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Abstract: Blind Source Separation (BSS) is a model free source separation technique which decomposes observed 
mixture data into mixing matrix and source matrix both of which are unknown beforehand. One well known BSS 
algorithm is joint diagonalization which is from the algebraic class and in which mixing structures are recovered by 
jointly diagonalizing the source condition matrix. In this study we first review the existing joint diagonalizing 
algorithm and then propose a modified high order and exponential gradient of the algorithm. The proposed 
algorithm is tested on simulated images and synthetic fMRI signals. Quality and execution time of the extracted 
sources and time courses is compared with conventional JD algorithm. 
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INTRODUCTION 

 
Different techniques are used for detection of brain 

functionality including Positron Emission Tomography 
(PET), Single Photon Emission Computed 
Tomography (SPECT) and fMRI etc. fMRI is the latest 
and comparatively accurate non-invasive clinical and 
research technique in which the magnetic properties of 
the brain tissues associated with activity and non-
activity are recorded in the form of 3-D images of the 
brain (Ogawa et al., 1990). Since the requirement of 
oxygenated blood for active neurons is more than the 
inactive neurons, thus there is a considerable difference 
of blood flow and consequently magnetic properties of 
them are different. When a set of neurons becomes 
active, it needs more oxygenated blood as compared to 
nearby idle neurons. Oxygenated blood consists of 
more iron which change its magnetic properties. The 
change in magnetic properties of the oxygenated blood 
is recorded by the fMRI scanner in the form of Blood 
Oxygen Level Dependent (BOLD) signal (Ogawa et al., 
1990). Statistical analysis of this multi image data is 
done for finding activity and non activity. The results of 
the analysis are normally presented on a statistical map. 
However due to small effect of BOLD variations in the 
signal intensity, SNR values of functional MR images 
are too low (Friman et al., 2001) and thus a de-noising 
step is normally performed before classification (Amir 
et al., 2012).  

During fMRI experiment the subjects are normally 
asked to perform some activity like movement of hand 
etc and then quiet for some time. This cycle of activity 
and non-activity is repeated few times. BOLD signal is 

recorded by the fMRI scanner in the form of 3D 
images. During this trial period thousands of volume 
elements in each brain slice are acquired producing 
time series which are mixtures of activity, non activity, 
noises and structural information. It is not easy to 
localize  active  brain spots in this mixture (McKeown 
et al., 1998). Variations in BOLD signal has been 
analyzed by different approaches including time 
frequency analysis, statistical parametric mapping, 
correlation analysis, principal component analysis and 
Independent component analysis etc. 

Since spectral characteristics of activity and non 
activity are different, thus regions of activity and non 
activity can be pointed out using time frequency 
analysis (Mitra et al., 1997). T-test and F-test are done 
to decide about each voxel in Statistical Parametric 
Mapping (SPM) which is a univariate approach 
(Friston, 1996). In case of correlation analysis decisions 
about voxels are made on the basis of experimental 
model. Each brain voxel is correlated with known a 
priori model and decision is made about the activity or 
non-activity of the voxel depending upon the 
correlation results (Bandettini et al., 1993). Methods 
discussed so far ie SPM, time frequency analysis and 
correlation analysis are known as hypothesis driven 
approaches because they are based on experimental 
model of the data. However data driven approaches of 
fMRI analysis do not require any experimental model 
like Principal Component Analysis (PCA) (Backfrieder, 
1996) and Independent Component Analysis (ICA) 
(McKeown et al., 2003). In principal component 
analysis which is a data driven approach, eigen images 
are find out from the data having greatest variance. 
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PCA is also applied for data reduction in high 
dimensional data. There exists other multi-variate data 
processing approaches, but the most prominent 
approach is ICA, which is a powerful exploratory tool 
for  fMRI  data  analysis (Qiu-Hua et al., 2010; Correa 
et al., 2007). ICA converts a multidimensional vector 
into statistically independent components. Therefore 
this algorithm is broadly used in other BSS problems as 
well. 

However, ICA requires that the hidden source 

should be independent and which is the main limitation 

of ICA. Sometime this may not be the case and the 

sources may not be independent. In such cases other 

approaches are used for processing of fMRI data 

including NMF and PCA. However for PCA 

application the data is assumed to be uncorrelated 

spatially and temporally (Xiaoxiang et al., 2004). In 

case of NMF non-negitivity of data is the requirement 

(Lee and Seung, 1999). In this study we are going to 

apply joint diagonalization algorithm for the source 

extraction of functional MRI data with high order and 

exponential contrast function for speed and accuracy. 

 

MATERIALS AND METHODS 

 

BSS problem: Let � is the observation matrix such that 

� = ������. Normally the goal of BSS is to find the 

mixing matrix � and source matrix � . Now if � is find 

out, � can be estimated by � = ������ where � = �	. 

