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Abstract: Wave propagation and heat distribution are both governed by second order linear constant coefficient 
partial differential equations, however their solutions yields very different properties. This study presents a 
comprehensive comparison between hyperbolic wave equation and parabolic heat equation. Issues such as 
conservation of wave profile versus averaging, transporting information, finite versus infinite speed propagation, 
time reversibility versus irreversibility and propagation of singularities versus instantaneous smoothing have been 
addressed and followed by examples and graphical evidences from computer simulations to support the arguments. 
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INTRODUCTION 

 
Wave propagation is described by hyperbolic 

Partial Differential Equation (PDE) which is derived 
using the dynamic equilibrium law (Graff, 1991) and 
can be written in three dimensions as: ��� = ��∇��, 
where � is a fixed positive constant and ∇� is the 
Laplacian operator. Motion of a vibrating string is an 
example of wave equation. Heat distribution is 
described by heat equation which is a parabolic PDE. It 
is obtained through simultaneously applying of the 
Fourier law (Divo and Kassab, 2002) and the energy 
conservation law (Cannon, 1984) and is written in three 
dimensions as: �� = �∇��, where � is a constant and is 
related to material property (Incropera and DeWitt, 
2002). 

Both hyperbolic and parabolic PDE’s appear in the 
modeling of different natural phenomena and has 
practical applications in engineering problems (Solin, 
2005). For example Unsworth and Duarte (1979) 
proposed dual theoretical experimental method for 
measurement of the thermal diffusivity in polymers that 
is applicable to rubber and various other materials. A 
collection of comprehensive studies on PDEs 
application, wave theory and diffusion process can be 
found in the works of Ozisik (1993), Asmar (2004), 
Wazwaz (2009) and Thambynayagam (2011). Other 
specific areas where heat equation has been widely used 
include image analysis (Perona and Malik, 1990), in 
machine learning as the motivating theory behind 
Laplacian methods and in financial mathematics in the 

modeling of options (Thambynayagam, 2011). 
Complicated mathematical model’s differential 
equation can also be transformed into PDEs, for 
example, the famous Black-Scholes option pricing 
model's differential equation can be transformed into 
the heat equation allowing relatively easy solutions 
from a familiar body of mathematics (MacKenzie, 
2006).  

One of the several analytical approaches for 
solving the governing equations of wave propagation 
and heat distribution containing time derivative terms is 
the Fourier method (Polyanin, 2002). The general 
solution to the one dimensional wave equation is given 
by d´Alembert's formula. Numerous researchers have 
studied fundamental solution of wave propagation and 
heat transfer in homogenous and non-homogenous 
media. Rizos and Zhou (2006) applied this method to 
solve wave propagation problem in three dimensional 
media. Young et al. (2004) studied fundamental 
solution of heat transfer in homogenous media. 
Variational iteration method was used by Yulita et al. 
(2009) for fractional heat and wave-like equations. 
Momani (2005) applied analytical approximate solution 
for fractional heat-like and wave-like equations with 
variable coefficients using the decomposition method. 
Batiha et al. (2007) studied application of variational 
iteration method to heat and wave-like equations. An 
integral operator mapping functions approach was 
applied by Gzyl (1992) to solve wave equations via the 
solution to heat equations. Lam and Fong (2001) used 
analytical solution to perform a study on heat diffusion 
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versus wave propagation in solids subjected to 
exponentially-decaying heat source. Wazwaz and 
Gorguis (2004) used exact solutions for heat-like and 
wave-like equations with variable coefficients. A 
comparison of the solutions of a phase-lagging heat 
transport equation and damped wave equation has been 
discussed in the work of Su et al. (2005).  

The objective of this study is to present a 
comprehensive comparison between wave and heat 
equations. The governing equations of wave 
propagation and heat distribution are first recalled 
through practical examples and their solutions are 
discussed for the purpose of comparing solution 
behavior. Computer simulations and graphical results 
are then provided as evidence to support the 
mathematical arguments. 
 

