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Abstract: In this study, the steady stagnation point flow and heat transfer of three different types of nanofluid over a 
linearly shrinking/stretching sheet is investigated numerically. A similarity transformation is used to reduce the 
governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then 
solved numerically using the fourth-order Runge-Kutta method with shooting technique. The effects of the 
governing parameters on the nanofluid flow and heat transfer characteristics are analyzed and discussed. Numerical 
results for the local Nusselt number, skin friction coefficient, velocity profiles and temperature profiles are presented 
for different values of the solid volume fraction (�) and for three different types of nanoparticles (Cu, Al2O3 and 
TiO2) in stretching or shrinking cases. It is found that the skin friction coefficient and the heat transfer rate at the 
surface are highest for Cu-water nanofluid compared to the Al2O3-water and TiO2-water nanofluids. Furthermore, it 
was seen that the effect of the solid volume fraction of nanoparticles on the heat transfer and fluid flow 
characteristics is more important compared to the type of the nanoparticles. 
 
Keywords: Forced convection, nanofluid, numerical solution, similarity transform, stagnation point flow, 

stretching/shrinking sheet 

 
INTRODUCTION 

 
The viscous flow and heat transfer in the boundary 

layer region due to a stretching sheet has several 
theoretical and technical applications in industries such 
as the aerodynamics, food processing, extrusion and 
glass fiber production. Crane (1970) was the first to 
consider the steady boundary layer flow of a viscous 
fluid which is incompressible due to a linearly 
stretching plate. On the other hand, Hiemenz (1911) 
investigated the two-dimensional stagnation point flow 
over a plate. The local velocity of the fluid at the 
stagnation-point is zero. Stagnation flow, describing the 
fluid motion near the stagnation region, exists on all 
solid bodies moving in a fluid. The stagnation region 
encounters the highest pressure, the highest heat 
transfer rate and the highest rates of mass deposition. 
Chiam (1994) extended the works of Hiemenz (1911) 
and Crane (1970) by study the stagnation-point flow 
over a stretching sheet. The velocity of the 
stretching/shrinking sheet can vary linearly or 
nonlinearly. Some very important investigations 
regarding the stagnation-point flow over stretching 
sheet under different physical situations were made by 
Nazar et al. (2004),  Ishak  et al. (2006, 2009), Layek  
et al. (2007) and Nadeem et al. (2010). Recently an 

analysis is carried out to investigate the stagnation-
point flow and heat transfer over an exponentially 
shrinking sheet by Bhattacharyya and Vajravelu (2012). 
The viscous flow and heat transfer in the boundary 
layer region due to a shrinking sheet attracted the 
attention of researchers for its interesting physical 
character, for example, on a rising, shrinking balloon. 
The boundary layer flow caused by a shrinking sheet is 
quite different from the stretching case. It is also shown 
that mass suction is required to maintain the flow over 
the shrinking sheet. Wang (2008) studied the steady 
stagnation-point flow towards a shrinking sheet. The 
unsteady case of recent problem is investigated by Fan 
et al. (2010)  with assumptions that the sheet is shrunk 
impulsively from rest and simultaneously the surface 
temperature is suddenly increased from that of 
surrounding fluid. 

Nanofluids are a new class of nanotechnology-
based heat transfer fluids engineered by dispersing 
nanometer-scale solid particles with typical length 
scales on the order of 1 to 100 nm in traditional heat 
transfer fluids (Das et al., 2007). Nanoparticles have 
different shapes such as: spherical, rod-like or tubular 
shapes and so on. Choi (1995) was the first who 
introduced the term of nanofluids to describe this new 
class of fluid. The presence of the  nanoparticles  in  the  
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Fig. 1: The schematic diagram of two-dimensional stagnation 

point flow over a stretching/shrinking sheet 

 

fluids increases appreciably the effective thermal 

conductivity of the fluid and consequently enhances the 

heat transfer characteristics. This fact has attracted 

many researchers such as Abu-Nada (2008), Wang and 

Mujumdar (2007), Tiwari and Das (2007), Oztop and 

Abu-Nada (2008), Maïga et al. (2005) and Nield and 

Kuznetsov (2009) and so on, to investigate the heat 

transfer characteristics in nanofluids. 

