
Research Journal of Applied Sciences, Engineering and Technology 7(2): 275-281, 2014

DOI:10.19026/rjaset.7.251

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: March 29, 2013 Accepted: April 22, 2013 Published: January 10, 2014

Corresponding Author: Abdelrahman Osman Elfaki, Faculty of Information Science and Engineering, Management and

Science Universiti, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

275

Research Article
Using a Rule-based Method for Detecting Anomalies in Software Product Line

Abdelrahman Osman Elfaki, Sim Liew Fong, P. Vijayaprasad,
Md Gapar Md Johar and Murad Saadi Fadhil

Faculty of Information Science and Engineering, Management and Science Universiti, Malaysia

Abstract: This study proposes a rule based method for detecting anomalies in SPL. By anomalies we mean false-
optional features and wrong cardinality. Software Product Line (SPL) is an emerging methodology for software
products development. Successful software product is highly dependent on the validity of a SPL. Therefore,
validation is a significant process within SPL. Anomalies are well known problems in SPL. Anomiles in SPL means
dead feature, redundancy, wrong-cardinality and false-option features. In the literature, the problem of false-option
features and wrong cardinality did not take the signs of attentions as a dead feature and redundancy problems. The
maturity of the SPL can be enhanced by detecting and removing the false-option features. Wrong cardinality can
cause problems in developing software application by preventing configuration of variants from their variation
points. The contributions of this study are First Order Logic (FOL) rules for deducing false-option features and
wrong-cardinality. Moreover, we provide a new classification of the wrong cardinality. As a result, all cases of false-
option features and wrong variability in the domain-engineering process are defined. Finally, experiments are
conducted to prove the scalability of the proposed method.

Keywords: Domain engineering, software product line, variability

INTRODUCTION

Software Product Line (SPL) has been proven to be

an effective strategy to benefit from software reuse
allowing many organizations to reduce development
costs and duration, meanwhile increasing product
quality (Bosch, 2002). SPL has two main processes.
The first process is the domain-engineering that
represents domain repository and it’s responsible for
preparing domain artifacts. The second process is the
application engineering that aims to consume specific
artifact concerning the desired application specification.
Feature Model (FM) (Kang et al., 1990) and
Orthogonal Variability Model (OVM) (Pohl et al.,
2005) are the useful techniques for representing
variability in the SPL. A particular product-line
member is defined by a unique combination of features
(if variability modeled using FM) or a unique
combination of variants (if variability modeled using
OVM). The set of all legal features or variants
combinations defines the set of product line members.

Variability is the ability of a system to be
efficiently extended, changed, customized, or
configured to be used in a particular context (Svahnberg
et al., 2005). According to Beuche et al. (2004)
variability management proposals should be simple
(easy to understand), universal, able to manage
variability at all levels of abstraction and the

introduction of a new variability expression should be
as easy as possible. These conditions for successful
variability modeling methods are applicable in our
proposed method. Moreover, the proposed method can
be used for validating SPL.

The principal objective of SPL is to configure a
successful software product from the domain
engineering process by managing SPL artifacts using
variability modeling technique. Recently, validation of
SPL has been discussed as an important issue
concentrating on the maturity of SPL (Benavides et al.,
2009, 2008; Eisenecke et al., 2012; Heymans et al.,
2011). Validating SPL intends to ensure the correctness
of artifacts in domain engineering and to produce error-
free products including the possibility of providing
explanations to the modeler so that errors can be
detected and eliminated. Usually, a medium-size SPL
contains thousands of features. Therefore validating
SPL represents a challenge. The validation of SPL is a
vital process and not feasible to be done manually.

The challenging of automated validation of SPL
that has been mentioned in Batory et al. (2006),
Benavides et al. (2009, 2008), Eisenecke et al. (2012),
Heymans et al. (2011), Maßen and Lichter (2005) and
Wang et al. (2007) is motivated our work in this study .
The lack of a formal semantics and reasoning support
of FM has hindered the development of validation
methods for FM (Wang et al., 2007). Moreover, the

Res. J. Appl. Sci. Eng. Technol., 7(2): 275-281, 2014

276

automated validation of SPL was already identified as a
critical task in Batory et al. (2006), Kang et al. (2002)
and Maßen and Lichter (2005).

