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Abstract: This study proposes a rule based method for detecting anomalies in SPL. By anomalies we mean false-
optional features and wrong cardinality. Software Product Line (SPL) is an emerging methodology for software 
products development. Successful software product is highly dependent on the validity of a SPL. Therefore, 
validation is a significant process within SPL. Anomalies are well known problems in SPL. Anomiles in SPL means 
dead feature, redundancy, wrong-cardinality and false-option features. In the literature, the problem of false-option 
features and wrong cardinality did not take the signs of attentions as a dead feature and redundancy problems. The 
maturity of the SPL can be enhanced by detecting and removing the false-option features. Wrong cardinality can 
cause problems in developing software application by preventing configuration of variants from their variation 
points. The contributions of this study are First Order Logic (FOL) rules for deducing false-option features and 
wrong-cardinality. Moreover, we provide a new classification of the wrong cardinality. As a result, all cases of false-
option features and wrong variability in the domain-engineering process are defined. Finally, experiments are 
conducted to prove the scalability of the proposed method. 
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INTRODUCTION 

 
Software Product Line (SPL) has been proven to be 

an effective strategy to benefit from software reuse 
allowing many organizations to reduce development 
costs and duration, meanwhile increasing product 
quality (Bosch, 2002). SPL has two main processes. 
The first process is the domain-engineering that 
represents domain repository and it’s responsible for 
preparing domain artifacts. The second process is the 
application engineering that aims to consume specific 
artifact concerning the desired application specification. 
Feature Model (FM) (Kang et al., 1990) and 
Orthogonal Variability Model (OVM) (Pohl et al., 
2005) are the useful techniques for representing 
variability in the SPL. A particular product-line 
member is defined by a unique combination of features 
(if variability modeled using FM) or a unique 
combination of variants (if variability modeled using 
OVM). The set of all legal features or variants 
combinations defines the set of product line members.   

Variability is the ability of a system to be 
efficiently extended, changed, customized, or 
configured to be used in a particular context (Svahnberg 
et al., 2005). According to Beuche et al. (2004) 
variability management proposals should be simple 
(easy to understand), universal, able to manage 
variability at all levels of abstraction and the 

introduction of a new variability expression should be 
as easy as possible. These conditions for successful 
variability modeling methods are applicable in our 
proposed method. Moreover, the proposed method can 
be used for validating SPL. 

The principal objective of SPL is to configure a 
successful software product from the domain 
engineering process by managing SPL artifacts using 
variability modeling technique. Recently, validation of 
SPL has been discussed as an important issue 
concentrating on the maturity of SPL (Benavides et al., 
2009, 2008; Eisenecke et al., 2012; Heymans et al., 
2011). Validating SPL intends to ensure the correctness 
of artifacts in domain engineering and to produce error-
free products including the possibility of providing 
explanations to the modeler so that errors can be 
detected and eliminated. Usually, a medium-size SPL 
contains thousands of features. Therefore validating 
SPL represents a challenge. The validation of SPL is a 
vital process and not feasible to be done manually.  

The challenging of automated validation of SPL 
that has been mentioned in Batory et al. (2006), 
Benavides et al. (2009, 2008), Eisenecke et al. (2012), 
Heymans et al. (2011), Maßen and Lichter (2005) and 
Wang et al. (2007) is motivated our work in this study . 
The lack of a formal semantics and reasoning support 
of FM has hindered the development of validation 
methods for FM (Wang et al., 2007). Moreover, the 
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automated validation of SPL was already identified as a 
critical task in Batory et al. (2006), Kang et al. (2002) 
and Maßen and Lichter (2005). 

In our  previous  work (Elfaki et al., 2008, 2009a, 

b, c), First Order Logic (FOL) rules are suggested to 

validate SPL. In addition, these FOL rules satisfied 

constraint dependency checking, optimization and 

explanation. Moreover, implementation examples are 

discussed. In Elfaki et al. (2009a, b, c) the scalability of 

the proposed method is illustrated. In this study, we 

complete our work by defining FOL rules for detecting 

anomalies in SPL, specifically in the domain 

engineering process. By anomalies we mean false-

optional features and wrong cardinality. 