The main goal of the present study is to investigate 

the stagnation-point flow and heat transfer of a 

nanofluid adjacent to a linearly stretching/shrinking 

sheet. The model introduced by Tiwari and Das (2007) 

has been used in the present study. Using a similarity 

transform, the Navier-Stokes equations have been 

reduced to a set of nonlinear ordinary differential 

equations. The resulting non-linear system has been 

solved numerically using the fourth-order Runge-Kutta 

method with shooting technique. Finally, the results are 

reported for three different types of nanoparticles 

namely alumina, titania and copper with water as the 

base fluid. 

 

PROBLEM STATEMENT AND 

MATHEMATICAL FORMULATION 

 

Consider the steady two-dimensional stagnation-

point flow of a nanofluid on a stretching/shrinking sheet 

as shown in Fig. 1. Cartesian coordinates x and y are 

taken with the origin O at the stagnation point and are 

defined such that the x-axis is measured along the 

stretching/shrinking sheet and the y-axis is measured 

normal to it. It is assumed that the velocity of the 

external flow is given by ( ) ,eu x b x=  where b > 0 is the 

strength of the stagnation flow and the surface 

temperature Tw is a constant. Let ( )wu x a x=  be the 

velocity of the stretching/shrinking sheet, where α is the 

stretching/shrinking rate, with a>0 for stretching and 

a<0 for shrinking cases. The nanofluid is assumed 

incompressible and the flow is assumed to be laminar. 

It is also assumed that the base fluid (i.e., water) and the 

nanoparticles are in thermal equilibrium and no slip 

occurs between them. Under the boundary layer 

approximations and using the nanofluid model 

proposed by Tiwari and Das (2007), the basic steady 

conservation of mass and momentum equations for a 

nanofluid are: 

 

0,
u v

x y

∂ ∂
+ =

∂ ∂
                                                      (1) 

 
2

2
,

nfe
e

nf

duu u u
u v u

x y dx y

µ

ρ
∂ ∂ ∂

+ = +
∂ ∂ ∂

                      (2)
 

 

 

subject to the boundary conditions: 

( ) 0,

( ) ,

w

e

u u x a x at y

u u x b x as y

= = =

= = →∞
                   (3)

 

where,  

u , v  = The velocity components along the x-axes 

and y-axes respectively 

nfµ  = The viscosity of the nanofluid 

nfρ    = The density of the nanofluid, which are given 

by: 

  

( )
( )2.5

, 1 ,
1

f

nf nf f s

µ
µ ρ φ ρ φρ

φ
= = − +

−
  (4)

 

where, 

φ   = The solid volume fraction of the nanofluid 

fρ   = The density of the base fluid 

sρ   = The density of the solid particle  

fµ   = The viscosity of the base fluid 

 

It is worth mentioning that the viscosity of the 

nanofluid can be approximated as viscosity of a base 

fluid µf  containing dilute suspension of fine spherical 

particles and its expression has been given by Brinkman 

(1952). 

To obtain similarity solutions of Eq. (1) and (2) 

with the boundary conditions (3), we introduce the 

following similarity variables (Cheng, 1977; Lai and 

Kulacki 1990): 

 

( )
1 2

1 2 ( ), ,e
f e

f

u x y
xu f

x
ψ ν η η

ν

 
= =   
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where αf 
 is the thermal diffusivity of the fluid and  ψ is 

the stream function defined as u yψ= ∂ ∂  and

v xψ= −∂ ∂ , which identically satisfy Eq. (1). Using 

the non-dimensional variables in Eq. (5), Eq. (2) reduce 

to the following ordinary differential equation: 

 

( )
( )

2.5

21
( ) ( ) ( ) ( ) 1 0,

1 1 s

f

f f f fη η η η
ρ

φ φ φ
ρ

′′′ ′′ ′+ − + =
 

− − +  
    (6) 

 

subject to the boundary conditions: 

 

(0) 0, (0) ,

( ) 1 ,

f f b a c

f asη η

′= = =

′ → →∞
                         (7)

 

where primes denote differentiation with respect to η. 

