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Abstract: Noise estimation is critical factor of any speech enhancement system. In presence of additive non-
stationary background noise, it is difficult to understand speech for normal hearing particularly for hearing impaired 
person. The background interfering noise reduces the intelligibility and perceptual quality of speech. Speech 
enhancement with various noise estimation techniques attempts to minimize the interfering components and enhance 
the intelligibility and perceptual aspects of damaged speech. This study addresses the selection of right noise 
estimation algorithm in speech enhancement system for intelligent hearing. A noisy environment of airport is 
considered. The clean speech is corrupted by noisy environment for different noise levels ranging from 0 to 15 dB. 
Six diverse noise estimation algorithms are selected to estimate the noise including Minimum Controlled Recursive 
Average (MCRA), MCRA-2, improved MCRA, Martin minimum tracking, continuous spectral minimum tracking, 
and weighted spectral average. Spectral subtraction algorithm is used for enhancing the noisy speech. The 
intelligibility of enhanced speech is assessed by the fractional Articulation Index (fAI) and SNRLOSS. 
 
Keywords: fAI, IMCRA, MCRA, MCRA-2, noise estimate, SNRLOSS, spectral subtraction 

 
INTRODUCTION 

 
The requirement of speech signals enhancement 

rises in situations where speech is originated in the 
noisy environments. These additive components 
degrade the perceptual aspects and intelligibility of 
speech. In any speech enhancement and recognition 
system noise estimation is key component. The 
robustness of speech enhancement system is greatly 
affected under the conditions where the noise level is 
low and variation in noise levels. In this study particular 
emphasis is given on the importance of accurate noise 
estimation technique. Noise estimation technique that 
based on Voice Activity Detection (VAD) is restricted 
in absence of speech. The reliability of this method is 
severely declines in presence of weak speech signals 
and inputs SNR (Sohn et al., 1999; Meyer et al., 1997). 
Another method based on histogram in power spectral 
domain (Ris and Dupont, 2001) which is 
computationally more expensive and requires more 
memory. Also this method does not perform well in low 
noise level conditions. Here seven different noise 
estimation schemes are selected to estimate the noise 
spectrum. These schemes include including Minimum 
Controlled Recursive Average (MCRA), MCRA-2, 
improved MCRA, Martin minimum tracking, 
continuous spectral minimum tracking, weighted 
spectral average and connected frequency region. All 

these estimation methods are integrated with spectral 
subtraction of speech enhancement to increase the 
intelligibility and perceptual quality of noise affected 
speech. The main aim of this study is to select the 
appropriate noise estimation algorithm provides high 
intelligibility in noisy conditions.  

 
METHOD: SPEECH ENHANCEMENT BY 

SPECTRAL SUBTRACTION 
 

Spectral subtraction is one of the most widespread 
and modest technique of minimizing the background 
additive noise (Hu et al., 2001). In many applications 
where noise is accessible on dispersed channel, in this 
case it is possible to retrieve novel signal by subtracting 
the estimate of noise from noisy signal. However in 
some applications, like in receiver of noisy 
communication channel, only noisy signal is accessible. 
In this condition it is impossible to cancel out the 
random noise but there is possibility to reduce the 
average effect of noise on speech signal spectrum. The 
additive noise increases the variance and mean of the 
magnitude spectrum of speech signals. The increase in 
variance is because of noise fluctuations and cannot be 
cancelled out. The increase in mean can be eliminated 
by estimating the noise spectrum from noisy speech 
spectrum. The noisy signal can be modelled in time-
domain as: 
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Fig. 1: Speech enhancement system 

 

 
 
Fig. 2: Spectral subtraction algorithm 

 
S (t) = x (t) + n (t)                (1) 

 
x (t) = Clean speech 
n (t) = Additive background noise 
 
By taking the Fourier Transform: 
 

S (jω) = X (jω) + N (jω)               (2) 
 

In spectral subtraction technique of speech 
enhancement, the incoming speech signals x (t) are 
buffered and divided into small frames with N samples 
length. Every segment is windowed with either 
Hamming or Hanning window. This windowed 
segment is transformed to frequency-domain having N 
number of samples with Discrete Fourier Transform 
(DFT). The aim of the windowing is to minimize the 
effect of discontinuities at the endpoints of every 
segment. The windowed speech segments are given in 
time-domain as: 