In our previous work (Elfaki et al., 2008, 2009a,

b, c), First Order Logic (FOL) rules are suggested to

validate SPL. In addition, these FOL rules satisfied

constraint dependency checking, optimization and

explanation. Moreover, implementation examples are

discussed. In Elfaki et al. (2009a, b, c) the scalability of

the proposed method is illustrated. In this study, we

complete our work by defining FOL rules for detecting

anomalies in SPL, specifically in the domain

engineering process. By anomalies we mean false-

optional features and wrong cardinality.

In SPL, configuration has been defined as a process

for producing software product that satisfying the

constraint dependency rules. With huge number of

software artifacts and constraint dependency rules, the

configuration process could be a complicate process. As

our main contribution of this study is validating

domain-engineering direct without any need for

configuration, then we can conclude that our approach

minimizes the cost of the validation in SPL.

LITERATURE REVIEW

A knowledge-based product derivation process is

suggested in Hotez and Krebs (2003) and Hotz et al.

(2003). A knowledge-based product derivation process

is a configuration model that includes three entities of

knowledge base. The automatic selection provides a

solution for complexity of product line variability. In

contrast to the proposed method, the knowledge-based

product derivation process does not provide explicit

definition of variability notations or for the

configuration process. In addition, knowledge-based

product derivation process is not focused on validating

variability.

Mannion (2002) was the first to connect

propositional formulas to FM. Mannion’s model did not

concern cross-tree constraints (Require and Exclude

constraints) and has not been used for supporting

validation operations. Zhang et al. (2004) defined a

meta-model of FM using Unified Modeling Language

(UML) core package and took Mannion's proposal as

foundation and suggested the use of an automated tool

support. In Zhang et al. (2004), the proposed model

does not deal with the anomalies in SPL. Batory (2005)

proposed a coherent connection between FM, grammar

and propositional formulas. Batory’s study represented

basic FM using context-free grammars plus

propositional logic. Batory’s proposal allows arbitrary

propositional constraints to be defined among features

and enables off-the-shelf satisfiable solvers to debug

FM. Robak and Pieczynski (2003) described a system

based on a feature diagram tree, annotated with

weighted variant features in the basis of fuzzy logic for

Fig. 1: Example of false-optional feature

modeling variability. Robak did not describe how to

validate the SPL. Sun et al. (2005) proposed first-order

logic to model the FM and used Alloy Analyzer (the

Alloy analyzer is a tool for analyzing models written in

Alloy) to automate consistency checking in the

configuration process. The proposal in Fan and Zhang

(2006) does not deal with the validation operations. Fan

and Zhang (2006) used description logic for reasoning

in FM. The work in Sun et al. (2005) and Fan and

Zhang (2006) did not mention other validation

operations. Czarnecki and Antkiewicz (2005) proposed

a general template-based approach for mapping FM.

Czarnecki and Pietroszek (2006) used Object-

Constraint Language (OCL) to validate constraint rules.

Trinidad et al. (2006) defined a method to detect

dead features based on finding all products and search

for unused features. Trinidad et al. (2008a) extended

this CSP technique to identify false-option features. The

aiming of CSP searching is to find all solutions that

satisfy the constraints. Finding all solutions is not

practical with the huge-size of SPL. Our work is

different because we detect false-option features in

domain-engineering process.

FAMA framework (Trinidad et al., 2008b) defined

a deductive operation for wrong cardinality. Our work

is different because we classified wrong cardinality into

four types and provide auto-support to detect each type.

OPERATIONS FOR DETECTING

FALSE-OPTIONAL FEATURES AND

WRONG CARDINALITY

In this section, how the proposed method can be

used to define and provide auto-support for detecting

false-optional features and wrong cardinality are

illustrated. Prolog (Segura, 2008) is used for

implementing the proposed operations.

