
Research Journal of Applied Sciences, Engineering and Technology 7(1): 191-197, 2014

DOI:10.19026/rjaset.7.239

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: June 13, 2013 Accepted: June 28, 2013 Published: January 01, 2014

Corresponding Author: Akram Moustafa, Northern Border University, KSA
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

191

Research Article

A New Dynamic Model for Software Testing Quality

1
Akram Moustafa,

1
Abdusamad Al-Marghirani,

2
Mohammed M. Al-Shomrani and

3
Ahmad A. Al-Rababah

1
Northern Border University, KSA
2
King-Abdulaziz University, KSA

3
Hail University, KSA

Abstract: Research and study of Software Quality has Traditionally Focused on the Overall Product Quality Rather
than on the sub-phase’s milestones. There are many attempts over software testing as a standalone development
phase which introduced in the literature; these efforts lacked the dynamic nature which has a diverse effect on the
maintenance phase. This study will present the current software testing models; their challenges and at the end it will
present our new dynamic model for applying quality assurance requirements over the sub-phases of the testing
model. Quality properties may include as performance, efficiency, reliability, etc., new model will present for
Improving the effectiveness and efficiency of the testing process through applying the quality requirements,
designing high quality products, producing software with high Cost optimization, satisfying the product
stakeholders.

Keywords: Dynamic model, software development life cycle, software quality, software testing, software

verification and validation

INTRODUCTION

IT Professionals have various kinds of opinions on

many software development principles, but mostly IT
Professionals agree with one thing above all, Whatever
software that is delivered into the market it must be
accurate and reliable and successful software
recognition for the long time is based on effective
testing which meets the goal (Pressman, 2005; Dan and
Russ, 2008; Timothy and Robert, 2005; Thayer and
Christiansen, 2005). In a recently survey of software
development, it is found top-of-mind issue is software
testing and quality assurance (Software Engineering
Institute, 2008; Pine et al., 2008; Aranda et al., 2007;
Aggarwal and Yogesh, 2005). Testing is not a quality
assurance; it and badly designed will be a bad product.
However, software testing is one of the core technical
activities that can be used to improve the quality of the
software (Pine et al., 2008; Roger, 2005; Gottesdiener,
2005). Testing is a collection of techniques which is
used in measure and improves software quality.

Testing gives us a broader category of software
management practices which are known as quality
assurance as well as other testing related things are
defect tracking, design and code inspections (Pekka
et al., 2007; Lewis, 2008). Before and After test
execution test activities exist such as planning and
control, choosing test conditions, designing test cases

and checking results, evaluating completion criteria,
reporting on the testing process and system under test
and finalizing after the test phase has been completed
(Pine et al., 2008; David and Hossein, 2005; James,
2009; Chandrasehakhar, 2005).

All software development models should include a
testing phase as a mandatory phase through which the
product may meet the end users requirements. Software
testing can be stated as the process of validating and
verifying that software meets the implementation
requirements and guided its design and development
(Karl, 2006; Pressman and Ince, 2007). The software
testing process takes all individual units for the initial
testing that may followed by the integration of these
tested units in one module to be then tested and
integration with other modules to give us the tested
subsystem and finally these tested subsystems are
compound to produce the final overall software tested
system (Pressman and Ince, 2007; Schulmeyer, 2007).
Software testing depends on the testing methodology
and can be implemented at any time in the development
process (Verification and Validation). Software testing
in itself cannot ensure the quality of software. On its
own, all testing can do is providing a tested software
over the test cases and used samples. This testing
challenge will be taken into consideration in this
underlying study (David and Hossein, 2005; Weinberg,
2008; Schulmeyer, 2007).

Res. J. Appl. Sci. Eng. Technol., 7(1): 191-197, 2014

192

Fig. 1: Analysis based on verification and validation

SOFTWARE SYSTEMS MANAGEMENT

Software systems are more frequent part of the life,

from consumer products to business products. Most

people have had an experience with the software that

did not work as expected. Software not working

correctly can be creating many problems. Then it cans

loss lot of credibility as well as loss of money and time.