SW (t) = W (t) S (t)                (3) 

 

SW (t) = W (t) [x (t) + n (t)]               (4) 

 

SW (t) = xW (t) + nW (t)                (5) 

 

The windowing operation is expressed in 

frequency-domain as: 

 

SW (jω) = W (jω) * S (jω)               (6) 

 

SW (jω) = XW (jω) + NW (jω)               (7) 

 

From Eq. (2), S (jω) can be expressed in magnitude 

and phase as: 

 

S (jω) = S|(jω)|e
jɸ    

            (8) 

 

The noise spectrum can be expressed as: 

 

N (jω) = N|(jω)|e
jɸ

                             (9) 

 

The enhanced speech estimation can be done by 

subtracting the noise spectrum from noisy spectrum as: 

 

XE (jω) = [S|(jω)| - N|(jω)|] e
jɸ    

          (10) 

 
Finally the enhanced speech is obtained by taking 

the Inverse Fourier Transform. The block diagrams for 
speech enhancement and spectral subtraction way is 
sketched in Fig. 1 and 2, respectively. 

 

Noise estimation: Noise estimation is the fundamental 

phase in speech enhancement algorithm. 
Noise estimation is persistently executed in 

spectral domain or associated domain for many reasons. 
These reasons include: 
 

• Speech and noise are moderately separated in 

spectral domain 
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• Spectral components of both noise and speech are 

partially de-correlated 

• Psycho-acoustic representations are suitably 

applied in this domain 

 

Because of these reasons following domains are 

used, all have diverse advantages: 

 

• Complex spectral amplitudes 

• Spectral magnitudes 

• Spectral powers 

• Log spectral powers 

• Mel-spaced spectral amplitudes 

• Mel-spaced log spectral powers 

• Mel cepstral coefficients 

• AR coefficients 

 

In each of these domains, the coefficients are most 

regularly involved to be Gaussian or uncorrelated.  

 

Classification of the noise estimation algorithms: 

The classification of the Noise estimation algorithms is: 

 

• Minimal Tracking algorithms 

• Time recursive algorithms 

• Histogram based algorithms  

 

Minimal tracking algorithm: This class of noise 

estimation is based on assumption that the power of 

noised masked speech in individual frequency bins 

often declines to the power level of noise even during 

speech activity (Loizou, 2007). Therefore; by tracking 

the minimum noisy speech of power in every frequency 

bin, the rough estimate of noise level in any bin can be 

discovered. 

 

Minimum statistic noise estimation: The MS 

algorithm was proposed by Martin R. and developed 

later on (Martin, 2001) by including bias compensation 

and improved smoothing factor. It is assumed that in 

any frequency band, there may condition when the 

speech signal energy will be little and this energy is 

controlled by the noise. So if it happens once per time 

period T, the noise power can be estimated as minimum 

power elevated in T typically within 0.5 to 1.5 sec. 

Similar methodology was adopted by Doblinger (1995) 

but instead of taking the minimum over the T, the noise 

spectrum is smoothed by using two diverse time 

constants, that is, short time constant and long-time 

constant. The short-time constant is used in condition 

when the energy in frequency band is decreasing to 

guarantee quick adaptation to new minimum whereas 

the long-time constant is used while power increases to 

avoid adaptation to speech energy. The use of the 

minimum makes the method extradelicateto outliers and 

investigated the use of other quantities, medians, gives 

better results (Stahl et al., 2000). Some people follow 

up this approach but concluded that it performs unwell 

in non-stationary noise (Manohar and Rao, 2006).  