False-optional feature detection: A false-optional

feature is a feature included in any product but not

assigned as a common feature, i.e., a common feature

without a common label (Maßen and Lichter, 2005).

Figure 1 illustrates an example of a false-optional

feature. Feature ‘B’ is a common feature, which means

‘B’ must be included in any product. Feature ‘B’

Res. J. Appl. Sci. Eng. Technol.,

Table 1: Rules for detecting false-optional features

Definitions

type (V1, variant), type (V2, variant), type (VP1, variationpoint),
yes) and common (VP1, yes).

∀VP2, V1, V2: requires_v_v (V1, V2) ∧common (VP

∀VP2, VP1: requires_vp_vp (VP1, VP2) ∧common

∀VP2, V1: requires_v_vp (V1, VP2) ∧common (VP

∀VP2, V2: false_option (VP2) ∧common (V2, yes)

(a)

(b)

(c)

(d)

Fig. 2: Illustration of false-optional features detection rules

requires feature ‘D’, which means that feature ‘D’ must

be included in all products. This property formulates

feature ‘D’ as a common feature. Thus, feature ‘D’ has

the same behavior as a common feature but is not

labeled as a common feature, which means f

is a false-optional feature.

The general pattern to describe false

detection is:

Res. J. Appl. Sci. Eng. Technol., 7(2): 275-281, 2014

277

optional features

variationpoint), type (VP2, variationpoint) variants (VP1, V1), variants (VP

(VP2, no) ∧common (V2, yes) ⟹false_option (V2)

common (VP2, no) ⟹false_option (VP2)

common (VP2, no) ⟹false_option (VP2)

yes) ⟹false_option (V2)

optional features detection rules

requires feature ‘D’, which means that feature ‘D’ must

be included in all products. This property formulates

feature ‘D’ as a common feature. Thus, feature ‘D’ has

as a common feature but is not

labeled as a common feature, which means feature ‘D’

The general pattern to describe false-option feature

Feature f1 is common and requires feature
feature f2 not common.

As mentioned earlier, there are three

implementations for the require

requires another variant, variant requires variation point

and variation point requires another variation point.

Table 1 shows the rules for detecting the false

variants and false-optional variation points. In Rule 1,

V1 is a common variant belonging to a common

variation point VP1. V1 requires V

must be included in any product, but V

common feature. Therefore, V2

feature. Rules 2 and 3 detect false

points. In this case, it is clear that all the common

variants belonging to the false-optional variation point

are false-optional variants. Rule 4 explains how to

detect the common variants belonging to the false

optional variation point. Figure 2 shows an illustra

of the false-optional features detection rules. Figure 2a

illustrates rule 1, Fig. 2b illustrates rule 2, Fig. 2c

illustrates rule 3 and Fig. 2d illustrates rule 4.

Wrong cardinality detection: Cardinality is wrong if

the maximum or minimum number al

from a variation point cannot be implemented

and Lichter, 2005). In this subsection, we introduce

four types of the wrong cardinality as one of our

contributions in this study: (Examples are based on

Fig. 3 to 6). In these figures the letter Y represents

variation point; the letter R denotes require relation and

the letter E denotes exclude relation. The numbers

between brackets represent cardinality; minimum and

maximum number allowed to be selected from the

variation point:

• Maximum wrong cardinality:

maximum cardinality cannot be implemented by

any means. In Fig. 3, X1 requires X2, X2 requires

X3 and X3 requires X1. In Fig. 3, maximum

cardinality is defined as 2. According to the require

constraints, this maximum cardinality cannot be

implemented.

• Minimum wrong cardinality:

minimum cardinality cannot be implemented by

any means. In Fig. 4, X1 excludes X2, X2 excludes

X3 and X3 excludes X1. Minimum cardinality is

defined as 2. According to the exclu

this minimum cardinality cannot be implemented.