Human can make mistakes in software which produce a

fault in the code, in software or in a system or in a

documentation part. If a defect code is executed then

the system will fail. These types of defects in software

systems or documents may result in failures, but not all

defects do so. Also mistakes may be faced, because of

the time limits, complex type of code, changing the

technologies and many system interactions.

Software management is a set of practices that

attempt to achieve the following advantages: Deliver

the software products with the expected functionality

and quality, deliver the software on the expected time;

deliver the software within the expected cost and meet

expected levels of service during the software uses.

Verification and Validation (V and V): In the aspect

of quality assurance in software development,

documenting and designing the software. Developers

can follow corporate standard processes but it does not

mean quality assurance is responsible for that product.

This is not a responsibility of the testing team because

testing team can’t improve quality; they can only

measure it, although designing test before coding start

will improve quality because user can think and use the

information about their designs and during coding and

debugging. Verification normally involves reconsiders

and meetings to evaluate plan, code, obligations and

specifications. This can be done new with checklists,

matters registers, walkthroughs and inspection

meetings.

Validation typically engages genuine testing and

takes location after verifications are completed, (Fig. 1).

Software testing has three main features:

Verification, Validation, Defect finding. Verification

process verifies that the software is meeting all the

technical specifications.

A specification is the part of the description in

terms of a measurable output value given a specific

input value under specific pre-conditions. Validation

process confirms that the software meets the business

requirements. Defect finding is just like variance

between the expected and actual results.

MATERIALS AND METHODS

Test plan: An incomplete test plan will give the failure

results which checks how the application works on

different hardware and operating systems. There may

be more than a few possible system combinations

require that needs to be tested. System Testing tests all

the modules and integrated components of the complete

application. System test which may require

involvement of other systems although should be

minimized as much as possible to reduce the risk

problem, (Fig. 2). This system testing interacts with

other parts of the system comes in integration testing.

System testing requires many test runs because it

involve as a necessary feature by feature validation of

behavior using a wide range of both normal and

erroneous test inputs and data. The test plan is critical

because it contains descriptions of the test cares, the

sequence in which the tests must be executed and the

needed to be collected in each run.

Proposed U-lifecycle model: This model represents the

software development process which may be

considered as an extension of the process model.

Res. J. Appl. Sci. Eng. Technol., 7(1): 191-197, 2014

193

Fig. 2: Architectural U-model cycle for implementing quality life cycle

Instead of moving down in a liner way, the process
steps are bent upwards after the coding phase, to form
the typical u-shape. U-model demonstrates the
relationships between each phase of the development of
life cycle and its associated phase of testing. The
horizontal and vertical axes represents time or project
completeness (left-to-right) and level of abstraction
(coarsest-grain abstraction uppermost), respectively.

This model is always better to introduce testing in
early phases of Software Development Life Cycle.
(SDLC), Lifecycle starts with the identification of a
requirement for software and ends with the verification
of the developed software against that requirement.
Usually, SDLC models are used sequential, with the
development progressing through a number of well
defined phases. The U Lifecycle phases are usually
represented by a U diagram. In the Requirements
Analysis phase, it will be gathered the needs of the user,
to produce a complete and unambiguous specification
of the software. In the Design phase, the phase of the
design of computer architecture and software
architecture can also be referred to as high level design.
The baseline in selecting the architecture is that it
should realize all which typically consist of the list of
module. This phase identifying the components within
the software and the relationship between the
components and it will implement detailed information
of each component. The Code and Unit Test Phase, will
implement various component of the software is coded
and tested to verify that implement the detailed design.
The Software Integration phase, it will implements
larger group of tested software components are
integrated and tested until the software works correctly
and integrated with the system to check overall product.
The Acceptance Testing phase is checking that the
system delivered what was requested, (Fig. 3).

Software specification will be products of the first

phases of this U Lifecycle model and the remaining

phases are totally involve on testing at various levels.

SOFTWARE QUALITY

Quality software is sensible bug-free; consigned on

time and within budget, encounters requirements and/or

anticipations and is maintainable. However, quality is

conspicuously a personal term. It will depend on who

the ‘customer’ is and their overall leverage in the

design of things. A wide-angle view of the ‘customers’

of a software development project might encompass

end-users, customer acceptance testers, customer

contract agents, customer management, the

development organization's management/accountants/

testers/salespeople, future software upkeep engineers,

stack holders, publication columnists, etc., each kind of

‘customer’ will have their own slant on ‘quality’ -the

accounting department might define value in terms of

profits while an end-user might characterize quality as

user-friendly and bug-free, (Fig. 3).