The velocity ratio parameter defined as the ratio of 

stretching rate of the sheet and strength of the 

stagnation flow. c>0, c< 0   and 1c =  correspond to 

stretching, shrinking sheets and the flow with no 

boundary layer ( w eu u= ), respectively, while 0c =  is 

the planar stagnation flow towards a stationary sheet.  

The skin friction coefficient fC is defined as: 

2
,

2

w
f

f e

C
u

τ
ρ

=
                                                   (8)

 

 

where, wτ  is the surface shear stress which is given by: 

0

,w nf

y

u

y
τ µ

=

 ∂
=  ∂ 

                                             (9)

 

Substituting (5) into Eqs. (8) and (9) we obtain: 

( ) ( )
( )

1 2

2.5

01
Re ,

2 1
f x

f
C

φ

′′
=

−
                             (10)

 

where, Rex eu x ν=  is the local Reynolds number. 

The energy equation is (Tiwari and Das (2007): 

2

2
,nf

T T T
u v

x y y
α

∂ ∂ ∂
+ =

∂ ∂ ∂
                                  (11)

 

 

which is subjected to the boundary conditions: 

 

0,

,

wT T at y

T T at y∞

= =

= →∞
                              (12) 

The thermal diffusivity of the nanofluid ( nfα ) and 

the effective thermal conductivity of the nanofluid (knf
 

) 
approximated by the Maxwelle-Garnetts model (Oztop 
and Abu-Nada, 2008) and are given by: 

( )
( ) ( )
( ) ( )

( ) ( )( ) ( )

,

2 2
,

2

1 ,

nf

nf

p nf

s f f snf

f s f f s

p p pnf f s

k

C

k k k kk

k k k k k

C C C

α
ρ

φ

φ

ρ φ ρ φ ρ

=

+ − −
=

+ + −

= − +
                         (13) 

 

Here fk  is the thermal conductivity of the fluid, 

sk  is the thermal conductivity of the solid and 

( )p nfCρ  is the heat capacity of the nanofluid. It should 

be mentioned that the Maxwell- Garnetts model is 

based on the assumption that the discontinuous phase is 

spherical in shape and the thermal conductivity of 

spherical particles, the base fluid and the particle 

volume fraction. It should be mentioned that the use of 

the approximation for nfk  is restricted to spherical 

nanoparticles and does not account for other shape 

nanoparticles. The interested reader can find several 

other property expressions for the thermophysical 

properties of the nanofluid in the review paper by 

Kakaç and Pramuanjaroenkij (2009). 

Now we look for a similarity solution of Eq. (11) 

subjected to the boundary conditions (12) of the form: 

 

( ) ( )
( )

,
w

T T

T T
θ η ∞

∞

−
=

−
                                             (14)

 

By using (5), (13) and (14), we obtain the 

following ordinary differential equation: 

( )
( )

1
( ) ( ) ( ) 0,

Pr
1

nf f

p s

p f

k k
f

C

C

θ η η θ η
ρ

φ φ
ρ

′′ ′⋅ + =

− +

          (15)

 

 

subjected to the boundary conditions: 

 

( ) ( )0 1, 0,θ θ= ∞ =
                                       (16) 

 

where, Pr f fν α= is the prandtl number: 

The local Nusselt number xNu is defined as: 

 

( )
,w

x

f W

xq
Nu

k T T∞

=
−

                                          (17)

 

 

where, wq is the surface heat flux which is given by: 
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Fig. 2: Fourth-order Runge-Kutta method 
 
Table 1: Thermophysical properties of the base fluid and the nanoparticles 

(Oztop and Abu-Nada, 2008) 

Physical properties 

Fluid phase 

(water) Cu Al2O3 TiO2 

( )pC J kg K  
4179 385 765 686.2 

( )3kg mρ  
997.1 8933 3970 4250 

( )k W mK  
0.613 400 40 8.9538 

( )7 210 m sα −×  
1.47 1163.1 131.7 30.7 

 

0

,w nf

y

T
q k

y
=

 ∂
= −  ∂ 

                                           (18) 

 

Using the non-dimensional variables in Eq. (5), 

(17) and (18) we obtain: 

