a flexible and general numerical  

tool for implementation in computer simulation and 
successfully solved the two uncoupled modal equations 
numerically for both with and without damping cases. 
Finally the numerical results from modal equations 
were transformed back to physical coordinates and 
superpose to produce the response of the actual 
suspension system.  
 

MATERIALS AND METHODS 
 

An active suspension model of tractor is shown 

schematically in Fig. 1. We consider the two Degree of 

Freedom (DOF) mass-spring and shock absorber 

dynamic system where �� and �� are the tractor mass 

and the suspension mass in (��), �	 and �
 are the 

displacement of tractor body in (�) and the suspension 

mass, �� and �� are the spring coefficients in (�. �
�) 

and �� and �� are the damper coefficients in (�. �. �
�). Based on Newton’s law, the two VEOM 

describing this system are given in (1) and (2). The 

inputs of the systems are the control force � from the 

actuator and the field disturbance �. For the purpose of 

free vibration analysis, we ignore the control force and 

disturbance effects and then reproduce the VEOM in 

matrix notation as given by the following boundary 

value problem in (3):  
 �� ������� − �� ������ − ����� � − ��(�� − ��) − � = 0     (1) 

 �� ������� − �� ������ − ����� � − ��(�� − ��) −
�� ����� − ����� � − ��(� − ��) + � = 0                 (2) 
 "#$ + %#& + '# = 0(� ≤ ( ≤ (� *+: ��((�) = ���, ��((�) = ���, ��((�) = ���, ��((�) = ���                                                       (3) 
 

 
 

Fig. 1: Schematic diagram of a tractor model and its active suspension system
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where, " = -�� 00 ��. ,    %  = - �� −��−�� �� + ��.  and 

' = - �� −��−�� �� + ��. are the suspension mass, damper  

and spring coefficients matrix, respectively, x, 4&  and 4$ , ∈ 6�×�, are the displacement, velocity and acceleration 

vectors. Furthermore, it can be seen that M, B and K are 

symmetric, " is Positive Definite (PD) whereas K is 
nonnegative definite. As a consequence of these 

properties, the natural frequencies (in ;< unit, =� and =�) of the two-DOF  suspension  system  shown  in 
Fig. 1, undergoing in-phase harmonic motions, will be 
nonnegative  and  real.  These natural frequencies can 
be determined  by  solving  the  characteristic  
polynomial of the free-vibration eigen-problem, >. ?@ = =A� B  associated  with  Eq. (3).   Here,  C = 1, 2 stands for natural frequency index and ? = FX� X�H  is  a  nonzero  2-eigenvector  matrix that 

has the amplitudes of the motions, 4(I) =F��(() = X� . J(() ��(() = X�. J(()HK of the 

suspension masses as entries. Each eigenvector ?@ are 

scaled through ?@ = LMNM where NM is the notation for 

the C�O normal mode and LM is the scaling factor chosen 
according to unit largest entry eigenvector 
normalization criteria described by Roy and Andrew 
(2011). The modal masses and stiffnesses associated 

with the modes N�and N� are calculated through PA = NMQBNM and RA = NMQ>NM respectively. In order to 

get unit generalized masses, modes NM are renormalized 

through NSM = LMTNM where LMT are found by solving NSMQBNSM = 1. The two-DOF displacement vector 4(I) is 

then expressed in terms of normal coordinates U(() as: �M(() = ∑ NMUM(()�MW� = XY where X = FNS� NS�H is 

the modal matrix and ��(() and ��(() are ��(() and ��(() respectively. The generalized mass (BZ), 

damping ([Z) and stiffness (>Z) are defined as BZ =X\B X = ], where ] is the identity matrix, [Z =X\[ X and >Z = X\> X = diag (=M�). Since the 

generalized damping matrix is not diagonal, the 
resulting modal VEOM for the damped system will not 
decouple. To resolve this problem, Rayleigh quotient 
(Nocedal and Wright, 2006) diagonalization technique 

was applied. The entries of the diagonalized [Z matrix 

are calculated through *M = NMQ[NM/NMQNM. The 
effective modal damping factors are also calculated 

through ab = [Zb/c=M. The two decoupled solvable 

modal equations of motion with boundary conditions 
are given in (4 and 5): 
 PdeU$�(() + *�U&�(() + =��U�(() = 0,  