 

Continuous spectral minimum: In MS algorithm 

where the minimum tracking is deployed, this method 

has disadvantage, it is incapable to respond in 

conditions when noise spectrum is changing rapidly 

(Loizou, 2007). Instead of using a fixed window for 

tracing the minimum of noisy speech (Martin, 2001), 

the noise estimate is updated constantly by smoothing 

the noisy speech power spectra in each frequency band 

using a non-linear smoothing rule. In order to track 

minimum of noise spectrum, a short-time smoothed 

version of period gram of noisy speech is calculated 

before using the following equation: 

 

P (n, j) = γP (n-1, j) + (1 - γ) |S (n, j)|
2  

          (11) 

 

where, 

 

|S (n, j)|
2
 = |X (n, j)|

2
 + |N (n, j)|

2
 

 

The |S (n, j)|
2 
is the period gram of noisy speech, |X 

(n, j)|
2 

is period gram of clean speech and |N(n, j)|
2 

is 

period gram of noise signal respectively. The “γ” 

represents the smoothing factor ranging from 0.7 to 0.9 

and “n” shows the frame index while “j” represents the 

frequency band index. The non-linear rule for 

estimating the minimum of noise spectrum power Pmin 

(n, j) is used in every frequency band.  

 

Time recursive averaging: The time recursive 

averaging algorithm explains the fact that noise has 

non-uniform effect on speech spectrum as different 

frequency band in spectrum have different effective 

SNR. For any category of noise, one can estimate and 

update distinct frequency bins of noise spectrum once 

speech presence probability is inattentive at certain 

frequency bin is high or the effective SNR at specific 

frequency band is really low. These observations 

commanded to the new class of noise estimation 

algorithms where the noise spectrum estimation is 

performed as weighted average of past noise estimate 

and present noisy speech spectrum. The weights change 

adaptively, depend either on effective SNR of every 

frequency bin or on speech presence probability. 

MCRA (Cohen, 2002), MCRA-2 (Loizou et al., 2004) 

improved MCRA (Loizou and Sundarajan, 2006) came 

under this class.  

 

Histogram based noise estimation: Mathematically, 

the histogram is function βi which compute the number 

of observations that falls in each bin. Let Ω represents 

the total no. of observations and γ shows the no. of bins, 

the histogram will be: 
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Ω = ∑ βi 
�

���                (12) 

 

This class of noise estimation are based on most 

frequent values of energy in individual bands 

corresponds to noise level in specific frequency band 

that is histogram represents the noise levels observed. 

McAulay and Malpass (1980) proposed an idea, 

attributed to Roberts (1978) that is constructed on 

bimodality of the signal energy histogram reserved over 

4-second window. The algorithm decides adaptive 

energy threshold which selects the existence of speech 

and also consist of upper and lower thresholds. The 

adaptive threshold is selected to lie at the 80
th

 percentile 

of the histogram of energies that are underneath the 

upper fixed threshold. This approach is modified in 

(Compernolle, 1989). Similar approach is used by 

Hirsch and Ehrlicher (1995) where adaptive threshold is 

used in every frequency band to eliminate speech 

frames and the peak of histogram of recent noise frame 

is used as an estimate of noise power in that band. The 

accuracy of this approach is greater than VAD. The 

highest peak in histogram represents the noise where 

lower magnitudes in histogram show the speech.  

 

Speech intelligibility: Speech intelligibility is specified 

by a number which shows how correctly a speech is 

understood by a listener in specific situation and 

expressed with simple mathematical expression as: 

 

Speech intelligibility (SI) = 100R/T            (13) 

 

T =  No. of speech units in test 

R  =  No. of correct speech units  

 

Many measures have been proposed in order to 

predict the intelligibility of speech in presence of 

background interfering noise. AI French and Steinberg 

(1947), Fletcher and Galt (1950), Kryter (1962a, b) and 

ANSI (1997) and STI (Steeneken and Houtgast, 1980; 

Houtgast and Steeneken, 1985) are two speech 

intelligibility predicting tools that are used in noisy 

conditions. The AI is upgraded SII (ANSI, 1997). The 

SII effectively predicts the effects of linear filtering and 

additive noise on speech intelligibility but still have 

number of limitations. One of them is, the SII 

prediction is confirmed for typically stationary masking 

noise as it is based on long-term averaging spectra, 

proposed over 125 m sec pauses, of speech and masker 

signals, respectively. Therefore; cannot be applied to 

situation where the maskers are fluctuating that is 

competing talkers. Many attempts are carried out to 

predict the indelibility of speech with SII in fluctuating 

environments (Rhebergen and Versfeld, 2005; 

Rhebergen et al., 2006; Kates, 1992) where the speech 

and maskers signals are dividing into small intervals (9-

20 m sec) and compute the AI in every band and then 

computing the overall AI by averaging the individual 

band AI to produce single AI value. Other additions to 

SII index were suggested in Kates and Arehart (2005) 

and Kates (1992) for predicting intelligibility of peak-

clipping and center-clipping distortions in speech 

signal.  