( ) 1 2
(0),

nf

x x

f

k
Nu Re

k
θ− ′= −

                            (19) 

 

NUMERICAL ANALYSIS 

 

Equation (6) and (15) subject to the boundary 

conditions (7) and (16), respectively, are solved 

numerically for some values of the solid volume 

fraction (φ ), the three different types of nanofluid and 

as well as for the stretching or shrinking parameter c by 

the fourth-order Runge-Kutta method with shooting 

technique. The fourth-order Runge-Kutta method 

requires four evaluations of the right-hand side per step 

h shown in Fig. 2. In this method, in each step the 

derivative is evaluated four times: once at the initial 

point, twice at trial midpoints and once at a trial 

endpoint. From these derivatives the final function 

value is calculated (Press et al., 1988). There are some 

advantages of foregoing procedure: 

 

• One step method-global error is of the same order 

as local error 

• Don’t need to know derivatives of f 

• Easy for “Automatic Error Control” 

 

Fig. 3: Velocity profiles ( )f η′  for various values of φ  for Cu 

as nanoparticle in shrinking case ( 1.2)c = −  

 

 

 

Fig. 4: Temperature profiles ( )θ η  for various values of φ for 

Cu as nanoparticle in shrinking case ( 1.2)c = −  
 

RESULTS AND DISCUSSION 

 

We consider three different types of nanoparticles, 

namely Cu, Al2O3 and TiO2 with water as the base 

fluid. The thermophysical properties of the base fluid 

and the nanoparticles are listed in Table 1 (Oztop and 

Abu-Nada (2008)). We restrict our study to a common 

Prandtl number for nanofluids, taking Pr = 6.2. We 

expect our results are qualitatively similar with other 

values of Pr of O(6.2). It is worth mentioning that the 

present study reduces to a viscous or regular fluid study 

when  = 0.  

The considered values of the shrinking rate c are 

1.2+ and -1.2 for stretching sheet and shrinking sheet, 

respectively. To illustrate the velocity and temperature 

profiles, nanoparticle volume fraction parameter  is 

considered 0, 0.1 and 0.2. 

Figure 3 presents the velocity profiles ( )f η′  for 

various values of  for Cu as nanoparticle and the 

shrinking case (c = -1.2), with the corresponding 

temperature   profiles   being  shown in Fig. 4. Also, the  

η

f
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Fig. 5: Velocity profiles ( )f η′  for various values of φ  for 

Cu as nanoparticle in stretching case ( 1.2)c = +  

 

 

 

Fig. 6: Temperature profiles ( )θ η  for various values of φ  

for Cu as nanoparticle in stretching case ( 1.2) .c = +  

 

velocity and temperature profiles of nanofluid with the 

same particle for the stretching case (c = + 1.2), have 

been presented in Figs. 5 and 6, respectively. It is 

evident from these figures that numerical solution 

profiles satisfy the far field boundary conditions 

asymptotically, thus support the validity of the 

numerical results obtained. It worth to mentioning that 

the behavior of the velocity and temperature profiles in 

shrinking case (c = -1.2) is similar to that reported by 

Rosali et al. (2011) for regular fluid (  = 0).It is clear 

that from Fig. 4 and 6, the temperature profiles change 

smoother with the increase in the nanoparticles volume 

fraction . This is agrees with the physical behavior, 

when the volume of nanoparticles increases the thermal 

conductivity increases. Figures 3 and 5 show the 

velocity Profiles change abruptly with the increase in 

the nanoparticles volume fraction . This is due to the 

increase in the friction. It is evident from these figures 

that for a stretching sheet, the velocity profiles 

approach faster than for the shrinking  sheet. Therefore,  

 

 

Fig. 7: Velocity profiles ( )f η′ for various nanoparticles, 

when 0.2,φ = in shrinking case ( 1.2)c = −  
 

 

 

Fig. 8: Temperature profiles ( )θ η  for various nanoparticles, 

when 0.2,φ =  in shrinking case ( 1.2)c = −  
 

 

 

Fig. 9: Velocity profiles ( )f η′  for various nanoparticles, 

when 0.2,φ =  in stretching case ( 1.2)c = +  
 

the boundary layer thicknesses for shrinking sheets are 

higher than those for stretching sheets. Figures 7 to 10 

display  the  behavior  of  the  velocity and  temperature  
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Fig.10: Temperature profiles ( )θ η  for various nanoparticles, 

when 0.2,φ =  in stretching case ( 1.2)c = + . 

