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Abstract: Optimization method is important in engineering design and application. Quantum genetic algorithm has 
the characteristics of good population diversity, rapid convergence and good global search capability and so on. It 
combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is 
called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA) in which qubit chromosomes are collapsed 
into variable-boundary-coded chromosomes instead of binary-coded chromosomes. Therefore much shorter 
chromosome strings can be gained. The method of encoding and decoding of chromosome is first described before a 
new adaptive selection scheme for angle parameters used for rotation gate is put forward based on the core ideas and 
principles of quantum computation. Eight typical functions are selected to optimize to evaluate the effectiveness and 
performance of vbQGA against standard Genetic Algorithm (sGA) and Genetic Quantum Algorithm (GQA). The 
simulation results show that vbQGA is significantly superior to sGA in all aspects and outperforms GQA in 
robustness and solving velocity, especially for multidimensional and complicated functions. 
 
Keywords: Function optimization, optimization algorithm, quantum genetic algorithm, variable-boundary coding 

 
INTRODUCTION 

 
Quantum computation is a new and developing 

interdiscipline integrating information science and 
quantum mechanics. Benioff (1980) and Feyman 
(1982) proposed the concepts of quantum computing. 
Shor (1994) presented a quantum algorithm used for 
factoring very large numbers, Grover (1996) developed 
a quantum mechanical algorithm to search unsorted 
database. Since then, quantum computing has attracted 
serious attention and been widely investigated by 
researches. Narayanan and Moore (1996) and Han 
(2000) proposed respectively quantum inspired genetic 
algorithm and genetic quantum algorithm. These 
algorithms are inspired by certain concept and 
principles of quantum computing such as qubits and 
superposition of states. Chromosomes in these 
algorithms are probabilistically represented by qubits 
and so can represent a linear superposition of solutions. 
Many researchers have found that these algorithms 
have excellent performance such as population 
diversity, rapid convergence and global search 
capability. Wang et al. (2005) have put effective 
applications in shop scheduling. 

In classical quantum genetic algorithms, 
chromosomes are generally represented by two types, 
qubits and binary, during the algorithm procedure. 
Binary chromosomes are generated by observing 
(equating quantum collapsing in quantum mechanics) 

qubit chromosomes. The two types of chromosomes 
have the same length. As the more of dimension of 
optimization problems, the bigger of range of variables 
and the higher of precision of variables, the 
chromosome strings will become longer and then result 
in big memory requirement and long run time for a 
computer.  

In order to improve this condition, this study 
presents a novel quantum genetic algorithm, in which 
chromosomes are encoded by qubit and variable-
boundary, to expect to short the length of chromosome 
strings and then cut down the memory requirement and 
speed up the run velocity of algorithm. 

 
RESULTS AND DISCUSSION 

 
Variable- boundary- coded quantum genetic 
algorithm: Han (2000) proposed a novel evolutionary 
computing method called a Genetic Quantum 
Algorithm (GQA) and applied it to a well-known 
combinatorial optimization problem, knapsack problem. 
His research shows that GQA is superior to other 
genetic algorithm. Based on the GQA, we propose a 
novel quantum genetic algorithm called variable-
boundary-coded quantum genetic algorithm, vbQGA, 
which we will introduce in this section.  
 

Representation in vbQGA: In GQA, the smallest unit 

of information is qubit. A qubit may be in the ‘0’ state, 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(1): 144-149, 2014 

 

145 

in the ‘1’ state, or in any superposition of the two. 

Based on the idea, in vbQGA, we represent the state of 

a qubit as follow: 

 

>⋅+>⋅=>Ψ ul xx ||| βα                       (1) 
 

where, 
lx  and 

ux  are respectively the lower bound and 

the upper bound of some variable x , α and β
 

are 
complex numbers that specify the probability amplitudes 
of the corresponding states. Obviously, a qubit may be 

in the ‘ lx ’ state, in the ‘ ux ’ state, or in any 

superposition of the two. The 2
α  and 2

β  give 

respectively the probability that the qubit will be found 

in ‘
lx ’ state and in ‘

ux ’ state. Normalization of the 

state to unity guarantees: 
 

1|||| 22 =+ βα                                (2)  

  
Now suppose we have an N-dimension function 

optimization problem described as: 
 

min: ),,,,,()( 21 Ni xxxxfXf LL=  

 

s.t.: u

ii

l

i xxx ≤≤ Ni ,,2,1 L=                               (3)  