In SPL, configuration has been defined as a process 

for producing software product that satisfying the 

constraint dependency rules. With huge number of 

software artifacts and constraint dependency rules, the 

configuration process could be a complicate process. As 

our main contribution of this study is validating 

domain-engineering direct without any need for 

configuration, then we can conclude that our approach 

minimizes the cost of the validation in SPL.  

 

LITERATURE REVIEW 
 

A knowledge-based product derivation process is 

suggested in Hotez and Krebs (2003) and Hotz et al. 

(2003). A knowledge-based product derivation process 

is a configuration model that includes three entities of 

knowledge base. The automatic selection provides a 

solution for complexity of product line variability. In 

contrast to the proposed method, the knowledge-based 

product derivation process does not provide explicit 

definition of variability notations or for the 

configuration process. In addition, knowledge-based 

product derivation process is not focused on validating 

variability. 

Mannion (2002) was the first to connect 

propositional formulas to FM. Mannion’s model did not 

concern cross-tree constraints (Require and Exclude 

constraints) and has not been used for supporting 

validation operations. Zhang et al. (2004) defined a 

meta-model of FM using Unified Modeling Language 

(UML) core package and took Mannion's proposal as 

foundation and suggested the use of an automated tool 

support. In Zhang et al. (2004), the proposed model 

does not deal with the anomalies in SPL. Batory (2005) 

proposed a coherent connection between FM, grammar 

and propositional formulas. Batory’s study represented 

basic FM using context-free grammars plus 

propositional logic. Batory’s proposal allows arbitrary 

propositional constraints to be defined among features 

and enables off-the-shelf satisfiable solvers to debug 

FM. Robak and Pieczynski (2003) described a system 

based on a feature diagram tree, annotated with 

weighted variant features in the basis of fuzzy logic  for 

 
 
Fig. 1: Example of false-optional feature 

 

modeling variability. Robak did not describe how to 

validate the SPL. Sun et al. (2005) proposed first-order 

logic to model the FM and used Alloy Analyzer (the 

Alloy analyzer is a tool for analyzing models written in 

Alloy) to automate consistency checking in the 

configuration process. The proposal in Fan and Zhang 

(2006) does not deal with the validation operations. Fan 

and Zhang (2006) used description logic for reasoning 

in FM. The work in Sun et al. (2005) and Fan and 

Zhang (2006) did not mention other validation 

operations. Czarnecki and Antkiewicz (2005) proposed 

a general template-based approach for mapping FM. 

Czarnecki and Pietroszek (2006) used Object-

Constraint Language (OCL) to validate constraint rules.  

Trinidad et al. (2006) defined a method to detect 

dead features based on finding all products and search 

for unused features. Trinidad et al. (2008a) extended 

this CSP technique to identify false-option features. The 

aiming of CSP searching is to find all solutions that 

satisfy the constraints. Finding all solutions is not 

practical with the huge-size of SPL. Our work is 

different because we detect false-option features in 

domain-engineering process.  

FAMA framework (Trinidad et al., 2008b) defined 

a deductive operation for wrong cardinality. Our work 

is different because we classified wrong cardinality into 

four types and provide auto-support to detect each type.  

 

OPERATIONS FOR DETECTING  

FALSE-OPTIONAL FEATURES AND  

WRONG CARDINALITY 

 

In this section, how the proposed method can be 

used to define and provide auto-support for detecting 

false-optional features and wrong cardinality are 

illustrated. Prolog (Segura, 2008) is used for 

implementing the proposed operations. 

 

False-optional feature detection: A false-optional 

feature is a feature included in any product but not 

assigned as a common feature, i.e., a common feature 

without a common label (Maßen and Lichter, 2005). 

Figure 1 illustrates an example of a false-optional 

feature.  Feature ‘B’ is a common feature, which means 

‘B’ must be included in any product. Feature ‘B’
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Table 1: Rules for detecting false-optional features

Definitions 

type (V1, variant), type (V2, variant), type (VP1, variationpoint),
yes) and common (VP1, yes). 

