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Abstract: In this study, the traditional thyristor controlled reactor is conditioned to be an almost harmonic-free 
inductive static Var compensator. The proposed configuration is constructed of a traditional TCR shunted by a 
parallel resonance circuit and the parallel combination is connected in series to a series resonance circuit. The 
parallel and series resonance circuits are tuned at the power system fundamental frequency. The series resonance 
circuit offers almost short circuit to the AC source current fundamental, while it offers very high impedance to the 
harmonic current components released by the TCR. The parallel resonance circuit offers very high impedance to the 
AC source current fundamental, while it offers almost short circuits to the harmonic current components released by 
the TCR. The two circuits operate coherently such that negligible current harmonics are permitted to flow in the AC 
source side. This type of harmonic treatment is not sensitive to other harmonic sources in the power system network, 
where this compensator is installed. The no load operating losses of this compensator are negligible compared to its 
reactive power rating. The proposed compensator is designed and tested on PSpice. 
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INTRODUCTION 

 

Static Var compensators are very essential in 
reactive power control applications for power quality 
improvement purposes. Both absorption and generation 
of reactive power are required for voltage control, load 
balancing and automatic power factor correction 
techniques  (Gyugyi,  1988; Paziuk et al., 1989; Moran 
et al., 1993; Chen et al., 1999; Lee and Wu, 2000; 
Valderrama et al., 2001; Xu et al., 2010). Synchronous 
condensers can be used in applications requiring 
balanced control of reactive power in both modes of 
operation (capacitive and inductive), but they are 
characterized by slow responses, high operating losses 
and high installation and operating costs compared with 
static Var compensators (Teleke et al., 2008). Static 
Var compensators that offer continuous control of 
reactive power absorption are either conventional 
thyristor-controlled   reactors   (Gyugyi,  1988;  Paziuk 
et al., 1989;  Chen  et al., 1999; Lee and Wu, 2000; Xu 
et al., 2010), or STATCOMS (Moran et al., 1993; 
Valderrama et al., 2001). Both compensators release 
noticeable current harmonics, but the TCR can operate 
at higher voltage and current ratings (Best and Zelaya-
De La Parra, 1996; Jalali et al., 1996; IEEE, PES 
Harmonic Working Group, 2001). The TCR releases in 
the power system network significant odd harmonics, 
which have undesirable effects such as extra losses, 
over currents, voltage fluctuations and noises to 
telecommunication systems. TCR harmonics are 
usually eliminated by using passive or active filters 

(Gyugyi, 1988; Lee and Wu, 2000). The design of these 
filters depends on the AC short circuit level at the 
location where the TCR should be installed (IEEE, PES 
Harmonic Working Group, 2001). Consequently, these 
filters will dissipate a lot of losses and generate large 
amounts of undesirable reactive power at the AC supply 
fundamental. In addition, these filters are vulnerable to 
the effects of other sources of harmonics in the AC 
network, thus they may become less efficient. Many 
techniques were presented to treat TCR harmonics 
without using harmonic filters such as using sequential 
control of transformer taps and asymmetrical firing to a 
TCR to minimize certain harmonics, but both 
techniques have limited outcomes (Patel and Dubey, 
1983; Funabiki and Himei, 1985). 

In this study, many of the drawbacks of optimal 

performance associating the above filtering techniques 

are treated by presenting a compact inductive static Var 

compensator constructed of a traditional TCR shunted 

by a parallel resonance tuned circuit and the parallel 

combination is connected in series to a series resonance 

tuned circuit. Both circuits resonate at the AC supply 

fundamental frequency.  
 

The traditional TCR: The traditional TCR and its 

current waveform are shown in Fig. 1. Its current iX is 

not sinusoidal, but symmetrical around ωt axis, thus it 

only contains odd harmonic current components. 

The fundamental I1 and the nth harmonic In of iX 

are given by (Gyugyi, 1988): 
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Fig. 1: The traditional TCR and its current waveform 

 

 
 

Fig. 2: The proposed almost harmonic-free TCR 
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where,  
Vm  = The voltage amplitude of the AC supply 
ω  = Angular frequency of the AC supply 
α  = The TCR firing angle 

LX  = The self inductance of its reactor 

n  = A positive odd integer greater than unity (i.e., n = 

3, 5, 7,…) 

Vn  = Defined by: 
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The TCR firing angle α varies in the rage of 

0≤α≤π/2. When the firing angle of the TCR is zero, the 

maximum fundamental current IMAX absorbed by the 

TCR according to Eq. (1) is given by: 
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                                                        (a)                                                                                      (b) 

 
Fig. 3: Modeling of the proposed compensator at: (a) fundamental frequency, (b) nth harmonic  
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The proposed almost harmonic-free TCR: The 

proposed compensator is constructed of a traditional 

TCR equipped with parallel and series tuned circuits as 

shown in Fig. 2. 