QA team leader: Coordinates the testing activity,

communicates testing status to manage and organize to

the test team.

Software tester develop: Test script, test cases and

data, script execution, metrics analysis and outcomes

evaluation for system, integration and regression

testing. Organizations alter substantial in how they

accredit blame for QA and testing. Sometimes they are

the blended responsibility of one assembly or one-by-

one. Further more common are project teams that

include a blend of testers and developers who work

nearly together, with general QA methods supervised

by project managers. It will count on what best aligns

an organization's dimensions and business structure.

QA ensures that all parties worried with the project

adhere to the process and procedures, measures and

templates and test readiness reconsiders, (Fig. 4).

Res. J. Appl. Sci. Eng. Technol., 7(1): 191-197, 2014

194

Fig. 3: Detailed U-model of testing and quality implementation

Fig. 4: Phase-based quality

Our QA service counts on the customers and

projects. Allotment will count on team directs or

managers, feedback to developers and double-checking

ample communications amidst customers, managers,

developers and testers.

RESULTS AND DISCUSSION

Quality implementation: Overall goal of Quality

implementation is to deliver software with minimizes

defects and meets expected levels of function,

reliability and performance. Quality implementation

makes sure that the project will be completed based on

the agreed specifications, standards and functionality

without defects and possible problems. The main

benefits required are to do the effective testing before

production deployments are to find defect before an

application and before impact business operations. This

reduces business disruptions reduces the cost of fixing

of the defects from software failure or errors, (Fig. 4).

Res. J. Appl. Sci. Eng. Technol., 7(1): 191-197, 2014

195

Fig. 5: Complete U-model with V and V and quality implementation

Count undiscovered defect in the software with
estimation to decide when the software meets reliability
criteria for production deployment.

Test result will help to identify strengths and
deficiencies in development process and improvements
that improve delivered software. The value of software
checking is that is goes for after checking the
underlying code.

It furthermore examines the functional behavior of
the application. Behavior is a function of the code, but
it doesn't habitually follow that if the behavior is "bad"
then the code is awful. It's solely possible that the code
is solid but the obligations were inaccurately or
incompletely assembled and communicated, (Fig. 5).

Measurement endows the organization to advance
the software method; assist in designing, tracking and
commanding the programs project and assess the
quality of the programs therefore produced. It is the
assess of such exact attributes of the process, task and
merchandise that are used to compute the programs
metrics. Metrics are analyzed and they provide a
dashboard to the administration on the general
wellbeing of the process, task and product. Generally
account for if the quality requirements have been
achieved or are expected to be accomplished during the
software development process.

As a quality assurance process, a metric is required
to be revalidated every time it is used. These encompass
the user satisfaction and software acceptability with
their distinct dimensions which are capability or
functionality, usability, performance, reliability and
maintainability. In general, for most software quality

assurance systems the common software metrics that
are checked for enhancement are the source lines of
code, cyclomatic complexity of the code, Function
point analysis, bugs per line of code, code treatment,
number of classes and interfaces, cohesion and coupling
between the modules etc. widespread programs metrics
include: Bugs per line of code, Code coverage,
Cohesion, Coupling, Cyclomatic complexity, Function
point analysis, Number of classes and interfaces,
Number of lines of customer requirements, Order of
growth and Source lines of code, (Fig. 5).

Software quality metrics aim on the process,
project and product. By investigating the metrics the
association can take corrective action to rectify those
localities in the process, project or product which are
the cause of the software defects. The de-facto
definition of software quality comprises of the two
major attributes based on intrinsic product quality and
the client acceptability, (Fig. 6).

Maintainability: Is the ease with which a program can
be correct if a mistake occurs. Since there is no direct
way of assessing this indirect way has been used to
assess this. It assesses when a mistake is discovered.
How much time it takes to investigate the change,
design the modification, implement it and check it.