(VP2, V2), common (V1,

) (1)

) (2)

) (3)

 (4)

is common and requires feature f2 and

As mentioned earlier, there are three

implementations for the require relation: variant

requires another variant, variant requires variation point

and variation point requires another variation point.

Table 1 shows the rules for detecting the false-optional

optional variation points. In Rule 1,

mon variant belonging to a common

requires V2 which means V2

must be included in any product, but V2 labeled as a not

 is a false-optional

feature. Rules 2 and 3 detect false-optional variation

n this case, it is clear that all the common

optional variation point

optional variants. Rule 4 explains how to

detect the common variants belonging to the false-

optional variation point. Figure 2 shows an illustration

optional features detection rules. Figure 2a

illustrates rule 1, Fig. 2b illustrates rule 2, Fig. 2c

illustrates rule 3 and Fig. 2d illustrates rule 4.

Cardinality is wrong if

the maximum or minimum number allowed to select

from a variation point cannot be implemented (Maßen

. In this subsection, we introduce

four types of the wrong cardinality as one of our

this study: (Examples are based on

the letter Y represents

variation point; the letter R denotes require relation and

the letter E denotes exclude relation. The numbers

between brackets represent cardinality; minimum and

maximum number allowed to be selected from the

Maximum wrong cardinality: In this type,

maximum cardinality cannot be implemented by

any means. In Fig. 3, X1 requires X2, X2 requires

X3 and X3 requires X1. In Fig. 3, maximum

cardinality is defined as 2. According to the require

m cardinality cannot be

Minimum wrong cardinality: In this type,

minimum cardinality cannot be implemented by

any means. In Fig. 4, X1 excludes X2, X2 excludes

X3 and X3 excludes X1. Minimum cardinality is

defined as 2. According to the exclude constraints,

this minimum cardinality cannot be implemented.

Res. J. Appl. Sci. Eng. Technol., 7(2): 275-281, 2014

278

Fig. 3: Maximum wrong cardinality

Fig. 4: Minimum wrong cardinality

Fig. 5: Max possibly wrong cardinality

Fig. 6: Min possibly wrong cardinality

• Maximum possibly wrong cardinality: In this

type, maximum cardinality cannot be implemented

in some cases, i.e., not all selections are true. In

Fig. 5, regarding to the maximum cardinality,

selection of (X2, X3) is correct but selection of

(X1, X2) and (X1, X3) are incorrect.

• Minimum possibly wrong cardinality: The

minimum wrong cardinality occurs in some cases,

i.e., not all selections are true. As an example, in

Fig. 6, a selection of (X3) is true but selections of

(X1) or (X2) is not true (because X1 requires X2

and X2 requires X3, therefore any selection of X1

followed by selections of X2 and any selection of

X2 followed by selection of X3).

Detection rules: Although the wrong cardinality occurs

in domain engineering, the detection rules work in the

configuration process. Comparing the number of

selected variants with the cardinality for each variation

point is the main issue in the deducing process. We

Table 2: Wrong-cardinality detection rules

Definition type (x, variant) ∧type (y, variationpoint) ∧variants (y, x)

∀y, x, n, m: ∧ (no_selected (x) >max (y, n)) ⟹ max-wrong-
cardinality. (5)
∀y, x, n, m: (no_selected (x) <min (y, n)) ⟹ min-wrong-cardinality.
 (6)

define a special predicate (no-selected (x)) for counting
the number of selected variants.
Table 2 shows the detection rules for wrong-cardinality.

In Rule 5, in all cases, the number of selected
variants (x) belonging to the variation point y is greater
than the maximum number (n) allowed to be selected
from y. This is a maximum wrong cardinality. In Rule
6, in all cases, the number of selected variants (x)
belonging to the variation point y is less than the
minimum number (n) allowed to be selected from y.
This is a minimum wrong cardinality.

Replacing all (∀) sign by there exist (∃) sign allows
the same rules to be used for detecting the maximum
and minimum possibly wrong cardinality.