∀VP2, V1, V2: requires_v_v (V1, V2) ∧common (VP

∀VP2, VP1: requires_vp_vp (VP1, VP2) ∧common

∀VP2, V1: requires_v_vp (V1, VP2) ∧common (VP

∀VP2, V2: false_option (VP2) ∧common (V2, yes)

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 2: Illustration of false-optional features detection rules

 

requires feature ‘D’, which means that feature ‘D’ must 

be included in all products. This property formulates 

feature ‘D’ as a common feature. Thus, feature ‘D’ has 

the same behavior as a common feature but is not 

labeled as a common feature, which means f

is a false-optional feature.   

The general pattern to describe false

detection is:  
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optional features 

variationpoint), type (VP2, variationpoint) variants (VP1, V1), variants (VP

(VP2, no) ∧common (V2, yes) ⟹false_option (V2)                                            

common (VP2, no) ⟹false_option (VP2)                                                                    

common (VP2, no) ⟹false_option (VP2)                                                                         

yes) ⟹false_option (V2)                                                                                      

 

 

 

 

optional features detection rules 

requires feature ‘D’, which means that feature ‘D’ must 

be included in all products. This property formulates 

feature ‘D’ as a common feature. Thus, feature ‘D’ has 

as a common feature but is not 

labeled as a common feature, which means feature ‘D’ 

The general pattern to describe false-option feature 

Feature f1 is common and requires feature 
feature f2 not common.  

As mentioned earlier, there are three 

implementations for the require 

requires another variant, variant requires variation point 

and variation point requires another variation point. 

Table 1 shows the rules for detecting the false

variants and false-optional variation points. In Rule 1, 

V1 is a common variant belonging to a common 

variation point VP1. V1 requires V

must be included in any product, but V

common feature. Therefore, V2 

feature. Rules 2 and 3 detect false

points. In this case, it is clear that all the common 

variants belonging to the false-optional variation point 

are false-optional variants. Rule 4 explains how to 

detect the common variants belonging to the false

optional variation point. Figure 2 shows an illustra

of the false-optional features detection rules. Figure 2a 

illustrates rule 1, Fig. 2b illustrates rule 2, Fig. 2c 

illustrates rule 3 and Fig. 2d illustrates rule 4.

 

Wrong cardinality detection: Cardinality is wrong if 

the maximum or minimum number al

from a variation point cannot be implemented 

and Lichter, 2005). In this subsection, we introduce 

four types of the wrong cardinality as one of our 

contributions  in  this study: (Examples are based on 

Fig. 3 to 6). In these figures the letter Y represents 

variation point; the letter R denotes require relation and 

the letter E denotes exclude relation. The numbers 

between brackets represent cardinality; minimum and 

maximum number allowed to be selected from the 

variation point: 

 

• Maximum wrong cardinality:

maximum cardinality cannot be implemented by 

any means. In Fig. 3, X1 requires X2, X2 requires 

X3 and X3 requires X1. In Fig. 3, maximum 

cardinality is defined as 2. According to the require 

constraints, this maximum cardinality cannot be 

implemented.  

• Minimum wrong cardinality:

minimum cardinality cannot be implemented by 

any means. In Fig. 4, X1 excludes X2, X2 excludes 

X3 and X3 excludes X1. Minimum cardinality is 

defined as 2. According to the exclu

this minimum cardinality cannot be implemented.

(VP2, V2), common (V1, 

)                                                                        (1)                                                                                                           

)                                                                                                 (2) 

)                                                                                                        (3)     

                                                       (4) 

is common and requires feature f2 and 

As mentioned earlier, there are three 

implementations for the require relation: variant 

requires another variant, variant requires variation point 

and variation point requires another variation point. 