METHODOLOGY 
 
Wave propagation model: We consider the following 

Initial Value Problem (IVP) describing the vertical 

displacement (at time 	 and position 
) of an infinitely 

long, perfectly flexible, homogenous string, stretched 

along the horizontal 
 −axis, in the absence of external 

forces, with mass density � and tension coefficient 
: 
 

��� = �����   ���  	 ∈ ℝ ��� 
 ∈ ℝ,     ��
, 0� =
��
�, ���
, 0� = ��
� ��� 
 ∈ ℝ                       (1) 

 
where, � = 
/� is a positive constant and �, � ∶ ℝ → ℝ 
are given functions, representing the initial 
displacement and velocity of the string. This is an 
example of a standing wave (a wave that vibrates in 
place without lateral motion along the string). The 
boundary conditions will dictate the condition of the 
string at the ending points, (whether it is held fixed or 
not). The initial conditions usually specify the initial 
displacement and the initial velocity of each point. We 
first show that the unique solution of this IVP is given 
by: 

 

��
, 	� = �
�  ��
 + �	� + ��
 − �	�" +

�
�# $ ��%��%   �&#�

�'#�                                                   (2) 

 
If we let ( = 
 − �	 and ) = 
 + �	 and then use 

the chain  rule,  we  will  get: */*
 = */*( + */*) 
and  */*	 = −� */*( + � */*).  Plugging   these   

into (1) yields: ��� = �*���/�*(�� +   2 �*���/
*)*( + �*���/�*(��  and  �1/��� ��� = �*���/
�*(�� −  2�*��� /  *)*( +  �*���/  �*(�� which 

indicates *��/*)*( = 0, leading to the general 
solution of the form: ��
, 	� = -�
 + �	� + .�
 − �	�, 

where -, .: ℝ → ℝ are arbitrary twice differentiable 
functions. The initial conditions in (1) imply and 

necessitate that ��
� = -�
� + .�
� and 0�
#1 2�
� =

-�
� − .�
� where 2�
� is an anti-derivative of ��
�. 
The solution in (2) defines a continuous function 

� = ��
, 	� as long as � is continuous and � is 
integrable. Under these assumptions, the partial 
derivatives ��� and ��� may not exist everywhere, but � 
may still be considered a weak solution of the IVP (1). 
In fact, we now need two functions � and 2 to be twice 

differentiable  (that  is, �  must   be  twice  and � at 
least   once   differentiable).  If   we  let  the  initial  
conditions: ��
, 0� = ��
� = -�
� + .�
� and 

��   �
, 0� =  34���5��&#��
5�  +   64���5��'  #��

5� =
 −�-7�
�  + �.7�
� = ��
�, then integrating � from � 

to 
 and dividing by � gives: 2�
� = -�
� − .�
� =
�1/�� $ ��%� �%�

8  + 9. Hence, - and . are found as 

�1/2� ��
� ± �1/2�� $ ��%��%�
8 ± ��/2� respectively. 

Therefore, solving ��
, 	� and 2�
� for - and . yields:  
 

��
, 	� = �1/2� ��
 + �	� + ��
 − �	�" +
�1/2�� ;$ ��%��% − $ ��%��%�&#�

8
�'#�

8 <  

 
which is the d’Alembert’s solution given in (2). 

Since both PDE and boundary conditions in (1) are 

linear and homogenous, the method of separation of 

variables (Asmar, 2004) can also be applied to verify 

this result. We start with expressing the solution of � by 

��
, 	� = -�
�. >�	� to arrive at:�1/��>�	��. ��>/
�	� = �1/-�
��. ��-/�
� = −? which results into 

two ODEs of the form; ��>/�	� = −?��>�	� and 

��-/�
� = −?-�
�. There will be two families of 

product solutions; the principle of superposition implies 

that we should be able to solve the initial value problem 

by considering a linear combination of all product 

solutions in � �
, 	� = ∑ AB %C���D/E�
 . ��%��D�/∞
BF�

E�	+G�%C���D/E�
.%C� ��D�/E�	. The initial 

conditions are satisfied if: ��
� = ∑ AB %C� 0BH
I 1 
∞

BF�   
and ��
� = ∑ GB��D�/E� %C���D/E�
∞

BF� . From 

Fourier sine series, we know that %C���D/E�
 forms an 

orthogonal set, therefore: AB = 2/E $ ��
� %C���D/I
J

E�
�
 and G�=2/�D�0E�
%C���D/E�
�
. Using the 

sum-to-product of "%C�L" and "��%C�L", ��
, 	�can be 

written as: 

 

��
, 	� = ∑ �
� AB %C���D/E��
 + �	� +∞

BF�
%C���D/E�
−�	+�=1∞G�%C���D/E�
.%C� ��D�
/E�	  

 