SCALABILTY TESTING

Scalability is a key factor in measuring the
applicability of the techniques dealing with variability
modeling in domain engineering (Segura, 2008). The
wrong cardinality detection rules work within the
configuration process (application engineering process).
Scalability is not a critical issue in the configuration
process. Therefore, in this section, we discuss the
experiments related to redundancy detection. Testing
the output-time is our objective from these experiments.
In the following, we describe the method of our
experiments:

• Define the assumptions: We have two
assumptions:

o Each variation point and variant has a unique
name.

o All variation points have the same number of
variants.

• Generate data set to represent the domain
engineering: Domain engineering is generated in
terms of predicates (variation points and variants).
We generated four sets containing 1000, 5000,
15000 and 20000 variants. Variants are defined as
numbers represented in sequential order. For
example, in the first set (1000 variants) the variants
are: 1, 2, 3,…, 1000. In the last set (20000 variants)
the variants are: 1, 2, 3, …, 20000. The number of
variation point in each set is equal to number of
variant divided by five, which means each
variation point has five variants. As an example in
the second set (5000 variants), the number of
variation points equal 1000. Each variation point
defined as sequence number having the term vp as
postfix, e.g., vp12.

• Set the parameters: the main parameters are the
number of variants and the number of variation
points. The remaining eight parameters (common

Res. J. Appl. Sci. Eng. Technol., 7(2): 275-281, 2014

279

Table 3: Snapshot of experiment dataset

type (vp1, variationpoint). type (1, variant).
Variants (vp1, 1).
Common (570, yes).
Common (vp123, yes).
requires_v_v (7552, 2517).
requires_vp_vp (vp1572, vp1011).
excludes_vp_vp (vp759, vp134).
excludes_v_v (219, 2740).
requires_v_vp (3067, vp46).
excludes_v_vp (5654, vp1673).

Table 4: A prolog program to detect the false-optional features

det:-
caseone, casetwo, casethree, nl, told.
caseone:-
variants (Y, X), common (Y, yes), common (X, yes), requires_v_v
(X, N), variants (Z, N), not (common (Z, no)), common (N, yes),
write ('1....False Option'), write (N), nl, fail, det.
caseone:- true.
casetwo:-
common (Y, yes), requires_vp_vp (Y, Z), not (common (Z, yes)),
variants (Z, N),
common (N, yes), write (' 2.... False Option'), write (N),
nl, fail, det.
casetwo:- true.
casethree:-
variants (Y, X), common (Y, yes), common (X, yes), requires_v_vp
(X, Z),
not (common (Z, no)), variants (Z, N), common (N, yes), write
('3....False Option'), write (N),
nl, fail, det.
casethree:- true.

variants, common variation points, variant requires
variant, variant excludes variant, variation point
requires variation point, variation point excludes
variation points, variant requires variation point
and variant excludes variation point) are defined as
a percentage of the number of variants or variation
points. Three ratios are defined: 10, 25 and 50%
respectively. The number of the parameters related
to variant (such as common variant, variant
requires variant, variant excludes variant, variant
requires variation point and variant excludes
variation point) is defined as a percentage of the
number of the variants. The number of parameters
related to variation point (such as; variation point
requires variation point) is defined as a percentage
of the number of variation points. Table 3
represents snapshots of an experiment dataset, i.e.,
the domain-engineering in our experiments.

• Calculate output: For each set, we made thirty

experiments and calculated the execution time as

average. The experiments were done with the

variant range (1000-20000) and percentage range

of 10, 25 and 50%, respectively of constraint

dependency rules.

Table 4 shows Prolog software for detecting false-

optional features.
The wrong cardinality detection is happened in

configuration time. Thus, the scalability is not an issue.
In the following parts of this subsection, the results of
false-optional detection operation are presented. The
results show the execution time compared with number

Fig. 7: Results of false-optional detection scalability test

of variants, number of variation points and the eight

parameters (the six dependency constraint rules,

common variants and common variation points).