 

With respect to the chromosome k  in generation t , 

the substring of variable 
 
can be represented by qubit 

as follow: 
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then, a whole qubit chromosome string for the N-

dimension function optimization problem can be defined 

as: 
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Apparently, the length of a qubit chromosome is

NL 2= . Let s be the population size, then chromosome 

population in generation t  can be described as: 

 

},,2,1|{ skqQ t

k

t
L==                 (6)  

 

Observation of qubit chromosomes in vbQGA: 

Observation in quantum genetic algorithm is similar to 

quantum collapse in quantum mechanics. In GQA, a 

probabilistic qubit chromosome will “collapse” into a 

binary chromosome through observation. However, in 

vbQGA, a qubit chromosome will “collapse” into a 

variable-boundary coded chromosome. For any a qubit

[ ]Tt

ijk

t

ijk ,, ,βα  (j = 1, 2) we generate a random number 

between 0 and 1, 
t

ijkr , , if 
2

,,

t

ijk

t

ijkr α≤  the qubit will be 

found in the ‘
lx ’ state, otherwise, the qubit will be 

found in the ‘
ux ’ state. With the substring of variable 

ix  of chromosome k  in Eq. (4), we can “collapse” it 

into a substring of a variable-boundary coded 

chromosome, which we denote as t

ikvb ,
. A t

ikvb ,
 can be 

one of the four conditions defined as: 
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So, a whole variable-boundary coded chromosome 

may be, for example, is in follow form: 
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and then the variable-boundary coded chromosome 

population in generation t  can be described as: 

 

},,2,1|{ skvbVB t

k

t
L==                 (9)  

 

Rules of decoding: As described in Eq. (7), the 

substring of a variable-boundary coded chromosome 

with respect to variable 
ix
 can be one of the four 

conditions. The four conditions correspond to four 

value regions (namely I, II, III and IV) of 
ix
, which are 

gotten by equally dividing the first quadrant, illustrated 

in Fig. 1. Let l

i

u

ii xxx −=∆  then every region represents 

a value span of 4/ix∆ . The decoding rules of variable-

boundary coded chromosome are given in Table 1.  

In Table 1, r  is a random number between 0 and 1. 

If 
, [ ]t l l

k i i ivb x x= , xi will take a small value inclining to 

the lower bound, the corresponding value region is 

Region I. If 
, [ ]t l u

k i i ivb x x=  and 
, [ ]t u l

k i i ivb x x= , 
ix  

will take a intermediate value, the corresponding value 

region are Region II and Region III respectively. Then if

, [ ]t u u

k i i ivb x x= , 
ix  will take a big value inclining to 

the upper bound, the corresponding value region is 

Region IV. 

 

Adaptive quantum rotation gate strategy: In many 

kinds of quantum-inspired algorithms, a primary 

updating operator for chromosomes is quantum rotation 

gate, which is defined as following as (Han, 2000): 
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(a)                                  (b)                                   (c)                              (d) 

 
Fig. 1: Four value regions of xi corresponding to vbki 

 
Table 1: Decoding rules of variable-boundary coded chromosome 

vbtk,t xt Illustrations 

[xlt  x
l
t] xt = x

l
t + r. 

∆��
�

 Region I in Fig. 1a  

[xlt   x
u
t] xt = x

l
t + (1+r). 

∆��
�

 Region II in Fig 1b 

[xut  x
l
t] xt = x

u
t  - (1+r). 

∆��
�

 Region III in Fig 1c 

[xut  x
u
t] xt = x

u
t - r. 

∆��

�
 Region IV in Fig 1d 

 

where, θ is rotation angle, which is generally looked up 

from a table. In our algorithm, quantum rotation gate for 

the substring of a qubit chromosome with respect to 

variable xi is represented as: 
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In order to make the qubit chromosomes effectively 

converge to the fitter states, we put forward an adaptive 

rotation angles computing method, which is defined as: 
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where, t

kX  is the solution k  in generation t  and 1tb −  is 

best solution in generation 1t − , 
,

t

k ix  and 
1t

ib
−

 are the 

value of their i th variable respectively, ( )tkf X  and 

1( )tf b −  are their fitness respectively. ( )sign •  is a sign 

function which described as: 
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By analyzing Eq. (11, 12) we can get: Rotation angles 

are adaptive selected according to the difference values 

between 
t

ikx ,
 and 1−t

ib . The bigger the difference values 

are, the bigger the absolute value of rotation angles are 

also. 