 

 
 
Fig. 11: Variation of the local Nusselt number with φ  for 

different nanoparticles in shrinking case ( 1.2)c = − . 

 

 
 
Fig. 12: Effects of the nanoparticle volume fraction φ  on 

reduced skin friction coefficient in shrinking case 

( 1.2)c = − . 

 

profiles for different types nanofluids for both 

shrinking/stretching cases when 
 
 = 0.2. From Fig. 7,  

 

 

Fig. 13: Variation of the local Nusselt number with φ  for 

different nanoparticles in stretching case ( 1.2)c = +

. 

 

 

Fig. 14: Effects of the nanoparticle volume fraction φ  on 

reduced skin friction coefficient in stretching case 

( 1.2)c = + . 

 

we can see that for shrinking case, Cu-water and 

Al2O3-water nanofluids have the highest and lowest 

velocities components, respectively. Besides, Fig. 8 

demonstrates Cu-water and TiO2-water nanofluids 

have the lowest and highest temperature in this 

case, respectively. A reverse behavior for stretching 

sheet is clear from Fig. 9 and 10.  

Figures 11 and 12 show the variation of the local 

Nusselt number and the skin friction coefficient versus 

the values of the nanoparticles volume parameter  for 

various nanoparticles in the case of shrinking surface.  

Figures 13 and 14 show the same variation in the case 

of stretching surface.  It is clear that from Fig. 11 and 

13, the heat transfer rates increase with the increase in 

the nanoparticles volume fraction . This is due to the 

increase in the volume of solid nanoparticles with 

relatively higher thermal conductivity. Also change in 

the local Nusselt number is found to be higher for 

higher values of the parameter . Figures 12 and 14 

display the variation of the skin friction  coefficient  for  
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Table 2: The influence of the different nanoparticle volume fractions on the skin friction coefficient and the nusselt number for the different 

nanoparticles, when 1.2 and 1.2.c = − +  

Nanoparticle  

Shrinking case ( 1.2c = − ) 

------------------------------------------------------- 

Stretching case ( 1.2c = + ) 

------------------------------------------------------- 

1/ 2

x x
Nu Re  

1 21

2
Re

f xC  1/ 2

x x
Nu Re  

1 21

2
Re

f xC  

Regular fluid Rosali 

et al. (2011) 0 0.000326 0.932473 2.12762 3.31674E-01 

Cu 0.05 0.004700 1.175513 2.22116 4.18121E-01 
 0.10 0.019810 1.425522 2.31078 5.07048E-01 

 0.15 0.048181 1.692255 2.39683 6.01922E-01 

 0.20 0.087748 1.984149 2.47965 7.05747E-01 
Al2O3 0.05 0.001499 1.065753 2.21368 3.79080E-01 

 0.10 0.004504 1.211983 2.29896 4.31093E-01 

 0.15 0.010228 1.374459 2.38366 4.88885E-01 
 0.20 0.019171 1.557157 2.46795 5.53869E-01 

TiO2 0.05 0.001281 1.072244 2.20994 3.81389E-01 

 0.10 0.003360 1.225021 2.29306 4.35731E-01 
 0.15 0.006772 1.394318 2.37707 4.95948E-01 

 0.20 0.011380 1.584313 2.46211 5.63528E-01 

 

different values . It is noticed that the change in the 

skin friction coefficient to be higher for higher value of 

 in these figures.  