Substituting 
 with �
 + �	� and �
 − �	� in 

��
� = ∑ AB %C���D/E�
∞
BF� , we get: 

�
� ��
 ± �	� =

∑  AB  %C���D/E��
 ± �	�"∞
BF� . Integrating 0 ��
� =

∑ GB
BH#

I %C���D/E�
∞
BF�  from �
 − �	� to �
 + �	� and 

then  using  product-to-sum  of  "%C�L" and "��%C�L", 

yields ∑   GB
∞
BF�    %C�   ��D/E�   
 .   %C�   ��D�/E�   	 =

�1/2�� $ ��%��%�'#�
�&#� , which combining with �1/

2��
±�	 will result into d’ Alembert’s solution. 
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Heat distribution model: We consider � =
��
, 	� representing the temperature in a homogenous 

rod of length E with perfectly insulated lateral surface. 

We assume that the ends of the rod at 
 = 0 and 
 = E 

are held temperature zero and the initial temperature 

distribution is a given function, � = ��
�. Then u 

solves the following Initial Boundary Value Problem 

(IBVP): 

 

��� = M���  ∶  	 > 0, 0 < 
 < E,    ��0, 	� =
��E, 	� = 0 ∶ 	 > 0 ,   ��
, 0� = ��
�, 0 < 
 < E                                                

                                                                              (3)  

                         

The solution of this IBVP can be written as a 

Fourier series. We expect that Eq. (3) completely and 

unambiguously specify the temperature in the rod. Once 

we have found a function ��
, 	� that meets all three of 

these conditions, we can be assured that � is the 

temperature. Using the classical technique for solving 

the IBVP for the heat equation, the method of 

separation of variables (Asmar, 2004) allows us to 

replace the partial derivatives by ordinary derivatives. 

The idea is to think of a solution ��
, 	� as being an 

infinite linear combination of simple component 

function, �B�
, 	�, � = 0,1,2, …, which also satisfy the 

equation and certain boundary conditions. The solution 

to the IVBP in (3) then takes the following form: 

 

��
, 	� =
∑ �B�
, 	� = ∑ �BL&Q

R0ST
U 1

V
�%C� BH

I 
∞
BF�

∞
BF� , �B =

�
I $ ��
�. %C� BH

I 
�
,   � = 1,2, …I
J                        (4) 

 

This solution is claimed to be unique. From the 

theorem of uniqueness of solution, the IVBP in (3) has 

at most one continuously differentiable solution. This 

can be proved by assuming ��
, 	� and W�
, 	� 

continuously differentiable functions that satisfy this 

initial-boundary value problem. If we let X = � − W, it 

is also continuously differentiable solution to the 

boundary value problem in (3). By the maximum 

principle, X must attain its maximum at t = 0 and 

since X�
, 0� = ��
, 0� − W�
, 0� = ��
� − ��
� =
0. We have X�
, 	� ≤ 0. Hence ��
, 	� ≤ W�
, 	� for 

all 0 ≤ 
 ≤ E,   	 ≥ 0. A similar argument using 

X[ = � − W yields:  W�
, 	� ≤ ��
, 	�. Therefore we 

have ��
, 	� = W�
, 	� for all 0 ≤ 
 ≤ E,   	 ≥ 0. Thus, 

there is at most one continuously differentiable solution 

to the IVBP in (3). 

 

RESULTS AND DISCUSSION 

 

Behavior of wave propagation: The solution of the 

standing wave in (1) has two parts. The first part of the 

solution  consists  of  sinusoidal  function  %C� ��D
/E� 

 
 
Fig. 1: Plot snapshots of the wave propagation in Eq. (1) with 

initial conditions, � = 0 and {��
� = 1 − |
|: |
| ≤
1 , ��
� = 0 ∶ �	ℎL�_C%L} Snapshots at 	 =
{0, 0.25, 0.5, 0.75, 1, 4, 7, 9} 

 

multiplied by a time-varying amplitude. The second 

term of the solution is also sinusoidal function 

multiplied by sinusoidal time-varying amplitude which 

will present a node in 
 = E/2 that never moves. For 

the ��e term, we will have (� − 1) nodes. In order to 

describe this behavior, we study the motion of a string 

with � = 1 and initial values � = 0 and {��
� = 1 −
|
|:  |
|  ≤ 1 , ��
� = 0 ∶  otherwise}. Maple program 

version 13 (Waterloo Maple Inc®, Ontario) in 

Appendix 1 was used for computer simulation and to 

plot the snapshots of the string as provided in Fig. 1. 