Figure 7 shows the result of scalability test for

false-optional detection. Our results show that the

proposed operations can deal with large number of

features (20,000) in reasonable time.

DISCUSSION AND COMPARISON

WITH PREVIOUS WORK

Generally, the problem of the current research is

that the checking of the software product’s correction
only happen after it has been developed as in the
process of application engineering. This is not feasible
to ensure the correctness of the SPL because the
medium-size SPL can contain huge number of software
products.

The proposed rules detect false-optional in the
domain-engineering process which is a novel.
According to Benavides et al. (2010) our method is the
first method that detects false-optional in the domain
engineering which makes the validation process is
feasible and practicable for industrial SPL.

In respect of the scalability results of the domain
engineering, we conducted experiments for SPLs with
ranges of up to 20,000 variants and up to 50% of
constraint dependency rules and we were able to obtain
results in a good time. In White et al. (2008) the
scalability is done by 5,000 features in one minute. In
Segura (2008), the execution time for 200-300 features
is 20 min after applying atomic sets to enhance the
scalability. When compared to the literature, it can be
seen that our proposed method is scalable. The
scalability of our approach is good enough when
compared with the literature because we first define
special patterns and later the system searches only for
these patterns. As a consequence, the searching time is
acceptable.

Res. J. Appl. Sci. Eng. Technol., 7(2): 275-281, 2014

280

FAMA framework (Trinidad et al., 2008a) defined
a deductive operation for wrong cardinality. Our
proposed approach defined four types of wrong
cardinality. Moreover, the proposed approach defines a
detective rule for each type of wrong cardinality, which
is novel.

Generally, researchers (in the literature) used
solvers for validating SPL by generating all products
and detect errors in each product. The process of
generating all products is a very tough process and
almost impossible with large-size SPL (Benavides
et al., 2009). Our approach is based on validating SPL
by detecting errors in domain-engineering. We
proposed a methodology based on defining a general
pattern for each error. Later, all the implemented cases
of this general pattern are defined. Using this general
pattern all cases of redundancy and wrong cardinality
could be detected. This methodology could be used to
solve other problems in SPL.

The proposed approach enhance the searching
process (in SPL) by predefine specific cases (each rule
represent case) and search only for them. Therefore, our
scalability experiments show good results.

CONCLUSION

The proposed method deals with the complexity of

detecting anomalies in domain engineering. Two types
of anomalies are discussed in this study: false-optional
and wrong cardinality. Deducing rules are presented to
deduce redundancy and wrong cardinality. The
proposed method is based on modeling variability using
predicates, then defining a general form for each type.
These definitions formulate the problems and allow the
FOL rules to deduce the results from predefined cases.

The problems that are discussed in this research

could be found in any SPL regardless of the technique

used for modeling variability. Wrong-cardinality and

false-optional features could occur in an SPL due to the

wrong usage of constraint dependency rules. Although

these problems are very clear in both the FM and the

OVM, it still could occur in all types of variability

modeling techniques. Since any SPL has a group of

features (by which we mean software assets) that are

collected in the domain-engineering process, wrong

usage of the dependency rules leads to these problems.

Many methods are applying empirical results to

test scalability by generating random FMs (Segura,

2008; Trinidad et al., 2008a, b; Yan et al., 2009).

Comparing the literature, our test range (1000-20,000

variants) is sufficient to test scalability. The proposed

method is limited to work only in certain environment,

i.e., where constraint dependency rules are well known

in all cases.

We now are developing a software tool that allows

users to model their SPL using the proposed method.

The tool provides direct link between the two layers

and implements our proposed validation operation.

Moreover, it provides scalability tests.

Our approach is limited to work only in a certain
environment, i.e., where constraint dependency rules
are well known in all cases. In some SPL, constraint
dependency rules are different from product in product.
We called these types of SPL as uncertain SPL
environments. As a future work, our approach could be
extended to handle uncertain SPL environments using
case-based reasoning. In domain engineering, our
approach is used to detect wrong cardinality and false-
optional features. As a future extension of this study,
some new rules could be developed for auto-correction
of these errors.