Here symbol † denotes pseudo-inverse of �, which 

equals the inverse if numbers of rows and columns in � 
are equal. Since in this case we are applying dimension 

reduction on fMRI data and thus rows becomes equal to 

columns therefore pseudo inverse is equal to the 

inverse. Thus the BSS problem is reduced to find � 
only.  

In case of fMRI data we normally assume that the 

observation matrix � is a linear mixture of the source 

vector � and the time courses matrix � such that: 
  

� = ������                                   (1) 

 

In which � is the observed data of dimension n×m, 

� is a mixing matrix of dimension kn×  and � consist 

of independent sources of dimension k×m. 

The aim of any BSS algorithm is to find the un-

mixing matrix � such that: 

  

�� = � = ������                                (2) 

 

where, � = �
� with the constraint that ��� = �. 
In most of the BSS algorithms, it is required that 

the data should be pre processed (centered and white). 

The mean is subtracted from the data to make it 

centered as in Eq. (3): 

 

[ ]XEXX −=
'                         (3) 

where, X and X' represents the observed data and 
centered data, respectively. 

Eigen decomposition is used for whitening the 

data. A whitening matrix v is defined and multiplied 

with the observed data so that the correlation and 

covariance matrix of sources becomes identity matrix 

i.e., E [YY
T
] = I. To find v, eigen decomposition is 

used (Xiaoxiang et al., 2004) and is given as under: 

 
'

VXZ =                                     (4) 

 

where, T
EEDV 2

1−
=  and [ ]TT

XXEEDE
''

=  Since 

fMRI is a high dimensional data. Therefore, another 

preprocessing step is also required i.e., the dimension 

reduction step. Here we have used Singular Value 

Decomposition (SVD) as a dimension reduction 

technique (Xiaoxiang et al., 2004). Now the data is 

ready and the independent sources can be extracted by 

using the BSS algorithm. 

 

JD algorithm: Joint diagonalization based BSS 

algorithms normally employ diagonalization techniques 

on some source conditioning matrix for the 

identification of mixing matrix. Now if a source of 

symmetric matrices is given like 

� = {��, ��, ��,�� … … }, then the requirement is to find 

the invertible orthogonal matrix � such that: 
 

A�R�A                                                     (5) 

 

Such mixing matrix � can be found by minimizing 

���� =  �����!"�� with respect to �. Here !" is the 

autocovariance matrix of � and off denotes the off 
diagonal elements (Fabian et al., 2005). 

A global minima of such a cost function is called 

joint diagonalizer of !". Application of this cost 

function for BSS problem can be seen in Cardoso and 

Souloumiac (1995) and Yeredor (2002). 

 

Proposed higher order modified JD: Since X =
�A��S� Taking covariance of both sides: 
 

E�XX�� = E�ASS�A��                                           (6) 
 

R� = AR&A�                                           (7) 

 

where, R�  and R& are covariance matrices of observed 

data matrix and hidden source matrix. 

Searching for sources S where S = �W��X� leads to 

R& = WR�W�. 

We know that all sources are uncorrelated therefore 

E�SS�� = R& = I. 

To find W iteratively here we suggest to use fixed 

point iteration algorithm with 3
rd
 order contrast 

function. High order contrast functions converge the 

algorithm rapidly and the global maxima or minima is 

achieved with high accuracy and speed: 
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Fig. 1: Simulated sources and mixtures 

 

 
 
Fig. 2: Simulated fMRI sources and time courses 

 

W�n + 1� = W�n� − α�WRxW^T − I��            (8) 

 

Here α is the step size normally kept less than unity. 

Another proposed variant of the algorithm is to use 

exponential for the contrast function so that 

convergence is fast: 

W�n + 1� = W�n� − α�exp�WRxW� − I��       (9) 

 

Data: To  test  the  proposed algorithm two data sets 

are  used.  First  set  consists of general simulated 

mixed signals, second set consist of fMRI simulated 

signals. 
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Fig. 3: Simulated fMRI mixtures 

 

Simulated signals: First row of Fig. 1 shows four 

simulated source signals. These signals are mixed by 

linearly combining them with random signals thus 

making eight mixed signals as shown in row 2 and 3 of 

Fig. 1. 
 
Simulated fMRI data: To evaluate the performance of 

the suggested algorithm, synthetic fMRI data is used. 

This data is freely available on web http:// mlsp. 

umbc.edu/simulated_fmri_data.html.    This    synthetic  
 

data was initially synthesized by Correa et al. (2007) 

for testing the performance of their algorithm. This data 

consists of eight sources and their corresponding time 

series as shown in Fig. 2. The first source and 

corresponding time series is quitec prominent in Fig. 2 

which represents activated voxels. Source 2 and 6 

represents the physiological functions, while remaining 

sources and time courses show artifacts and noises. 