Table 1 shows the rules for detecting the false-optional 

optional variation points. In Rule 1, 

mon variant belonging to a common 

requires V2 which means V2 

must be included in any product, but V2 labeled as a not 

 is a false-optional 

feature. Rules 2 and 3 detect false-optional variation 

n this case, it is clear that all the common 

optional variation point 

optional variants. Rule 4 explains how to 

detect the common variants belonging to the false-

optional variation point. Figure 2 shows an illustration 

optional features detection rules. Figure 2a 

illustrates rule 1, Fig. 2b illustrates rule 2, Fig. 2c 

illustrates rule 3 and Fig. 2d illustrates rule 4. 

Cardinality is wrong if 

the maximum or minimum number allowed to select 

from a variation point cannot be implemented (Maßen 

. In this subsection, we introduce 

four types of the wrong cardinality as one of our 

this study: (Examples are based on 

the letter Y represents 

variation point; the letter R denotes require relation and 

the letter E denotes exclude relation. The numbers 

between brackets represent cardinality; minimum and 

maximum number allowed to be selected from the 

Maximum wrong cardinality: In this type, 

maximum cardinality cannot be implemented by 

any means. In Fig. 3, X1 requires X2, X2 requires 

X3 and X3 requires X1. In Fig. 3, maximum 

cardinality is defined as 2. According to the require 

m cardinality cannot be 

Minimum wrong cardinality: In this type, 

minimum cardinality cannot be implemented by 

any means. In Fig. 4, X1 excludes X2, X2 excludes 

X3 and X3 excludes X1. Minimum cardinality is 

defined as 2. According to the exclude constraints, 

this minimum cardinality cannot be implemented. 
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Fig. 3: Maximum wrong cardinality 

 

 
 
Fig. 4: Minimum wrong cardinality 

 

 
 
Fig. 5: Max possibly wrong cardinality 

 

 
 
Fig. 6: Min possibly wrong cardinality 

 

• Maximum possibly wrong cardinality: In this 

type, maximum cardinality cannot be implemented 

in some cases, i.e., not all selections are true. In 

Fig. 5, regarding to the maximum cardinality, 

selection of (X2, X3) is correct but selection of 

(X1, X2) and (X1, X3) are incorrect. 

• Minimum possibly wrong cardinality: The 

minimum wrong cardinality occurs in some cases, 

i.e., not all selections are true. As an example, in 

Fig. 6, a selection of (X3) is true but selections of 

(X1) or (X2) is not true (because X1 requires X2 

and X2 requires X3, therefore any selection of X1 

followed by selections of X2 and any selection of 

X2 followed by selection of X3).  

 

Detection rules: Although the wrong cardinality occurs 

in domain engineering, the detection rules work in the 

configuration process. Comparing the number of 

selected variants with the cardinality for each variation 

point  is  the  main  issue  in  the  deducing  process. We  

Table 2: Wrong-cardinality detection rules 

Definition type (x, variant) ∧type (y, variationpoint) ∧variants (y, x) 

∀y, x, n, m: ∧ (no_selected (x) >max (y, n)) ⟹ max-wrong-
cardinality.                                                                                         (5)
∀y, x, n, m: (no_selected (x) <min (y, n)) ⟹ min-wrong-cardinality.           
                                                                                                           (6) 

 
define a special predicate (no-selected (x)) for counting 
the number of selected variants. 
Table 2 shows the detection rules for wrong-cardinality. 

In Rule 5, in all cases, the number of selected 
variants (x) belonging to the variation point y is greater 
than the maximum number (n) allowed to be selected 
from y. This is a maximum wrong cardinality. In Rule 
6, in all cases, the number of selected variants (x) 
belonging to the variation point y is less than the 
minimum number (n) allowed to be selected from y. 
This is a minimum wrong cardinality. 

Replacing all (∀) sign by there exist (∃) sign allows 
the same rules to be used for detecting the maximum 
and minimum possibly wrong cardinality. 
 

SCALABILTY TESTING 
 

Scalability is a key factor in measuring the 
applicability of the techniques dealing with variability 
modeling in domain engineering (Segura, 2008). The 
wrong cardinality detection rules work within the 
configuration process (application engineering process). 
Scalability is not a critical issue in the configuration 
process. Therefore, in this section, we discuss the 
experiments related to redundancy detection. Testing 
the output-time is our objective from these experiments. 
In the following, we describe the method of our 
experiments: 

 

• Define the assumptions: We have two 
assumptions:  

o Each variation point and variant has a unique 
name.  

o All variation points have the same number of 
variants. 