 *+: U��((�) = ΦK M ���, U��((�) = ΦK M ���    (4) 
 Pd�U$�(() + *�U&�(() + =��U�(() = 0,  

 *+: U��((�) = ΦK M ���, U��((�) = ΦK M ���  (5) 

These two modal equations are first solved 
numerically through Galerkin’s method over the entire 

domain F(�, (�H. For the sake of convenience in 

elaborating the technique, the index 1 and 2 is omitted 

from Eq. (4) and (5). We let PdU$S + *dU&S + =Uf = 6((), 

where 6(() is the residual function. This will result a 
continuous function in the form of summation of some 
polynomials that are not linear. The approximate 

solution Uf(() is expressed as a sum of trial functions in 

the form of Uf(() = ∑ gM�MhMW� (() where i is the number 

of term used, �M(() are known trial functions and gM  are 
coefficients to be determined using the weighted 
residual method. The Galerkin’s method differs from 

other weighted residual methods in that the i weighted 

functions are same as the i number of trial function, �M((). Thus we obtain the i number of weighted 

residual equations as: j 6(()�M(()k(���e = 0, C = 1, … , i, 

which solving yields: 
 

−Pd m k�Mk( n go
h

oW�
k�ok( k( + *d m �M(() n go

h
oW�

k�ok( k(��
�e

��
�e

+ = m �M(()��
�e

n go
h

oW�
�ok(

= PdFU&((�)�M((�) − U&((�)�M((�)H 
 FpHh×hqrsh×� = qtsh×�                          (6) 

 

where, p = u−PdFp�H + *dFp�H + =FpvHw,  p�Mo =
j �xy�� �xz�����e k(, p�Mo = j NM �xz�����e k( pvMo = j �M�o���e k( 
and tM = PdFU&((�)�M((�) − U&((�)�M((�)H. By 

considering Uf(() = ∑ gMUMhMW� (() as the trial function, 

the elements of the p matrix are given through formula 
in (7). The implementation of this method for the given 
trial function has been provided in Table 1. It can be 
seen that the ascending power of the terms in the 

elements of the p matrix depends on the number of 
terms in the trial function. In addition, selection of the 
different trial function will result in a different solution 
which is considered a drawback for a general 
implementation:  
 

{|M×o}h×h = ~−P. (C. �). (�o�M
� − (�o�M
�
C + � − 1 �

+ ~*. �. (�M�o − (�M�o
C + � �

+ ~=. (�M�o�� − (�M�o��
C + � + 1 � 

C, � = 1, … , i                  (7) 
 

To generalize this method for numerical 

implementation, we first consider (i�) individual same �� size elements of time domain. In this approach, a 

general element, � that has two nodes, C and � such that: 
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Table 1: Implementation of Galerkin’s method over entire time 

domain, for solving Eq. (4) and (5) with "�" trail functions 

Pseudo code and description 

Building overall | matrix J�� C = 1: i {i: Number of trial functions} J�� � = 1: i |� matrix corresponding to the U$  |�y,z = (C. �). ((�o�M
� − (�o�M
�)/(C + � − 1);   |� matrix corresponding to the U&  |�y,z = �. ((�M�o − (�M�o)/(C + �);   |v matrix corresponding to the U |vy,z = ((�M�o�� − (�M�o��)/(C + � + 1);  �ik �ik | = −Pd. |� + *d. |� + =�. |v; {Overall | matrix} 