REFERENCES

Batory, D., 2005. Feature models, grammars and

propositional Formulas. Proceeding of the the 9th
International Software Product Lines Conference
(SPLC05). Rennes, France.

Batory, D., D. Benavides and A. Ruiz-Cortes, 2006.
Automated analysis of feature models: Challenges
ahead. Commun. ACM, 49(12): 45-47.

Benavides, D., A. Metzger and U. Eisenecker, 2009.
Main introduction of the proceeding of Third
International Workshop on Variability Modeling of
Software-intensive systems. Spain.

Benavides, D., S. Segura and A. Ruiz-Cortés, 2010.
Automated analysis of feature models 20 years
later: A literature review. Inform. Syst., 35(6):
615-636.

Benavides, D., A. Ruiz-Cort´es, D. Batory and
P. Heymans, 2008. Main introduction of the
proceeding of First International Workshop on
Analyses of Software Product Lines (ASPL’08).
Limerick, Ireland.

Beuche, D., H. Papajewski and W. Schröder-Preikschat,
2004. Variability management with feature models.
Sci. Comput. Program., 53(3): 333-352.

Bosch, J., 2002. Maturity and Evolution in Software

Product Lines: Approaches, Artefacts and

Organization. In: Chastek, G. (Ed.), Software

Product Lines. Springer, Berlin, Heidelberg, pp:

257-271.

Czarnecki, K. and M. Antkiewicz, 2005. Mapping

features to models: A template approach based on

superimposed variants. Proceeding of the the 4th

International Conference on Generative

Programming and Component Engineering

(GPCE'05). Tallinn, Estonia.

Czarnecki, K. and K. Pietroszek, 2006. Verifying

feature-based model templates against well-

formedness OCL constraints. Proceeding of the 5th

International Conference on Generative

Programming and Component Engineering

(GPCE'06).

Eisenecke, U., S. Apel and S. Gnesi, 2012. Main

introduction of the proceeding of Sixth

International Workshop on Variability Modelling

of Software-intensive Systems. Germany.

Res. J. Appl. Sci. Eng. Technol., 7(2): 275-281, 2014

281

Elfaki, A., S. Phon-Amnuaisuk and C.K. Ho, 2008.
Knowledge based method to validate feature
models. Proceeding of the 1st International
Workshop on Analyses of Software Product Lines
(ASPL’08), Collocated with SPLC08. Limerick,
Ireland.

Elfaki, A., S. Phon-Amnuaisuk and C. Ho, 2009a.
Investigating Inconsistency Detection as a
Validation Operation in Software Product Line. In:
Lee, R. and N. Ishii (Eds.), Software Engineering
Research, Management and Applications. Springer,
Berlin, Heidelberg, pp: 159-168.

Elfaki, A., S. Phon-Amnuaisuk and C. Kuan Ho, 2009b.
Using first order logic to validate feature model.
Proceeding of the the 3rd International Workshop
on Variability Modeling of Software-Intensive
Systems. Sevilla, Spain.

Elfaki, A.O., S. Phon-Amnuaisuk and C.K. Ho, 2009c.
Modeling variability in software product line using
first order logic. Proceeding of the 7th ACIS
International Conference on Software Engineering
Research, Management and Applications
(SERA'09). Haikou, Hainan Island, China, pp:
227-233.

Fan, S. and N. Zhang, 2006. Feature Model Based on
Description Logics. In: Gabrys, B., R. Howlett and
L. Jain (Eds.), Knowledge-Based Intelligent
Information and Engineering Systems. Springer,
Berlin, Heidelberg, pp: 1144-1151.

Heymans, P., K. Czarnecki and U. Eisenecker, 2011.
Main introduction of the proceeding of Fifth
International Workshop on Variability Modelling
of Software-intensive Systems. Namur, Belgium.