 

Experiment-1: speech intelligibility prediction using 

SNRLOSS: SNRLOSS Jianfen and Philipos (2011) is 

critical-band spectral representation of clean and noise-

suppressed speech signals that predict SNRLOSS 

(intelligibility predicting measure) in every critical 

band. This technique provides diverse weight to the 

spectral amplification and attenuation distortion 

introduced by speech enhancement algorithm.  

 

Speech processing: Let S (n) = x (n) + n (n) shows the 

noisy signal where x (n) represents the clean speech 

signal and n (n) indicates the masker signal. The 

Hamming windowed signal with Hamming function h 

(n), the STFT of noisy signal S (n) is:  

 

S (ωk, i) = ∑ y 
iR + n����
��� .h (n) e

ωkn
            (14) 

 

ωk = 2�k/N, where k = 0, 1, 2….., N-1, the frequency 

bands index, i is frame index, N is frame size (no. of 

samples in each frame) and R is update rate in samples. 

The critical-band spectrum of S (n) is calculate by 

multiplying FFT magnitude spectra |S (ωk, i)| by 25 

overlapping Gaussian-shaped windows (Philipos, 2013) 

spaced in fraction to ear’s critical bins and summing up 

powers within critical bin which results in critical-band 

spectra illustration of signal as:  

 

S (j, i) = X (j, i) + N (j, i) j = 1, 2, .., K            (15) 

 

X (j, i) is excitation spectrum of noise-free speech in j 

band and N (j, i) is excitation spectrum of noise 

(masker) in j band. The SNR loss in j band and i frame 

can be computed as: 

 

Loss (j, i) = SNRX (j, i) - SNRX� (j, i)   

 

Loss (j, i) = 10log10

�
�,���

�
�,���
 - 10log10

�� 
�,��� 

�
�,���
 

 

Loss (j, i) = 10log10 

�
�,���

�� 
�,���
             (16) 

 

SNRX (j, i) is effective input speech SNR in j band 

while SNR �� (j, i) is effective SNR of enhanced speech 

in j band respectively. And ��
�, �� is excitation 

spectrum of the enhanced speech in j band.  
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RESULTS AND DISCUSSION 

 

SNRLOSS is computed when noisy signal passes 
through a noise-suppression system where noise 
spectrum is estimated using diverse noise estimation 
algorithms. 

From equation 16, it can be concluded that if 

�
�, �� becomes equal to ��
�, ��, value of SNRLOSS will 
be zero which means there is no loss of speech contents 
and have high intelligibility. It is realistic that when 

SNR level is amplified i.e., SNR ͢→∞, estimated spectra 

��
�, ��, approachesthe cleanspectra  �
�, �� i.e., 

 �� 
�, �� → �
�, ��, results in zero SNRLOSS. The range 
for SNRLOSS is; 0≤SNRLOSS≤1. This is tested in present 
study for measuring the speech intelligibility scores. 
Table 1 shows intelligibility scores for different noise 
estimation algorithms.  

 

Experiment-2: speech intelligibility prediction using 
fractional articulation index: The conventional 
Articulation Index (AI) cannot be utilized in conditions 
where noise is additive and also the non-linear 
operations are taken in account. Because during non-
linear operations, the speech and noise signals become 
ambiguous and as a result both speech and masker 
(noise) signals are affected. A new method of 
predicting the speech intelligibility is introduced, 
fractional articulation index (Philipos, 2011) where 
innovative effective SNR is achieved ensuing non-
linear processing. The f AI scheme is used to specific 
band in situations where the non-linear processing 
mainly affects the target signal rather than masker 
signal. The f AI can be expressed as: 
 

fAI = 
�

∑ �� 
!"#

∑ Wi�
���  x fSNRi             (17) 

 