Building |� matrix for i × i system of equations J�� C = 1: i − 1 J�� � = 1: i |�y,z = |M,o + u�. Pd. (�o�M
� − �. Pd. (�o�M
�w; �ik �ik J�� � = 1: i |�h
�,o = (�o ; |�h,o = (�o ; �ik J�� C = 1: i − 1 ℱM,� = 0; �ik ℱh
�,� = U�; {Applying boundary conditions } ℱh,� = U�; F�H = F|�H
�. FℱH;  {gM: Coefficients of terms} ( = (�: k(: (�; {(� ≤ ( ≤ (�} J�� C = 1: ((� − (�)/k( + 1 

{CalculatingUf(() = ∑ gM�MhMW� (()} J�� � = 1: i UM = UM + �o,�. (Mo ; �ik �ik J�� C = 1: i kUM = (UM�� − UM)/��; {Calculating U&} �ik J�� C = 2: i k�UM = (kUM�� − kUM)/��; {CalculatingU$} �ik 

 (o > (M is first considered. In order to apply Galerkin’s 

method to one element at a time, a local coordinate � 

such that � = 0 at node C and � = 1 at node � is 
introduced. The relation between ( and � for element � 

is then: ( = (M + �((o − (M), where (o − (M = �� . The 

approximate solution within the element � can be given 

by: Uf(() = UM��(() + Uo��((), where �� and �� are the 

interpolation functions and can be expressed as a 
function of the variable � as ��(�) =  1 − � and ��(�) = �. The derivatives of �M are then k��/k( =−1/�� and k��/k( = 1/��. It can be seen that the 
interpolation functions satisfy the required relations: ��((M) = 1, ��u(ow = 0, ��((M) = 0, ��u(ow = 1. In this 

formulation, Uf((M) = UM and Uo are nodal solution at 

nodes i and j, respectively, the derivative of Uf(() is 

obtained as: kUf/k( = 1/�� ���e�� ����� � �U�U��. Applying 

the Galerkin method at the element level yields: j uPdU$S + *dU&S + =Ufw�M(()k( = 0�z�y . Using integration 

by part, to reduce the order of differentiation of Uf and 

then changing the variable ( to � by substituting kUf/k( 

and k�M/k( and replacing integration domain by using 

the relation: k( = ��k�, we obtain the following 
compact form solution in (8): 

 ���� j ��k��/k�k��/k�� ���e�� ����� � �U�U��� k��� −
*d j ����(�)��(�)� ���e�� ����� � �U�U��� k��� −
=�� j ����(�)��(�)� . F��(�) ��(�)H �U�U��� k��� =
Pd �U&u(ow�M(1) − U&((M)�M(0)�   {p(�)}�×�. q�s�×� = qts�×�                                    (8) 

 

Here, {p(�)}�×� = �Pd �p�(�)� − *d �p�(�)� − = �pv(�)��, 

q�s = �UMUo� and q�s = �−U&((M)U&((o) �. The values of matrices 

corresponding to mass, damper and spring were 
calculated as follow: 
 

�p�(�)��×� = �1��� m
� 
  
¡ �k��k� �� �k��k� � �k��k� �
�k��k� � �k��k� � �k��k� ��

¢£
££
¤  k��

�
= (1/��)F1 −1 ; −1 1H 

 

�p�(�)��×� = m
�  
 ¡��(�)k��k� ��(�)k��k���(�)k��k� ��(�)k��k� ¢££

£¤�
� k�

= F−1/2 1/2 ; −1/2 1/2H 
 

�pv(�)��×� = �� m ¥ u��(�)w� ��(�). ��(�)
��(�). ��(�) u��(�)w� ¦ k��

� = ��F1/3 1/6 ; 1/6 1/3H 
 

It should be noted that we do not need to convert U&S((o) and U&S((M) because the boundary conditions do not 

use the approximation scheme. This equation is derived 
for each element � = 1, 2, … , i� where i� is the 
number of elements. The right hand side of these 
equations contain terms that are derivatives at the nodes U&((M) and U&((o) which are not generally known, 

however the second equation for the element (�) can be 

added to the first equation of element (� + 1) to 
eliminate the derivative term. Continuing this process 
for  successive  elements  and  the  2 × i� equations for 
the i� elements will reduce to i� + 1 = i� number of 
equations which is equal to the number of nodes. The i� equations to be solved take the following form in (9) 

where  |©�ª«  is the global stiffness matrix.The 
implementation of this method has been provided in 
Table 2. 
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Table 2: Implementation of Galerkin’s method over "i�” individual 
time elements, for solving Eq. (4) and (5) 