Hotez, L. and T. Krebs, 2003. A knowledge based
product derivation process and some idea how to
integrate product development. Proceeding of the
the Software Variability Management Workshop.
Groningen, the Netherlands.

Hotz, L., A. Gunter and T. Krebs, 2003. A knowledge-
based product derivation process and some ideas
how to integrate product development. Proceeding
of Software Variability Management Workshop,
pp: 136-140.

Kang, K.C., J. Lee and P. Donohoe, 2002. Feature-
oriented product line engineering. IEEE Software,
19(4): 58-65.

Kang, K.C., S.G. Cohen, J.A. Hess, W.E. Novak and
A.S. Peterson, 1990. Feature-oriented Domain
Analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-21, ESD-90-TR-222,
Software Engineering Institute, Carnegie Mellon
University.

Maßen, T. and H. Lichter, 2005. Determining the
Variation Degree of Feature Models. In: Obbink,
H. and K. Pohl (Eds.), Software Product Lines.
Springer, Berlin, Heidelberg, pp: 82-88.

Mannion, M., 2002. Using first-order logic for product
line model validation. Proceeding of the 2nd
International Conference on Software Product
Lines.

Pohl, K., G. Bockle and F. Van Der Linden, 2005.

Software Product Line Engineering Foundations

Principles and Techniques. Springer, Verlag

Heidelberg, Germany.

Robak, S. and A. Pieczynski, 2003. Employing fuzzy

logic in feature diagrams to model variability in

software product-lines. Proceeding of the 10th

IEEE International Conference and Workshop on

the Engineering of Computer-Based Systems

(ECBS03), pp: 305-311.

Segura, S., 2008. Automated analysis of feature models

using atomic sets. Proceeding of the 1st

International Workshop on Analyses of Software

Product Lines (ASPL’08), Collocated with

(SPLC08). Limerick, Ireland.

Sun, J., H. Zhang, Y. Fang and L.H. Wang, 2005.

Formal semantics and verification for feature

modeling. Proceeding of the 10th IEEE

International Conference on Engineering of

Complex Computer Systems (ICECCS), pp:

303-312.

Svahnberg, M., J. Van Gurp and J. Bosch, 2005. A

taxonomy of variability realization techniques.

Software Pract. Exp., 35(8): 705-754.

Trinidad, P., B. David and A. Ruiz-Cort´es, 2006.

Isolated features detection in feature models.

Proceeding of the the Advanced Information

Systems Engineering (CAiSE’06), Luxembour.

Trinidad, P., D. Benavides, A. Dura´n, A. Ruiz-Cortes

and M. Toro, 2008a. Automated error analysis for

the agilization of feature modeling 2008. J. Syst.

Software, 81(6): 883-896.

Trinidad, P., D. Benavides, A. Ruiz-Cort´es, S. Segura

and A. Jimenez, 2008b. FAMA framework.

Proceeding of the 12th Software Product Lines

Conference (SPLC08).

Wang, H.H., Y.F. Li, J. Sun, H. Zhang and J. Pan,

2007. Verifying feature models using OWL. Web

Semantics: Sci. Serv. Agents World Wide Web,

5(2): 117-129.

White, J., D. Schmidt, D. Benvides, P. Trinidad and

A. Ruiz-Cortes, 2008. Automated diagnosis of

product line configuration errors on feature models.

Proceeding of the 12th International Conference of

Software Product Line. Limerick, Irland.

Yan, H., W. Zhang, H. Zhao and H. Mei, 2009. An

Optimization Strategy to Feature Models’

Verification by Eliminating Verification-Irrelevant

Features and Constraints. In: Edwards, S. and G.

Kulczycki (Eds.), Formal Foundations of Reuse

and Domain Engineering. Springer, Berlin,

Heidelberg, pp: 65-75.

Zhang, W., H. Zhao and H. Mei, 2004. A propositional

logic-based method for verification of feature

models. Proceeding of the the 6th International

Conference on Formal Engineering Methods

(ICFEM 04).