Wi represents the Weighting Functions (Band 

Importance Functions) applied to i band and N is the 

number of bands used. The fSNRi symbolizes portion of 

input SNR communicated by noise suppression 

algorithm and can be write as: 

fSNRi = Min SNRı((((((, SNRi             (18) 

 

if SNRi≥SNRL 

SNRL shows the smallest allowable value of SNR 

and )*+,((((((( shows actual (true) or new SNR definition in 

i band and can be written as:  

 

)*+,((((((( = )-./
�/*/

�              (19) 

 

)-./
� : Enhanced envelop  

*/
� : Masker envelop 

 

Signal processing: The speech signal is first 

fragmented with the help of 50 m sec Hamming 

window having 75% overlapping among the touching 

frames. The critical-band spectra of masker (before 

mixing), target and enhanced speech signals are 

calculated for each 50 m sec frame by multiplying FFT 

magnitude spectra by 25 overlapping Gaussian-shaped 

windows (Philipos, 2013) spaced in fraction to ear’s 

critical bins and summing up powers within critical bin. 

Centre frequencies of bands are used to analyze fAI in 

each frame and by averaging individual bands we 

obtained the single fAI value. 

 

Discussion: The fAI measure based on weighted 

average of fraction of input SNR sent by the speech 

enhancement algorithm in every band. In old-fashioned 

AI measure, the fSNRi are replaced with audibility 

functions that range from 0 to 1 represents the fraction 

of information present in speech sentence which is 

audible for the listener. Table 2 shows the fAI values 

computed over sentence processed by spectral 

subtraction algorithm using six different noise 

estimation algorithms. The speech sentence is corrupted 

by noise level ranging from 0 to 15 dB airport noise. 

From results it is deducted that with the increase in 

noise level, the speech intelligibility decreases and vice 

versa.  

  
Table 1: SNRLOSS intelligibility prediction values (round-off to three decimal points) for different noise estimation algorithm 

 
Table 2: fAI intelligibility prediction values (round-off to four decimal points) for different noise estimation algorithms 

 Noise levels 

(dB) 

Noise estimation algorithm 

------------------------------------------------------------------------------------------------------------------------------ 

Noise environment  MARTIN MCRA MCRA 2 IMCRA DOBLINGER HIRSCH 

Airport noise  

 

 

 

0 

5 

10 

15 

0.2177 0.1952 0.2098 0.1696 0.2139 0.2044 

0.4884 

0.6416 

0.6465 

0.4758 

0.6335 

0.6432 

0.4807 

0.6344 

0.6421 

0.3438 

0.6221 

0.6442 

0.4853 

0.6140 

0.6257 

0.4850 

0.6372 

0.6482 

 Noise levels 

(dB) 

Noise estimation algorithm 

----------------------------------------------------------------------------------------------------------------------------- 

Noise environment MARTIN MCRA MCRA 2 IMCRA DOBLINGER HIRSCH 

Airport noise  

 

 

 

0 

5 

10 

15 

0.921 

0.832 

0.723 

0.695 

0.893 

0.812 

0.691 

0.683 

0.854 

0.801 

0.702 

0.697 

0.895 

0.840 

0.702 

0.694 

0.900 

0.810 

0.705 

0.703 

0.892 

0.820 

0.711 

0.704 
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CONCLUSION 

 

In this study, we have addressed the significance of 

accurate noise estimation system in speech 

enhancement algorithms and also addressed the 

intelligibility prediction of noise estimation algorithms. 

Six diverse noise estimation algorithms are used in this 

study. The enhanced speech signals are evaluated for 

speech intelligibility using two modern intelligibility 

prediction methods, that is, SNRLOSS which is the 

critical-band spectral representation of clean and noise-

suppressed speech signals that predict SNRLOSS 

intelligibility predicting measure in every critical band) 

and fAI where innovative effective SNR is achieved 

ensuing non-linear processing. The fAI scheme is used 

to specific band in situations where the non-linear 

processing mainly affects the target signal rather than 

masker signal. The results of both prediction methods 

indicate that if SNR ͢→∞, the estimated noise spectra 

approaches the clean spectra and the speech 

intelligibility increases.  
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