Pseudo code and description 

Defining time element length ��  =  ((� − (�)/i�; 
Defining time increments ( = (�: ��: (�; |� matrix corresponding to the U$  |�(�)  =  Pd/�� . F1, −1; −1,1H; |� matrix corresponding to the U&  |�(�)  =   *dF−1/2 1/2; −1/2 1/2H; |v matrix corresponding to the U |v(�)  =   −=. �� . F1/3 1/6; 1/6 1/3H; 
Overall stiffness matrix |(�)  =  |�(�) + |�(�) + |v(�); 
Assembling global stiffness matrix, |©�ª« J�� C = 1: i� + 1 J�� � = 1: i�  + 1 CJ (C == �) CJ(C == 1) |©�ª«M,o = |�,�(�); ����CJ(C == i� + 1) |©�ª«M,o = |�,�(�); ���� |©�ª«M,o = |�,�(�) + |�,�(�); �ik ����CJ(C == � + 1) |©�ª«M,o = |�,�(�); ����CJ(� == C + 1) |©�ª«M,o = |�,�(�); ���� |©�ª«M,o = 0; �ik �ik �ik J�� C = 2: i� + 1 {Continue assembling |©�ª«} |©�ª«e,y  =  0; {Striking the first and the last rows} |©�ª«¬�­e,y  =  0; �ik |©�ª«�,�  =  1; |©�ª«¬�­e,¬�­e  =  1; J�,�  =  U�; {Applying BC,  U((�) = U�} Jh���,�  =  U�; {Applying BC,  U((�) = U�}  FUH = F|©�ª«H
�. FJH; {Solving for U} J�� C = 1: i�     kUM = (UM�� − UM)/��; {Calculating U&} �ik J�� C = 2: i� k�UM = (kUM�� − kUM)/��; {CalculatingU$} �ik 

 

� 
  
¡ 1 0 0 . . 0p��(�) p��(�) + p��(�) p��(�) . . 00 p��(�) p��(�) + p��(v) . . 0. . . . . .0 0 0 . 0 1¢£

££
¤

h®×h®

.
°̄±
°²

U�U�Uv..Uh³°́
°µ

h®×�

=
°̄±
°²

U((�)00..U((�)³°́
°µ

h®×�

 

Fp©�ª«Hh®×h® . q�sh®×�WqU((�) 0 0 . . U((�)sh®×�Q  

              (9) 

Table 3: System parameters values 

Parameters  Values =� (;<)  2.7340 =� (;<)  7.4840 ¶�,� (�)  1 ¶�,� (�)  1.2890 ¶�,� (�)  1 ¶�,� (�) -1.4645 N�,� (�)  0.7753 N�,� (�)  1 N�,� (�)  1 N�,� (�) -1.4645 P� (��)  480.4600 P� (��)  907.5400 R� (�. �
�)  3593.4000 R� (�. �
�)  50834 NS�,� (�)  0.0354 NS�,� (�)  0.0456 NS�,� (�)  0.0332 NS�,� (�) -0.0486 *��,�(�. �. �
�)  0.0034 *��,� (�. �. �
�) -0.0156 *��,� (�. �. �
�) -0.0156 *��,� (�. �. �
�)  0.1349 R�� (�. �
�)  7.4789 R�� (�. �
�)  56.0126 *��M·d� (�. �. �
�)  1.0061 *��M·d� (�. �. �
�)  38.9460 

�̧ (�. �. �
�/;<)  0.1839 ¸� (�. �. �
�/;<)  2.6019 

 