The rotation directions, which can be gotten by 

(12), of quantum gate can make the solution converge 

to the fitter states. For example, if 0)()( 1 >−− t

k

t ff XXXXbbbb  

(i.e., solution 1−tbbbb  is better than t

kXXXX ) and t

ik

t

i xb ,

1 >− , then 

we should increase the t

ijk ,β  so as to augment the 

probability of ‘ u
x ’ state in the variable-boundary-coded 

chromosome. Hence, if 0,, >⋅ t

ijk

t

ijk βα  (i.e., in the first 

quadrant), the quantum gate should rotate in 

anticlockwise direction and the rotation angle should be 

positive. This just agrees with the result we can get 

from Eq. (11) and (12). Other conditions can be 

analyzed in the same method. 

 

Procedure of vbQGA: The algorithm of vbQGA can 

be implemented as follows: 

procedure vbQGA 

begin  

t←0 

initialize 
tQ  

make 
tVB  by observing tQ  states 

decode tVB  into t
X  and evaluate them 

store the best solution, 
t
b , among t

X  

while (not termination-condition) do 

begin 

t← t+1 

make tVB  by observing tQ  states 

   decode tVB  into t
X  and evaluate them 

    compare with t
X and 1−t

b , and update tQ   

using quantum gates 

store the best solution, 
t
b , among t

X  

end 

end 

 

Experimental evaluation of VbQGA: 

Test functions: For the experimental evaluation of the 

algorithm presented in above section eight typical test 

functions is chosen. 

 

De Jong function: De Jong function is defined as: 
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Although being mono-peak, DeJong function is ill-

conditioned and intractable to search the global minimal 

solution: 

 

0)1,1( =f  
 

Coldstein Price function: Coldstein Price function is 

described as: 
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This function has only one global minimal solution:  

 
3)1,0( =−f  

 

Schaffer function: Schaffer function is given by: 
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This function has only one global minimal solution:  
 

0)0,0( =f  
 
Mono-pole and six-peak camelback function: Mono-
pole and six-peak camelback function is formulated as: 
 

10,
)16.0(1.0

)/1sin(
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24 ≤≤
−+

+= x
x

x
F

                   (16) 
 
The only one global maximal solution is  

 
8949.19)1275.0( =f  

 

Dual-pole and six-peak camelback function: Dual-

pole and six-peak camelback function is defined as: 
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This function has two global minimal solutions, i.e.,  

 
031628.1)7126.0,0898.0()7126.0,0898.0( −=−=− ff  

 

Multi-peak positive function: Multi-peak positive 

function is described as: 

 

0),8.0(cos 2001.0

6 ≥= − xxeF x                              (18)  

  

This function has two local optimal solutions and 

one global maximal solution: 

1)0( =f  

 

Ackley function: Ackley function is given by: 

 
2

1 1

1 1
0.2 cos(2 )

7 20 22.71282, 5 5 1, 2, ,
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j j
i i

x x
n n

iF e e x i n
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This function has only one global minimal solution: 

0)0.0,,0.0,0.0( =Lf . In the experimental evaluation we 

will take into account two conditions, 2=n  and 10=n . 

 

Rastrigin function: Rastrigin function is formulated as: 

 

2

8
1

10 [ 10cos(2 )], 5.12 5.12, 1,2, ,
n

i i i
i

F n x x x i nπ
=

= + − − ≤ ≤ =∑ L
 (20) 

 

The only one global minimal solution is 

0)9687.420,,9687.420,9687.420( =−−− Lf . We will 

take 6=n  for the experimental evaluation. 

 

Optimization and results: In order to test and evaluate 

the effectiveness and performance of vbQGA, we will 

optimize the aforementioned eight functions with sGA, 

GQA and vbQGA. 

In sGA, binary code, roulette wheel selection, one-

point crossover and 0-1 mutation is adopted. The 

controlling parameters are: variable precision p = 

0.000001, population size s = 50, crossover probability 

pc = 0.8, mutation probability pm = 0.01 and total 

generations of iteration t = 500. The algorithm of GQA 

we used here is the same as that mentioned in Han 

(2000). With GQA we will take controlling parameters 

as: p = 0.000001, s = 10 and t = 500, which are the same 

as those taken in vbQGA. 