The plots show a wave at its maximum magnitude 

equal to 1 at 	J = 0. The magnitude of wave then 

reduces and the wave forms two traveling wave 

srepelling each other with speed  2� and magnitude 0.5. 

It can also be seen that the magnitude of the two waves 

remains constant while moving and then doubles as 

they meet each other. In the other words, the energy of 

the wave preserves through the time and the motion 

continues forever. From the solution, it can be observed 

why the waves are traveling to the right and left. This is 

because of the replacement of 
  with  
 + �	 and 


 − �	 which will shift the function to the right and 

left.We repeat previous experiment with � = 0 and 

{��
� = 1 − |
| ∶  |
| ≤ 1, ��
� = 0 ∶  �	ℎL�_C%L} 

(Maple® codes in Appendix 2). Plots are provided in 

Fig. 2 and show that the initial magnitude of the wave is 

zero, but wave starts growing by the speed of  � = 1 −
|
| up to the maximum value of � = 1. After that point, 

the wave starts to travel and become wider and wider.  

When the boundary conditions in wave equations 

are not given, as in problem 1, the solution will give the 

infinite string problem consisting travelling waves. 

Wave equation travels at a finite speed of � to the left 

and right of the one space dimension (the 
 axis) as 

time elapses. The constant term in the wave equation is 

always  positive   (squared).   Looking  at  d’Alembert’s 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(1): 111-122, 2014 

 

114 

 
 
Fig. 2: Plot snapshots of the wave propagation in Eq. (1) with 

initial conditions, � = 0 and {��
� = 1 − |
| ∶  |
| ≤
1, ��
� = 0 ∶  �	ℎL�_C%L} Snapshots at 	 =
{0, 0.25, 0.5, 0.75, 1, 4, 7, 9} 

 

formula in (2), if we let ℓ�
� be a function on ℝ, then 

the function ℓ�
 + �� where � is a positive constant is 

the same shape as ℓ�
� with its position shifted to the 

left by �. As an example, plot of ℓ�
� = sin �
�, versus 

plot of ℓ�
 + �� = sin�
 + �� is given in Fig. 3. These 

results  show  that  singularities  are  preserved  in wave  

propagation and are transported along the 

characteristics with speed of �. 

In wave equation, the parameter t is the time. 

Therefore the function ℓ�
 + �	� will represent sets of 

functions that have same shape, but shifted more and 

more to the left as time passes. The function ℓ�
 + �	� 

is called a travelling wave moving to the left with speed 

�. In a similar manner, the function ℓ�
 − �	� is also a 

travelling wave moving to the right with speed �. The 

integral term in d’Alembert’s formula comes from the 

initial velocity. In the special case when the initial 

velocity is zero, (that is ����
, 0� = ��
� = 0), Eq. (2) 

will be written as: ��
, 	� = 1

2
 ��
 + �	� + ��
 − �	�", 

which is the sum of travelling waves. The waves are 

initially superimposed. As time elapses, the two waves 

repel each other and travel with speed of 2�, (Each with 

speed �). More plots of wave equation with different 

boundary values are shown in Fig. 4 to 7. An 

observation from the snapshots of plots in Fig. 4 and 5 

are waves of half the height that travels in opposite 

directions with a constant speed and without changing 

the shape, propagating forever as 	 → ∞.  

 

Behavior of heat distribution: To describe the 

behavior of the IBVP in (3), we calculate the Fourier

 

 
 
Fig. 3: Example of travelling waves to right and left, shifting opq �r�, opq�r + s� and opq�r − s� 
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Fig. 4: Infinite string; snapshots at 	 = {0, 0.5, 1, 2.5, 5, 10} 

 

 
 
Fig. 5: Finite string (Dirichlet) snapshot at t = {0, 0, .5, 1, 5, 

9, 9.6, 9.8} 

 

 
 
Fig. 6: Finite string (Neumann); snapshots at 	 = {0, 0.25,

0.5, 1, 5, 9, 9.75, 10} 

 

coefficients explicitly for the special case � = 1, which 

yields: �B = �2/�D� 1 − ��%��D�" and the following 

solution:  

 
 