Table 2 shows the values of local Nusselt number 
and the skin friction coefficient for different types of 

nanofluids and various  for both shrinking/stretching 

cases. It is found that the lowest heat transfer rate is 
obtained for the nanoparticles TiO2. This is because 
TiO2 has the lowest value of thermal conductivity 
compared to Cu and Al2O3, as  can  be  seen from Table 
1. This behavior of the local Nusselt number (heat 
transfer rate at the surface) is similar to that reported by 
Oztop and Abu-Nada (2008). The thermal conductivity 
of Al2O3 is approximately one tenth of Cu, as given in 
Table 1. However, a unique property of Al2O3 is its low 
thermal diffusivity. The reduced value of thermal 
diffusivity leads to higher temperature gradients and, 
therefore, higher enhancements in heat transfer. The Cu 
nanoparticles have higher values of thermal diffusivity 
and therefore reduce the temperature gradients. As 
volume fraction of nanoparticles increases, the local 
Nusselt number becomes larger specially in the case of 
stretching sheet. The highest value of the local Nusselt 
number is recorded for Cu-nanofluid for both cases of 
shrinking and stretching surface. 

 

CONCLUSION 

 

We have studied how the nanoparticle volume 

fraction parameter , influence the boundary layer 

flow and heat transfer characteristics in a nanofluid 

toward the shrinking/stretching sheet using three 

different types of nanoparticles: copper Cu, alumina 

Al2O3 and titania TiO2. It is found that the heat transfer 

rates and skin friction coefficient increase as the 

nanoparticle volume fraction  increases. Furthermore 

the highest value of the local Nusselt number is 

recorded for Cu-nanofluid for both cases of shrinking 

and stretching surface. Furthermore, it is shown that the 

lowest heat transfer rate is obtained for the 

nanoparticles TiO2. This is because TiO2 has the lowest 

value of thermal conductivity compared to Cu and 

Al2O3. Therefore, the type of nanofluids is a key factor 

for heat transfer enhancement and using a mixture of 

nanoparticles and the base fluid is an effective 

technique to develop the advanced heat transfer fluids 

with substantially higher conductivities. It is worth 

mentioning here, that the study of nanofluids is still at 

its early stage so that complementary works are 

necessary to understand the heat transfer characteristics 

of nanofluids and identify new and unique applications 

for these fluids.  

 

NOMENCLATURE 

 

a,b  = onstant 

Cf  = Skin friction coefficient 

k  = Thermal conductivity 

Nux = Local Nusselt number 

Rex  = Local Reynolds number 

Pr  = Prandtl number 

qw  = Surface heat flux 

T = Fluid temperature 

Tw = Surface temperature 

T∞ = Ambient temperature  

u, v  = Velocity components  

x, y  = Cartesian coordinates  

ue = Free stream velocity 

f(η) = Dimensionless stream function 

 

Greek symbols: 

α   = Thermal diffusivity 

β  = Thermal expansion coefficient  

� = Nanoparticle volume fraction  

η  = Similarity variable  

φ

φ

φ

φ

φ

φ
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θ(η)  = Dimensionless temperature  

µ  = Dynamic viscosity 

υ  =  Kinematic viscosity  

ρ  = Fluid density  

τw  = Wall shear stress 

ψ = Stream function 

 

Subscripts: 
w  = Condition at the surface of the plate  

∞  = Ambient condition  

f  = Fluid  

nf  = Nanofluid  

s  = Solid 

 

Superscripts: 

'  = Differentiation with respect toη
 

 

REFERENCES 

 

Abu-Nada, E., 2008. Application of nanofluids for heat 

transfer enhancement of separated flows 

encountered in a backward facing step. Int. J. Heat 

Fluid Flow, 29: 242-249. 

Bhattacharyya, K. and K. Vajravelu, 2012. Stagnation-

point flow and heat transfer over an exponentially 

shrinking sheet. Commun. Nonlinear Sci. Numer. 

Simulat., 17: 2728-2734. 

Brinkman, H.C., 1952. The viscosity of concentrated 

suspensions  and solutions. J. Chem. Phys., 20: 

571-581. 

Cheng, P., 1977. Combined free and forced convection 

flow about inclined surfaces in porous media. Int. 

J. Heat Mass Transfer, 20: 807-814. 

Chiam, T.C., 1994. Stagnation-point flow towards a 

stretching plate. J. Phys. Soc. Jpn., 63: 2443-2444. 

Choi, S.U.S., 1995. Enhancing thermal conductivity of 

fluids with  nanoparticles. ASME FED, 231, 66: 

99-103.  