All the algorithms are integrated in a test system 

programmed by Java language. The test system is 

operated under the following environments: Microsoft 

windows XP 2002, Intel Pentium 1600 MHz and 504 M 

memory. For each algorithm 20 runs are performed with 

respect to the eight functions. The results are presented 

in Table 2. 

In Table 2, fopt denotes the function value of 

optimum,  and  are respectively average and 

standard deviation of function value over 20 runs, 

(sec/run) represents the average elapsed time per one 

run. F1 ~F8 represent the corresponding functions 

described in the fore-subsection, e.g., F1 represents De 

Jong function, F2 represents Coldstein Price function 

etc. We should notice that F7 represents two conditions’ 

Ackley function, so there are two lines of results, the 

upper one corresponding to  and the lower one 

corresponding to . 

For giving a much clearer view of the results, the 

data in Table 2 are illustrated by Fig. 2 to 5. 

f sd

t

2=n
10=n
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Table 2: Results of experimental evaluation 

Functions 

sGA 

----------------------------------------------- 

GQA 

--------------------------------------------------- 

vbQGA 

------------------------------------------------------

ƒopt �̅ sd �̅  ƒopt  �̅ sd �̅  ƒopt

 
 �̅ sd �̅ 

F1  0.006  0.145 0.233 1.326  0.000  0.015 0.035 0.883  0.000  0.002 0.003 0.187 
F2  3.027  3.951 0.910 1.801  3.000  3.000 0.000 0.983  3.000  3.228 0.204 0.299 

F3  0.009  0.121 0.074 2.668  0.000  0.006 0.008 0.886  0.009  0.013 0.007 0.193 

F4  19.894  19.790 0.211 0.756  19.894  19.810 0.055 0.530  19.894  19.894 0.000 0.096 
F5 -1.032 -1.024 0.005 1.042 -1.032 -1.030 0.003 0.730 -1.032 -1.031 0.000 0.188 

F6  1.000  0.999 0.002 0.683  1.000  1.000 0.000 0.395  1.000  1.000 0.000 0.210 

F7  0.036  0.534 0.317 1.350  0.005  0.005 0.000 0.625  0.005  0.087 0.059 0.306 
 1.437  2.468 1.220 3.602  0.016  0.149 0.704 4.602  0.040  0.206 0.087 0.862 

F8  3.231  8.417 2.956 2.278  0.995  2.773 2.721 1.434  0.995  2.912 0.536 0.522 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: ƒopt

 
of the eight functions 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: � ̅of the eight functions over 20 runs 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: sd of the eight functions over 20 runs 

 

In Fig. 2 to 5, the numbers of x-coordinate represent 

the index of the corresponding functions, e.g., ‘1’ 

represents F1(i.e., De Jong function), ‘2’ represent F2 

(i.e., Coldstein Price function) etc.. We should also 

notice that ‘7’’ and ‘7’’’ represent respectively Ackley 

function under condition 2=n  and 10=n . 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5: �̅ of the eight functions over 20 runs 

 

It can be known from Fig. 2 that three algorithms 

under discussion can all get optimums with respect to 

F1~ F6. However, for F7 and F8, No one of the three 

algorithms can get optimums under the given controlling 

parameters. Though, the solutions of GQA and vbQGA 

are still obviously better than that of sGA. From Fig. 6 

and 7 we can find that F7 and F8 are very complicated 

and intractable for their exiting many local optimums. 

By taking population size as s = 50 and remaining other 

parameters unchanged, we carried out some test runs 

and the results show that GQA and vbQGA can exactly 

find out the optimums of F7 and F8. 

Fig. 3 tells us that sGA, GQA and vbQGA gain 

closely approximate averages of the function value of 

F1~F6 over 20 runs. In contrast with this, for F7 and 

F8, the averages obtained by GQA and vbQGA are very 

approximate and evidently superior to those by sGA. 

Figure 4 shows that vbQGA gets the smallest 

standard deviations among the three algorithms and sGA 

gets the largest ones. It reveals that vbQGA is more 

robust than the two algorithms. 

Figure 5 illustrates the comparison of average of 

elapsed time per one run among the three algorithms. It 

can be seen that vbQGA takes the least run time. Let us 

sum  up  all the  t of eight functions for sGA, GQA and 

vbQGA and we can get 15.5062 sec, 11.0675 sec and 

2.8631 sec, respectively. Obviously, vbQGA takes much 

less run time than the other two algorithms. In addition, 

it can be also seen that as the dimension and complexity 

ofafunctionincrease,thisadvantage will get more distinct. 