Fig. 7: Wave equation with damping and external force on 

interval (0, E� snapshots at 	 = {0.1, 1, 2, 3, 4, 5, 6, 7, 

8, 9, 10} 

 

��
, 	� = t
H ∑ �&#uv�BH�

�B
∞
BF� L&Q

RwBVHVx�%C���D
�  (5) 

 

Results were then plotted as provided in Fig. 8 for  

� = M/� = 1 and � = 50. Based on this solution and 

from physical interpretation of the problem, the 

boundary conditions state that the temperature, 

regardless of the change in time, at the two ends of the 

rod is zero. It means that at initial condition which 

requires � = 1, we have zero temperature at the 

endings. This is a very ideal theoretical assumption that 

requires perfect isolation of the material at those points. 

According to the initial condition, the temperature at 

	0 = 0 should be equal to 1 for any 
 ∈ �0, E�. In the 

other words, the temperature should be zero at 
 = 0 

and suddenly becomes 1 at 
 = y or 
 = E − y. This 

step change will always result overshoots and 

corresponding undershoots. Mathematically called 

Gibbs phenomenon, this situation occurs only when a 

finite series of Eigen functions approximates a 

discontinuous functions. In general, there is an 

overshoot and undershoot of approximately 9% of the 

jump discontinuity (Hazewinkel, 2001). It can also be 

observed from plots of ��
, 	� in Fig. 8 that as 	 → ∞, 

��
, 	� starts decreasing rapidly with time. Since the 

temperature at the boundaries is zero, it is expected that 

the temperature of the rod at any point 
 ∈ �0, E� 

becomes equal to the temperature at the boundaries as 

t→ ∞. In the other words, the temperature at no point of 

the rod in Eq. (3) will ever become greater than the 

initial value, therefore the energy is not conserved. This 

is not in contrast with the rule of conservation of energy 

since the energy from the hot rod is transferred to its 

soundings, so depending on the boundaries of our 

system, the total energy is still constant. From the plots 

of  ��
, 	�  shown  in   Fig.  9  and  10  at   time   

	 = 0.001 and 	 = 0.1, it can be seen that 
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Fig. 8: Solution to the heat equation in (3) with � = 1, � = 1; snapshot at 	 = {0,0.1,0.5,2.5,10} 

 

 
 
Fig. 9: Solution to the heat equation in (3) with � = 1, at 	 = 0.001 and � = {0.0001, 0.1, 1, 2, 5, 100} 

 

��
, 	�  decreases  with  smaller  values  of �,  however 

the  behavior  of  the  solution  is  still  similar  to the 

case  in  Fig.  8  and  ��
, 	�  starts decreasing with 

time.  

If we change the initial condition from a constant 

value to a function  term,  for example, ��
� =
L
z�−
��, the solution can be written as follow 

(Asmar, 2004): 
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Fig. 10: Solution to the heat equation in (3) with � = 1,  at 	 = 0.1 and � = {0.0001, 0.1, 1, 2, 5} 

 

��	, 
� = $ 2{�	, 
 − |�∞

&∞
��|��|, 2{�	, 
� =

}�~ �& �V
����

�tH��                                                                (6) 

 

Using the Maple code in Appendix 3, snapshots of 

the solution in (6) was plotted in Fig. 11 where similar 

behavior like the previous case is observed. The reason 

for ��
, 	� to start decaying over timeis because 

2{�	, 
 − |� → 0 as 	 → ∞. This result can be 

confirmed analytically by letting � = 
 − | and 

� = �/��	 in (6), hence the solution takes the 

following form given in (7) which will be bounded if 

the initial function � is integrable. Similar experiment 

with a non-integrable function like ��
� = L
z�
� 

shows that the solution travels from right to left and 

never decays: 

 

��	, 
� = $ }�~ �&�V/t�
√tH

∞

&∞
�w
 − ���	x��           (7) 

 

To further experiment with the heat distribution, 

we study the backward heat equation, �� = −����, 

subject to ��0, 	� = ��E, 	� = 0 and ��
, 0� = ��
�. 