Observed data is the mixture of these eight sources and 

time courses. Thus forming 100 images. Four sample 

mixed images are shown in Fig. 3. The mixed data is 

then preprocessed for further analysis. 

 

RESULTS AND DISCUSSION 

 

Four Simulated signals and its mixtures are shown 

in Fig. 1. Our goal is to recover the source signals from 

its mixtures using conventional JD algorithm and then 

using the proposed algorithms and see the accuracy of 

the results by comparing the extracted sources with the 

simulated sources using correlation. First row of Fig. 4 

shows the recovered sources by conventional JD 

algorithm. It can be seen that source 2 and 4 are 

 

 

 
 
Fig. 4: Recovered sources by Conventional, Proposed 3rd order and Exponential JD algorithm 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(2): 233-239, 2014 

 

237 

 
 
Fig. 5: Recovered fMRI sources and time courses by conventional JD 

 

 
 
Fig. 6: Recovered sources and time courses by the proposed 3rd order JD algorithm 

 

recovered 99 and 96% accuracy, respectively, however 

source 1 and 3 are recovered with 24 and 0.3% 

accuracy. The overall accuracy of conventional JD is 

56%. Second row of Fig. 4 shows the extracted sources 

using 3
rd
 order proposed JD algorithm. It can be seen 

that the results have one to one correspondence with the 

simulated sources of Fig. 1. Accuracy of source 1, 2, 3, 

4 99% for all sources and thus average accuracy of all 

sources is also 99%. Third row of Fig. 4 shows sources 

extracted by exponential contrast function JD algorithm 

with the accuracy of 99% as well. Correlation results of 

the extracted sources with the simulated sources is 

shown in Table 1. It is now clear that proposed 

algorithm accuracy is better than conventional JD 

algorithm, therefore it can now be applied to simulated 

fMRI data. For this purpose a standard simulated fMRI 
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Fig. 7: Recovered sources and time courses by the proposed exponential JD algorithm 

 
Table 1: Execution time and correlation results of extracted sources with actual sources (simulated signals) 

Algo (time) sec Source 1 Source 2 Source 3 Source 4 Avg. 

Conv JD (0.5) 0.24 0.99 0.003 0.96 0.56 
3rd order JD (0.4 ) 0.99 0.99 0.990 0.99 0.99 
Exp JD (0.4) 1.00 0.98 1.000 0.98 0.99 

Avg.: Average 
 
Table 2: Execution time and correlation results of extracted sources/time courses with actual sources/time courses (fMRI simulated data) 

Sources/time courses (time) S1/T1 S2/T2 S3/T3 S4/T4 S5/T5 S6/T6 S7/T7 S8/T8 Avg. 

Conv JD (1 sec) 0.69/0.87 0.27/0.34 0.97/0.39 0.97/0.87 0.82/0.24 0.47/0.10 0.45/0.25 0.84/0.84 0.68/0.48 
3rd order JD (0.8 sec) 0.95/0.97 0.75/0.81 0.97/0.98 0.77/0.91 0.61/0.30 0.82/0.88 0.63/0.76 0.59/0.43 0.77/0.76 
Exp JD (0.7 sec) 0.96/0.97 0.64/0.60 0.98/0.97 0.90/0.75 0.60/0.45 0.77/0.80 0.88/0.81 0.61/0.86 0.80/0.76 

Avg.: Average 
 
data is used having eight sources and corresponding 

time courses. These sources are mixed with Time 

course matrix thus forming hundred images, four of 

them are shown in Fig. 3. To recover fMRI sources and 

time courses from these mixture images, first 

conventional JD algorithm is applied, the results of 

which are shown in Fig. 5. Correlation results of the 

extracted sources and time courses with actual sources 

and time courses of Fig. 2 are shown in Table 2. On 

average the algorithm recovers sources and time 

courses with the accuracy of 68 and 48%, respectively. 

Figure 6 and 7 shows the extracted sources and Time 

courses recovered by proposed 3
rd
 order and 

Exponential contrast function algorithm. Accuracy of 

the 3
rd
 order and exponential algorithm for sources/time 

courses is 77/76 and 80/76%, respectively. 

 

CONCLUSION 
 

In this study joint diagnalization algorithm is 
reviewed and applied to BSS problem. Third order and 
exponential contrast function is used for faster 
convergence and accuracy. Conventional and proposed 

algorithms are applied to simulated signals and standard 
simulated fMRI data and the recovered results were 
compared for accuracy and time of execution. By 
looking into Table 1 and 2 it can be concluded that the 
proposed algorithms performed well not only for 
general but also for fMRI data source separation. 
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