Integrity: Measures the system's ability to with stand
attacks to its security.

Usability: Is how working is your software
application? This significant attribute of your

Res. J. Appl. Sci. Eng. Technol., 7(1): 191-197, 2014

196

Fig. 6: Quality attributes comparison with system standards

submission is assessed in periods of the Time needed to

become quite effective in the system, the snare boost in

productivity by use of the system and subjective

assessment (usually in the pattern of questionnaire on

the new system).

Performance (efficiency): Has been a driving factor in

systems architecture and often compromises the

achievement of other quality attributes.

Reliability: Is the ability of a system to remain

operational over time. Reliability is measured as the

probability that a system will not fail to perform its

intended functions over a specified time interval.

CONCLUSION

This study has applying quality assurance

requirements after each of the different testing stages:

unit testing, module testing sub system testing and

system testing may lead to a qualified tested system.

This will absolutely reduce the time, the cost and the

effort of maintenance phase which considered as a

major challenge of Software engineering discipline.

Our study introduces a new dynamic model for

software testing quality which embraces the quality

assurance properties among different testing sub-

phases.

REFERENCES

Aggarwal, K.K. and S. Yogesh, 2005. Software

Engineering. 2nd Edn., New Age International.

Aranda, J., S. Easterbrook and G. Wilson, 2007.

Requirements in the wild: How small companies

do it. Proceeding of the 15th IEEE International

Requirements Engineering Conference (RE 2007).

Chandrasehakhar, K., 2005. Software Engineering and

Quality Assurance. BPB.

Dan, P. and M. Russ, 2008. Head First Software

Development. 1st Edn., O'Reilly, Sebastopol, CA.

David, J. and S. Hossein, 2005. Test-driven

development: Concepts, taxonomy and future

directions. IEEE Software, 38(9): 43-50.

Gottesdiener, E., 2005. The Software Requirements

Memory Jogger: A Pocket Guide to Help Software

and Business Teams Develop and Manage

Requirements. GOAL/QPC, Salem, NH.

James, A.W., 2009. Exploratory Software Testing:

Tips, Tricks, Tours and Techniques to Guide Test

Design. Addison Wesley, ISBN-10: 0321636414;

ISBN-13: 978-0321636416.

Res. J. Appl. Sci. Eng. Technol., 7(1): 191-197, 2014

197

Karl, E.W., 2006. More About Software Requirements:

Thorny Issues and Practical Advice . Microsoft

Press, Redmond, WA.

Lewis, W., 2008. Software Testing and Continuous

Quality Improvement. Auerbach, Boca Raton, FL.

Pekka, A., B. Nathan , M. Tiziana and M. Richard,

2007. Software process improvement. Proceeding

of the Software Process Model 14th European

Conference (EuroSPI 2007). Potsdam, Germany,

September 26-28, 2007.

Pine, F.J., F. García and M. Piattini, 2008.

Software process improvement in small and

medium software enterprisesa systematic review.

Softw. Qual. Control, 16(2): 237-261.

Pressman, R.S., 2005. Software Engineering: A

Practitioner's Approach. McGraw-Hill, New York.

Pressman, R.S. and D. Ince, 2007. Software

Engineering-a Practitioner’s Approach. McGraw-

Hill.

Roger, S.P., 2005. Software Engineering: A Practioner's

Approach. 6th Edn., (International Edn.), McGraw-

Hill, NY.

Schulmeyer, G.G., 2007. Handbook of Software

Quality Assurance. 4th Edn., Artech House,

Boston.

Software Engineering Institute, 2008. The Ideal Model.

Retrieved from: www: http:/ /www. sei. cmu. edu/

ideal/. (Accessed on: October 10, 2008)

Thayer, R.H. and M.J. Christiansen, 2005. Software

Engineering. Volume 1: The Development Process.

3rd Edn., Wiley and Sons, NY.

Timothy, C.L. and L. Robert, 2005. Object-Oriented

Software Engineering: Practical Software

Development using UML and Java. 2nd Edn.,

McGraw-Hill, NY.

Weinberg, G.M., 2008. Perfect Software: And Other

Illusions about Testing. Dorset House Publishing,

New York.