Using the general solution in (4), If we let � = −1, 

E = 1, with initial condition��
, 0� = ��
� = 1, the 

solution will then take the following form: 

 

��
, 	� = t
H ∑ �&#uv�BH�

�B
∞
BF� LwBVHVx�%C���D
�      (8)             

 
 

Fig. 11: Solution to heat equation in (3) with ��
� = L&�V
, 

� = 1 snapshot at 	 = {0, 0.1, 0.5, 2.5, 10} 

 

For the same � = −1 and E = 1, if we let 

��
, 0� = ��
� =  1 + �
B %C� BH�

I , the coefficient �B can 

be calculated as: �B = �
BH �1 − ��%�D� + �

B , �� =
1,2, … � and the solution will be given by: 

 

��
, 	� = 1
D 

∑ �
B �2�1 − ��%�D� + D�∞

BF� LwBVHVx�%C���D
�   (9) 

 
Both solutions in (8) and (9) were implemented in 

Delphi programming language (Borland®, Austin, TX) 
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Fig. 12: Comparing Eq. (5) with Eq. (8) at 	 = 0.001 

 

 
 
Fig. 13: Plot of equation (8) at 	 = 0.01; (the response is highly oscillatory and unstable) 

 

environment (codes are provided in Appendix 4 and 5) 

to generate the plots shown in Fig. 12 to 15. It can be 

seen that if the initial data are changed by an arbitrary 

small amount, for example, if ��
� → ��
� +
�
B sin��D
/E�, for large �, then solution changes by a 

large amount. It is therefore  concluded  that   backward 

heat equation is not a well-posed problem. This can be 
explained by comparing plots of Eq. (5) and (8) as 
shown in Fig. 12 and 13 respectively. We observe that 
for the same initial condition, the magnitude of  Eq. (8) 
is  larger  and  grow  unbounded  in  finite   time,  
which is due to its positive exponential term 

(limB→∞ LBVHV� = ∞) that makes the system to oscillate 
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Fig. 14: Plot of Eq. (9) at 	 = 0 and 	 = 0.001; (big change in ��
, 	) compared with Fig. 12) 

 

 
 
Fig. 15: Plot of Eq. (9) at 	 = 0.01; (big change in ��
, 	� compared with Fig. 13) 

 
and become unstable for small change in the input. For 

large �, ��
� → ��
� + �
B %C� BH�

I  is equal to ��
� →
��
� + y, (since � > 0, −1 ≤ %C� BH�

I ≤ 1, thus 

−1 < �
B %C� BH�

I < 1). It can be seen from Fig. 14 that 

the magnitude of solution for the same time snap is 

almost  37 for  ��
� = 1 + y  while  the  corresponding 

magnitude for ��
� = 1 is almost 1.5. This can also be 

seen for larger 	’%. For t = 0.01, we see a big change in 

the magnitude of solution, from 450 in Fig. 13 to 27000 

in Fig. 15.  

One more interesting observation from the solution 
to heat equation given in (4) is that all the terms in (4) 

are always nonnegative (because � is a positive integer,  
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Fig. 16: Heat equation with source on interval �0, E�; 

snapshots at 	 = {0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3} 

 

0 ≤ 
/E ≤ 1, %C� BH
I 
 ≥ 0, L
 z�−M/���D/E��	� ≥ 0 ,

�C��→∞ exp�−M/���D/E��	� = 0 , �B ≥ 0). Therefore, 

the solution to heat equation, ��
, 	� cannot be negative 

unless the initial condition is negative. This property is 

also obvious from snapshots plot of heat equation as 

shown in Fig. 16. The graphs of heat solution also show 

that information is gradually lost in heat distribution, in 

the other words, heat from higher temperatures is 

dissipated to a lower temperature, but it will not be 

clear what the original temperatures were after some 

elapses of time.  

 

CONCLUSION 

 

Comparison between wave propagation as 

governed by the wave equation and heat distribution, as 

governed by the heat equation were discussed in this 

paper. Issues such as finite vs. infinite speed 

propagation, propagation of singularities vs. 

instantaneous smoothing, conservation of wave profile 

vs. averaging and time reversibility vs. irreversibility 

were addressed. Arguments were supported with 

examples and graphical evidences. 