• Generate data set to represent the domain 
engineering: Domain engineering is generated in 
terms of predicates (variation points and variants). 
We generated four sets containing 1000, 5000, 
15000 and 20000 variants. Variants are defined as 
numbers represented in sequential order. For 
example, in the first set (1000 variants) the variants 
are: 1, 2, 3,…, 1000. In the last set (20000 variants) 
the variants are: 1, 2, 3, …, 20000. The number of 
variation point in each set is equal to number of 
variant divided by five, which means each 
variation point has five variants. As an example in 
the second set (5000 variants), the number of 
variation points equal 1000. Each variation point 
defined as sequence number having the term vp as 
postfix, e.g., vp12.  

• Set the parameters: the main parameters are the 
number of variants and the number of variation 
points. The  remaining  eight  parameters (common 
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Table 3: Snapshot of experiment dataset 

type (vp1, variationpoint). type (1, variant). 
Variants (vp1, 1). 
Common (570, yes). 
Common (vp123, yes). 
requires_v_v (7552, 2517). 
requires_vp_vp (vp1572, vp1011). 
excludes_vp_vp (vp759, vp134). 
excludes_v_v (219, 2740). 
requires_v_vp (3067, vp46). 
excludes_v_vp (5654, vp1673). 

 
Table 4: A prolog program to detect the false-optional features 

det:- 
caseone, casetwo, casethree, nl, told. 
caseone:- 
variants (Y, X), common (Y, yes), common (X, yes), requires_v_v 
(X, N), variants (Z, N), not (common (Z, no)), common (N, yes), 
write ('1....False Option ....'), write (N), nl, fail, det. 
caseone:- true. 
casetwo:- 
common (Y, yes), requires_vp_vp (Y, Z), not (common (Z, yes)), 
variants (Z, N), 
common (N, yes), write (' 2.... False Option ....'), write (N), 
nl, fail, det. 
casetwo:- true. 
casethree:- 
variants (Y, X), common (Y, yes), common (X, yes), requires_v_vp 
(X, Z), 
not (common (Z, no)), variants (Z, N), common (N, yes), write 
('3....False Option ....'), write (N), 
nl, fail, det. 
casethree:- true. 

 
variants, common variation points, variant requires 
variant, variant excludes variant, variation point 
requires variation point, variation point excludes 
variation points, variant requires variation point 
and variant excludes variation point) are defined as 
a percentage of the number of variants or variation 
points. Three ratios are defined: 10, 25 and 50% 
respectively. The number of the parameters related 
to variant (such as common variant, variant 
requires variant, variant excludes variant, variant 
requires variation point and variant excludes 
variation point) is defined as a percentage of the 
number of the variants. The number of parameters 
related to variation point (such as; variation point 
requires variation point) is defined as a percentage 
of the number of variation points. Table 3 
represents snapshots of an experiment dataset, i.e., 
the domain-engineering in our experiments. 

• Calculate output: For each set, we made thirty 

experiments and calculated the execution time as 

average. The experiments were done with the 

variant range (1000-20000) and percentage range 

of 10, 25 and 50%, respectively of constraint 

dependency rules.  
 
Table 4 shows Prolog software for detecting false-

optional features. 
The wrong cardinality detection is happened in 

configuration time. Thus, the scalability is not an issue. 
In the following parts of this subsection, the results of 
false-optional detection operation are presented. The 
results show the execution time compared with  number 

 
 
Fig. 7: Results of false-optional detection scalability test 

 
of variants, number of variation points and the eight 

parameters (the six dependency constraint rules, 

common variants and common variation points).   

Figure 7 shows the result of scalability test for 

false-optional detection. Our results show that the 

proposed operations can deal with large number of 

features (20,000) in reasonable time.  