Crane, L.J., 1970. Flow past a stretching plate. Z. 

Angew Math. Phys., 21: 645-647. 

Das, S.K., S.U.S. Choi, W. Yu and T. Pradeep, 2007. 

Nanofluids: Science and Technology. John Wiley 

& Sons, New Jersey. 

Fan, T., H. Xu and I. Pop, 2010. Unsteady stagnation 

flow and heat transfer towards a shrinking sheet. 

Int. Commun. Heat Mass Transfer, 37: 1440-1446 

Hiemenz, K., 1911. The boundary layer on a submerged 

in the uniform flow of liquid straight circular 

cylinder. Dingler’s. Polytech. J., 326: 321-324. 

Ishak, A., R. Nazar and I. Pop, 2006. Mixed convection 

boundary layers in the stagnation-point flow 

toward a stretching vertical sheet. Mechanica, 41: 

509-518. 

Ishak, A., K. Jafar, R. Nazar and I. Pop, 2009. MHD 

stagnation point flow towards a stretching sheet. 

Physica A, 388: 3377-3383. 

Kakaç, S. and A. Pramuanjaroenkij, 2009. Review of 

convective heat transfer enhancement with 

nanofluids.  Int.  J.  Heat  Mass  Transfer, 52: 

3187-3196. 

Lai, F.C. and F.A. Kulacki, 1990. The influence of 

lateral mass flux on mixed convection over 

inclined surfaces in saturated porous media. ASME 

J. Heat Transfer, 112: 515-518. 

Layek, G.C., S. Mukhopadhyay and S.A. Samad, 2007. 

Heat and mass transfer analysis for boundary layer 

stagnation-point flow towards a heated porous 

stretching sheet with heat absorption/generation 

and suction/blowing. Int. Commun. Heat. Mass. 

Trans., 34: 347-356. 

Maïga, S.E.B., S.J. Palm, C.T. Nguyen, G. Roy and N. 

Galanis, 2005. Heat transfer enhancement by using 

nanofluids in forced convection flows. Int. J. Heat 

Fluid Flow, 26: 530-546. 

Nadeem, S., A. Hussain and M. Khan, 2010. HAM 

solutions for boundary layer flow in the region of 

the stagnation point towards a stretching sheet. 

Commun.  Nonlinear  Sci.  Numer. Simul., 15: 

475-481. 

Nazar, R., N. Amin, D. Filip and I. Pop, 2004. 

Unsteady boundary layer flow in the region of the 

stagnation point on a stretching sheet. Int. J. Eng. 

Sci., 42: 1241-1253. 

Nield, D.A. and A.V. Kuznetsov, 2009. The Chenge-

Minkowycz problem for natural convective 

boundary-layer flow in a porous medium saturated 

by a nanofluid. Int. J. Heat Mass Transfer, 52: 

5792-5795. 

Oztop, H.F. and E. Abu-Nada, 2008. Numerical study 

of natural convection in partially heated 

rectangular enclosures filled with nanofluids. Int. J. 

Heat Fluid Flow, 29: 1326-1336. 

Press, W., S. Teukolsky, W. Vetterling and B. Flannery, 

1988. Numerical Recipes in C. Cambridge 

University Press, Cambridge, ISBN 0-521-43108-

5. 

Rosali, H., A. Ishak and I. Pop, 2011. Stagnation point 

flow and heat transfer over a stretching/shrinking 

sheet in a porous medium. Int. Commun. Heat 

Mass Transfer, 38: 1029-1032. 

Tiwari, R.J. and M.K. Das, 2007. Heat transfer 

augmentation in a two-sided lid-driven 

differentially heated square cavity utilizing 

nanofluids. Int. J. Heat Mass Transfer, 50: 2002-

2018. 

Wang, C.Y., 2008. Stagnation flow towards a shrinking 

sheet. Int. J. Non Linear Mech., 43: 377-382. 

Wang, X.Q. and A.S. Mujumdar, 2007. Heat transfer 

characteristics of nanofluids: A review. Int. J. 

Thermal Sci., 46: 1-19. 