A model for the motion of a vibrating string was 

provided as an example of wave equation. It was shown 

that the solution has two parts. The boundary conditions 

dictate the condition of the string at the ending points, 

(whether it is held fixed or not). The initial conditions 

then specify the initial displacement and the initial 

velocity of each point. An important observation from 

the snapshots plots of wave propagation is that wave 

travels with a constant speed and continue propagating 

forever as time goes to infinity. Depending on the 

physic of the problem, wave equation transfers a form 

of energy, like a vibrating string of a guitar which 

transfers sound energy or electromagnetic waves which 

transfer light. According to the rule of conservation of 

energy, the total energy of a system is constant, thus 

theoretically wave should keep travelling forever. In the 

other words, the solutions of the wave equation does 

not decay as 	 → ∞. For the heat equation, although it 

also transfer energy, but there is energy dissipation built 

into the high order terms, however there are special 

nonlinear forms of heat distribution (radiation) that can 

have travelling wave solution. In summary, the heat 

distribution is a non-reversible equation, it does not 

conserve energy, cannot exceed the value at initial 

condition or become negative if the initial condition is 

not negative The distribution speed in heat equation is 

very fast, uniformly distributed and dies down as time 

goes to infinity. It was also shown that heat equation 

follows maximum principle. In the other side, the 

propagation speed in wave equation is finite. It is a 

reversible equation, can conserve energy and can 

exceed the value of initial condition (when two waves 

coincide) and bounce up and down and distribute 

forever. Wave equation does not follow the maximum 

principle and does not depend on initial conditions to 

have negative value.  
 

Appendix 1: Maple  program  used  to solve the wave problem with  

��
� = 1 − |
| if |
| ≤ 1, ��
� = 0 otherwise and g = 0 
restart: with (plots): 
(1/c^2) *u [tt] = u [xx]; 

u (x, 0) = f (x); u [t] (x, 0) = g (x); 

u (x, t) = (f (x-c*t) + f (x + c*t)) /2 + (1/ (2*c)) *int (g (y), y = x - 
c*t..x + c*t); 

c: = 1; f (x): = piecewise (abs (x) < = 1, 1-abs (x), 0); g (x): = 0; 

`Computing u (x, t)...`;  
f (x): = simplify (f (x)): g (x): = simplify (g (x)): G (x): = int (g (x), 

x):  

f0: = unapply (f (x), x): G0: = unapply (G (x), x): u: = (x, t) - (f0 (x + 
c*t) + f0 (x - c*t)) /2 + (G0 (x + c*t) - G0 (x - c*t)) / (2*c):  

`Finished.`; 

t0: = 0:  
plot (u (x, t0), x = -5..5, 0..1, numpoints = 250,  

title = cat (`Snapshot at`, convert ('t' = t0, string))); 

Sequence of snapshots at times [t1, t2, t3, ..., tn]: 

tseq: = [0, 0.25, 0.5, 0.75, 1, 4, 7, 9]:  

plot ([seq (u (x, t), t = tseq)], x = -10..10, 0..1, numpoints = 250,  
color = [black, red, magenta, blue, green],  

title = cat (`Snapshots at  `, convert ('t' = tseq, string))); 

Create movie (t = t0 .. tn, n + 1 frames): 

t0: = 0: tn: = 12: n: = 60:  

h: = (tn - t0) /n: `Generating graphs... `;  

snaps: = seq (plot (u (x, t0 + i*h), x = -10..10, 0..1, numpoints = 250), 
i = 0..n): `Finished.`; 
display (snaps [1..n + 1], insequence = true); 
 
Appendix 2: Maple program used to solve the wave problem with 
� = 0 and ��
� = 1 − |
| C� |
| ≤ 1 and ��
� = 0 otherwise 
restart: with (plots): 
(1/c^2) *u [tt] = u [xx]; 
u (x, 0) = f (x); u [t] (x, 0) = g (x); 
u (x, t) = (f (x - c*t) + f (x + c*t)) /2 + (1/ (2*c))* int (g (y), y = x - 
c*t..x + c*t); 
c: = 1; f (x): = 0; g (x): = piecewise (abs (x)< = 1, 1, 0); 
`Computing u (x, t)...`;  
f (x): = simplify (f (x)): g (x): = simplify (g (x)): G (x): = int (g (x), 
x):  
f0: = unapply (f (x), x): G0: = unapply (G (x), x): u: = (x, t) - (f0 (x + 
c*t) + f0 (x - c*t)) /2 + (G0 (x + c*t) - G0 (x - c*t)) /(2*c):  
`Finished.`; 
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t0: = 0:  
plot (u (x, t0), x = -5..5, 0..1, numpoints = 250,  
title = cat (`Snapshot at  `, convert ('t' = t0, string))); 
Sequence of snapshots at times [t1, t2, t3, ..., tn]: 
tseq: = [0, 0.5, 1, 2.5, 5, 7.5, 9]:  
plot ([seq (u (x, t), t = tseq)], x = -10..10, 0..1, numpoints = 250,  
color = [black, red, magenta, blue, green],  
title = cat (`Snapshots at  `, convert ('t' = tseq, string))); 
Create movie (t = t0 .. tn, n + 1 frames): 
t0: = 0: tn: = 12: n: = 60:  
h: = (tn - t0) /n: `Generating graphs...`;  
snaps: = seq (plot (u (x, t0 + i*h), x = -10..10, 0..1, numpoints = 250), 
i = 0..n): `Finished.`; 
display (snaps [1..n + 1], insequence = true); 
 