Both tuned circuits resonate at the fundamental 

angular frequency ω of the power system network 

feeding the TCR. The series tuned circuit offers high 

impedances to the odd harmonics released by the TCR, 

while the parallel tuned circuit offers almost short 

circuits to them. If the above objectives are approached, 

then it can be said to some extent that the proposed 

system is harmonic-free and the voltage across the TCR 

vX and the AC input voltage vAC are approximately 

equal in magnitude and phase. The fundamental and the 

nth harmonic equivalent circuits of the proposed 

inductive static Var compensator are shown in Fig. 3. In 

this figure, the TCR is modeled according to Eq. (1) 

and (2). Since both series and parallel tuned circuits are 

designed to resonate at the fundamental frequency of 

the AC source, then the following can be written: 
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where, 

ZS(ω), ZP(ω) = The impedances of series and parallel 

tuned circuits at ω 

LP, rP  = The self inductance and resistance of 

the parallel resonance reactor 

LS, rS  = The self inductance and resistance of 

the series resonance reactor 

I1S  = The AC source current fundamental 

rX  = Negligible compared to ωLX 

I1S  = Be closely approximated to: 
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where, |I1S| and θ1S are the magnitude and phase of I1S 

and are given by: 
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At frequencies above fundamental, the self- 

resistances   of   the   tuned   circuit’s   reactors  become  
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Fig. 4: The PSpice demonstration system of the almost harmonic-free TCR 

 

ineffective, thus the nth harmonic current Ins flowing in 

the AC source side can be given by: 
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where, XP and XS are the characteristic impedances of 

the parallel and series resonance circuits at the AC 

fundamental frequency. They can be expressed as 

follows: 
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If XS and XP are chosen such that XS = 2ωLX and XP 

= ωLX, then Eq. (11) will be reduced to: 
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If rP is negligible compared with XP, then the 

compensator fundamental current magnitude |I1S| 
defined in Eq. (9) will be determined only by the TCR 
firing angle α and the phase angle θ1S defined by Eq. 

(10) will be approximated to -90° for all values of α 
corresponding to noticeable values of |I1S|. 
 
PSpice validation system: A demonstration system of 
the proposed compensator implemented on PSpice is 
shown in Fig. 4. The controlling circuit of this system is 
designed such that the TCR firing angle α is varied 

from 0 to 90° by varying the DC voltage source VALPHA 
from 0 to 5V. VALPHA `is directly proportional to reactive 
power demand. A distribution system of 220V and 
50Hz was chosen as the AC supply of the proposed 
compensator. The TCR reactor was chosen to have an 
inductance   of   5 mH  and  self  resistance  of  0.025Ω.  

Accordingly, the reactors of the tuned circuits were 

designed such that LS = 2LX = 10 mH, rS = 2rX = 0.05Ω, 

LP = LX = 5 mH and rP = rX = 0.025Ω. Consequently, 

their capacitors are calculated as follows: CP = 2000 µF 

and CS = 0.5CP = 1000 µF. The AC voltage used in Fig. 

4 is of amplitude of 311V (corresponds to an rms value 

of 220V) and frequency of 50 Hz. 

 

RESULTS AND DISCUSSION 

 

The compensator circuit shown in Fig. 4 was tested 

on PSpice for α = 0, 30°, 45°, 60° and 90°. At α = 30°, 
45° and 60°, the low order odd current harmonics have 

significant values. The simulation results are shown in 

Fig. 5 to 9. The PSpice simulation results show that the 

compensator current is pure sinusoidal and exhibits 

positive peaks at the negative slope zero crossing points 

of the AC voltage, thus it is pure inductive   current.   

The   frequency  spectrums  of  the compensator current  

 

           

 
Fig. 5: AC voltage vAC, TCR voltage vX, compensator current iS, TCR current iX, iS frequency spectrum F(S), and ix frequency 

spectrum F(X) at α = 0 
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Fig. 6: AC voltage vAC, TCR voltage vX, compensator current iS, TCR current iX, iS frequency spectrum F(S), and ix frequency 

spectrum F(X) at α = 30° 

 

          
 
Fig. 7: AC voltage vAC, TCR voltage vX, compensator current iS, TCR current iX, iS frequency spectrum F(S), and ix frequency 

spectrum F(X) at α = 45° 
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Fig. 8: AC voltage vAC, TCR voltage vX, compensator current iS, TCR current iX, iS frequency spectrum F(S), and ix frequency 

spectrum F(X) at α = 60° 

 

               
 

Fig. 9: AC voltage vAC, TCR voltage vX, compensator current iS, TCR current iX, iS frequency spectrum F(S), and ix frequency 

spectrum F(X) at α = 90° 
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F(S) and TCR current F(X) show coincidence of their 

fundamental components and big reduction in harmonic 

current components flowing in the AC source side.  

 

CONCLUSION 
 

PSpice simulation results ensure that the third 
harmonic current components flowing in the AC source 
side is reduced to about 0.075 the component released 
by the TCR. This is thoroughly coinciding with the 
value obtained from Eq. (14) after substituting for n by 
3. Consequently, the third harmonic current component 
flowing in the AC source side will never exceed 1% of 
the compensator reactive current rating. Other odd 
harmonic current components suffer much reduction. 
For instance, the 5

th
 harmonic current component 

flowing in the AC source side is reduced to 0.022 the 

component released by the TCR. At α = 90°, the 
compensator draws a resistive current of about 3A 
(peak value) which only represents about 1.5% of the 
compensator reactive current rating. Consequently, it 
can be deduced that the proposed compensator is almost 
harmonic-free inductive static Var with negligible no 
load operating losses compared to its reactive current 
rating. It can be used for all applications requiring 
reactive power control such as load balancing and 
voltage regulation. The filtering efficiency of this 
compensator is not sensitive to other sources of 
harmonics in its neighborhood in the power system 
network due to the high harmonics isolation offered by 
the series resonance circuit. Real power exchanged by 
this compensator with AC source is somewhat 
negligible compared with its reactive power rating.  
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