RESULTS 

 

The two uncoupled modal equations were solved 

through both numerical algorithms in Table 1 and 2 

with numerical values provided in Table 3. The two 

algorithms showed no significant difference when used 

for small time frames, however, as mentioned earlier, 

when number of terms increases in the first algorithm, 

the power of the trial functions also ascends linearly. In 

order to examine the behavior of the suspension system 

under no force, the second algorithm along with modal 

analysis was used to calculate displacements of 

suspension masses as well as their velocity and 

acceleration in a time frame of 5 sec and in the presence 

and absence of damping. Plots of the responses are 

shown in Fig. 2 to 5 for both modal equations Y(() and 4((). For the damped case (Fig. 4 and 5), where 

vibrations are ultimately damped to zero, asymptotic or 

exponentally stability is observed. To determine a 

conclusive result, we define X = (x�, x�) = (4, 4& ) as the 

state of the system, where k/k(F#� #�HQ =F#� −('/")#� − (%/")#�HQ. To check the stability 

of this system, we proceed with the Lyapunov’s direct 

method by considering the energy of the system as the 

Positive Definite (PD), continuously differentiable 

candidate Lyapunov function given by ¹(?, º) =�� B#�� + �� >#��. Therefore, direct differentiation  of  this 
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Fig. 2: Plots of modal responses, η�(t), η�(t), η& �(t),η& �(t), η$ �(t) and η$ �(t) for zero damp case 

 

 
 
Fig. 3: Plots of system responses, ��((),     ��((), �&�((), �&�((), �$�(() and �$�(() for zero damp case 
 

 
 

Fig. 4: Plots of modal responses, U�((),   U�((), U&�((),  U& �((),  U$ �(() and U$�(() for damped case 

 

function along trajectories of the original system yields:  ¹& (½, º) = B#�#& � + >#�#�. We can re-write ¹&  as ¹& (½, º) = −[#�� to confirm that the function  −¹& (½, º) 

does not depend on ��, hence it is quadratic but not 

locally   positive   definite   and   we   cannot   conclude 

 
 

Fig. 5: Plots of system responses, ��((),     ��((), �&�((),  �& �((), �$�(() and �$�(() for damped case 

 
exponentially stability, however by using Lassalle’s 

invariance principle, asymptotic stability can be 

concluded. If we define the PD function: 
 

 ¹(?, º) = �� F#� #�H � R ¾P¾P P � F#� #�HQ 

 

where, ¾ is a very small positive constant, the derivative 

of the Lyapunov  candidate would be: 

 ¹& (½, º) =−F#� #�H �¾> �� ¾[ ; �� ¾[ [ − ¾B� F#� #�HQ  

  
We can now see that by choosing of sufficiently small 

values of ϵ, the function V& (X, t) can be made negative 

definite and exponential stability can be concluded as 

shown in figure. 

 

CONCLUSION 

 
This study discussed development of an 

implementable algorithm for assessing the performance 
of a two-degree of freedom tractor active suspension 
model under free vibrations. The natural frequencies, 
amplitudes of the motions, normal modes, generalized 
mass, stiffness and damping matrices, re-normalized 
normal modes, diagonalized damping matrix and 
effective modal damping factors were determind. 
Because the original vertical equations of motion in 
physical coordinates were coupled, they were first 
projected onto modal coordinates. Each modal equation 
was then solved independently through Galerkin’s 
method over same size elements of time domain. The 
numerical results from modal Eq. (4) and (5) were then 
transformed back to physical coordinates to construct 
the response of the actual system given by Eq. (3). The 
results were plotted for both no-damp and damped case 
to show the effectiveness of the implemented numerical 
method in solving the two-DOF suspension system. For 
the damped case, since the asymptotic or exponentially 
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stability behavior of response could not be exactly 

determined from response plot of x(t), the Lyapunov’s 
direct method was applied and exponential stability was 
concluded. 
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