Appendix 3: Maple program used to solve heat equation with 

��
� = L&�� 
restart: with (plots): 
u [t] = k*u [xx]; 
u (0, x) = f (x); 
u (t, x) = int (G [k] (x - y) *f (y), y = -infinity..infinity); 
G [k] (t, x) = exp (-x^2/ (4*k*t)) /'sqrt (4*Pi*k*t)'; 
k: = 1; f (x): = exp (-x^2); 
`Computing u (t, x)...`;  
f (x): = simplify (f (x)): f0: = unapply (f (x), x): fudge: = t -  
piecewise (t = 0, 1, t):  
G00: = (t, x) - exp (-x^2/ (4*k*t)) /sqrt (4*Pi*k*t): G0: = (t, x) - G00 
(fudge (t), x):  
u: = (t, x) - piecewise (t0, int (G0 (t, z) *f0 (x - z), z = -infinity.. 
infinity), f0 (x)):  
`Finished.`; 
t0: = 0.2:  
plot (u (t0, x), x = -10..10, 0..1, numpoints = 250,  
title = cat (`Snapshot at  `, convert ('t' = t0, string))); 
tseq: = [0, 0.1, 0.5, 2.5, 10]:  
plot ([seq (u (t, x), t = tseq)], x = -10..10, 0..1, numpoints = 250,  
color = [black, red, magenta, blue, green],  
title = cat(`Snapshots at  `, convert ('t' = tseq, string))); 
t0: = 0: tn: = 10: n: = 50:  
h: = (tn - t0) /n: `Generating graphs…`; 
snaps: = seq (plot (u (t0 + i*h, x), x = -10..10, 0..1, numpoints =  
250), i = 0..n): `Finished.`; 
display (snaps [1..n + 1], insequence = true); 
 

Appendix 4: Delphi code for backward heat Eq. (8), with M/� = 1 
and ∆
 = 0.002 and � = 50 
procedure TForm1.Button1Click (Sender: TObject); 
varL, beta, cn, en, t, sin_n, x, fx:real; 
n, x_inc:integer; 
label start; 
begin 
memo1.Clear; 

//Define L and beta here 
L: = 1;  beta: = strtofloat (edit2.Text); 

//Define time snapshot here 

t: = strtofloat (edit1.Text); 
start: 

fx: = 0; 

for n: = 1 to spinedit1.Value do 
begin 

fx: = fx + ((2/ (n*pi))* (1-cos (n*pi))* (exp (- (beta*n*n*pi*pi*t/ 

(L*L)))) * (sin (n*pi*x/L))); 

end; 

memo1. Lines. Add (floattostr (fx)); 

x: = x + (L/500); 

if x< = L then goto start; 

end; 

end. 

 

Appendix 5: Delphi code for backward heat Eq. (9), with M/� = 1 

and ∆
 = 0.002 and � = 50 

procedure TForm1.Button1Click (Sender: TObject); 

varL, beta, cn, en, t, sin_n, x, fx:real; 
n, x_inc:integer; 
label start; 
begin 
memo1.Clear; 
//Define L and beta here 
L: = 1; beta: = strtofloat (edit2.Text); //beta = -1 for this problem 
t: = strtofloat (edit1.Text); 
start: 
fx: = 0; 
for n: = 1 to spinedit1.Value do 
begin 
fx: = fx + (1/n*pi) * (2* (1-cos (n*pi)) + pi) *exp (- (beta*n*n* 
pi*pi*t/ (L*L))) *sin (n*pi*x/L); 
end; 
memo1.Lines.Add (floattostr (fx)); 
x: = x + (L/500); 
if x< = L then goto start; 
end; 
end. 
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