 

DISCUSSION AND COMPARISON  

WITH PREVIOUS WORK 

 
Generally, the problem of the current research is 

that the checking of the software product’s correction 
only happen after it has been developed as in the 
process of application engineering. This is not feasible 
to ensure the correctness of the SPL because the 
medium-size SPL can contain huge number of software 
products.   

The proposed rules detect false-optional in the 
domain-engineering process which is a novel. 
According to Benavides et al. (2010) our method is the 
first method that detects false-optional in the domain 
engineering which makes the validation process is 
feasible and practicable for industrial SPL.  

In respect of the scalability results of the domain 
engineering, we conducted experiments for SPLs with 
ranges of up to 20,000 variants and up to 50% of 
constraint dependency rules and we were able to obtain 
results in a good time. In White et al. (2008) the 
scalability is done by 5,000 features in one minute. In 
Segura (2008), the execution time for 200-300 features 
is 20 min after applying atomic sets to enhance the 
scalability. When compared to the literature, it can be 
seen that our proposed method is scalable. The 
scalability of our approach is good enough when 
compared with the literature because we first define 
special patterns and later the system searches only for 
these patterns. As a consequence, the searching time is 
acceptable. 
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FAMA framework (Trinidad et al., 2008a) defined 
a deductive operation for wrong cardinality. Our 
proposed approach defined four types of wrong 
cardinality. Moreover, the proposed approach defines a 
detective rule for each type of wrong cardinality, which 
is novel.    

Generally, researchers (in the literature) used 
solvers for validating SPL by generating all products 
and detect errors in each product. The process of 
generating all products is a very tough process and 
almost   impossible   with  large-size  SPL (Benavides 
et al., 2009). Our approach is based on validating SPL 
by detecting errors in domain-engineering. We 
proposed a methodology based on defining a general 
pattern for each error. Later, all the implemented cases 
of this general pattern are defined. Using this general 
pattern all cases of redundancy and wrong cardinality 
could be detected. This methodology could be used to 
solve other problems in SPL. 

The proposed approach enhance the searching 
process (in SPL) by predefine specific cases (each rule 
represent case) and search only for them. Therefore, our 
scalability experiments show good results.  

 
CONCLUSION 

 
The proposed method deals with the complexity of 

detecting anomalies in domain engineering. Two types 
of anomalies are discussed in this study: false-optional 
and wrong cardinality. Deducing rules are presented to 
deduce redundancy and wrong cardinality. The 
proposed method is based on modeling variability using 
predicates, then defining a general form for each type. 
These definitions formulate the problems and allow the 
FOL rules to deduce the results from predefined cases.  

The problems that are discussed in this research 

could be found in any SPL regardless of the technique 

used for modeling variability. Wrong-cardinality and 

false-optional features could occur in an SPL due to the 

wrong usage of constraint dependency rules. Although 

these problems are very clear in both the FM and the 

OVM, it still could occur in all types of variability 

modeling techniques. Since any SPL has a group of 

features (by which we mean software assets) that are 

collected in the domain-engineering process, wrong 

usage of the dependency rules leads to these problems. 

Many methods are applying empirical results to 

test scalability by generating random FMs (Segura, 

2008; Trinidad et al., 2008a, b; Yan et al., 2009). 

Comparing the literature, our test range (1000-20,000 

variants) is sufficient to test scalability. The proposed 

method is limited to work only in certain environment, 

i.e., where constraint dependency rules are well known 

in all cases. 

We now are developing a software tool that allows 

users to model their SPL using the proposed method. 

The tool provides direct link between the two layers 

and implements our proposed validation operation. 

Moreover, it provides scalability tests. 

Our approach is limited to work only in a certain 
environment, i.e., where constraint dependency rules 
are well known in all cases. In some SPL, constraint 
dependency rules are different from product in product. 
We called these types of SPL as uncertain SPL 
environments. As a future work, our approach could be 
extended to handle uncertain SPL environments using 
case-based reasoning. In domain engineering, our 
approach is used to detect wrong cardinality and false-
optional features. As a future extension of this study, 
some new rules could be developed for auto-correction 
of these errors. 
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