To sum up, vbQGA is superior to sGA in all 

respects. Comparing  with  GQA,  vbQGA  can get very  

-2

2

4
6
8

10

12
14

16

18
20

22

1 2 3 4 5 6 7’ 97“

sCA

CQA

vbQCA

0

14

sCA

-2
0

2

4
6

8
10
12

16

18

20

1 2 3 4 5 6 7’ 97“

CQA

vbQCA

22

0

3.5

1 2 3 4 5 6 7’ 87“

sCA

OQA

vbQCA
3.0

2.5

2.0

1.5

1.0

0.5

0

3.5

1 2 3 4 5 6 7’ 87“

3.0

2.5

2.0

1.5

1.0

0.5

4.0

4.5

5.0 sCA

OQA

vbQCA



Res. J. Appl. Sci. Eng. Technol.,

 
Fig. 6: Figure of function Ackley (n = 2) 

 

 
Fig. 7: Figure of function Rastrigin (n = 2) 

 

approximate quality of solutions. However, the standard 

deviation and the average elapsed time per one run of 

vbQGA are, especially for the multidimensional and 

complicated functions, less than GQA. This indicates 

that vbQGA has better robustness and solving velocity.

 

CONCLUSION 
 

In this study, a variable-boundary
genetic algorithm was proposed, vbQGA, based on the 
core idea and principle of quantum computation
algorithm, qubit chromosomes are collapsed into 
variable-boundary-coded chromosomes instead of 
binary-coded chromosomes, a new adaptive selection 
strategy  for  angle  parameters  used for rotation gate is 
adopted. An experimental evaluation, in which eight 
typical functions are selected to optimize and sQA and 
GQA are selected as contrasts, has been conducted. 
Four statistical values have been used as measurements 
of performance to evaluate vbQGA. The resul
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approximate quality of solutions. However, the standard 

deviation and the average elapsed time per one run of 

vbQGA are, especially for the multidimensional and 

functions, less than GQA. This indicates 

that vbQGA has better robustness and solving velocity. 

boundary-coded quantum 
genetic algorithm was proposed, vbQGA, based on the 
core idea and principle of quantum computation. In this 
algorithm, qubit chromosomes are collapsed into 

coded chromosomes instead of 
coded chromosomes, a new adaptive selection 

used for rotation gate is  
adopted. An experimental evaluation, in which eight 
typical functions are selected to optimize and sQA and 
GQA are selected as contrasts, has been conducted. 
Four statistical values have been used as measurements 
of performance to evaluate vbQGA. The results reveal 

that vbQGA is significantly superior to sGA in all 
aspects and outperforms GQA in robustness and 
solving velocity, especially for multidimensional and 
complicated functions. These demonstrate effectiveness 
and good performance of vbQGA. 
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that vbQGA is significantly superior to sGA in all 
aspects and outperforms GQA in robustness and 
solving velocity, especially for multidimensional and 
complicated functions. These demonstrate effectiveness 

DGMENT 

This research wok has been supported by Hubei 

Province Department of Education in China (Grant No. 

D20121102) and Key Laboratory of Metallurgical 

Equipment, Control of Ministry of Education in Wuhan 

University of Science and Technology. The author is 

grateful to the anonymous reviewers for their valuable 

REFERENCES 

Benioff, P., 1980. The computer as a physical system: A 

c quantum mechanical Hamiltonian 

model of computers as represented by Turing 

J. Stat. Phys., 22(8): 563-591. 

Feyman, R.P., 1982. Simulating physics with comp-

uters. Int. J. Theor. Phys., 21(7): 467-488. 

, L.K., 1996. A fast quantum mechanical 

algorithm for database search. Proceeding of the 

28th Annual ACM Symposium on the Theory of 

Philadelphia, pp: 212-221. 

Han, K.H., 2000. Genetic quantum algorithm and its 

ombinatorial optimization problem. 

00 Congress on Evolutionary 

: 1354-1360. 

Narayanan, A. and M. Moore, 1996. Quantum-inspired 

. Proceeding of the 3rd IEEE 

nce on Evolutionary 

66. 

gorithm for quantum computation: 

factoring. Proceeding of 

the 35th Annual Symposium on the Foundation of 

IEEE Computer Society, 

pp: 124-134. 

Wang, L., H. Wu, F. Tang and D. Zheng, 2005. A 

inspired genetic algorithm for flow 

Notes Comput. Sc., 3645(1): 


