
Research Journal of Applied Sciences, Engineering and Technology 7(3): 454-461, 2014

DOI:10.19026/rjaset.7.275

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: May 07, 2013 Accepted: June 11, 2013 Published: January 20, 2014

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).
454

Research Article

Ontology Matching Algorithm by Using Agent Technology

Abdulsalam Alarabeyyat
Faculty of Information Technology, Al Balqa Applied University, Salt, Jordan

Abstract: In this study we Introduce a three dimensional algorithm for ontology matching problem by comparing
ontologies concepts from three dimensions (i) matching concepts based on name similarity (ii) matching concepts
based on content similarity (iii) matching concepts based on relationship similarity. By comparing concepts from
three dimensions we can trust our result since; the same concepts may be named by different labels or they may
have the same names but differ in their attribute or their relations. In these cases if we rely on one dimension in the
matching process; we will not discover the similarities. On the contrary, when the matching process relies on three
dimensions, if one dimension can't discover the similarity the other will do.

Keywords: Ontlogy, ontlogy matching, ontlogy matching algorithm, software agent

INTRODUCTION

The main subject of this study is to study ontology

matching, the task of identifying the correspondences
between elements of two ontologies, where solving
such match problems has a significant importance in
different application domains.

 In order to have a comprehensive view of the work
presented in this study, it is necessary to take a view on
terms such as agents, ontology, ontology matching and
multi-agents system. Agents are computational systems
that are capable of autonomous, reactive and proactive
behavior endowed with the ability to interact with other
agents (Fasli, 2007).

Software agents differ from other traditional
software applications, where traditional software
applications need to be told explicitly what it is that
they need to accomplish and the exact steps that they
have to perform, agents need to be told what the goal is
but not how to achieve it. Then being smart, they will
actively find ways to satisfy this goal, acting with the
minimum intervention from the user. Agents will
determine what needs to be done to achieve their goal,
but also react to any changes in the environment as they
occur, which may affect their plans and goals,
accomplishments, then according to these changes they
will modify their course of action. An agent is usually
not an isolated entity; it is located within an
environment and continuously interacts with it as well
as with other entities, including agents and humans. A
multi-agent system consists of number of agents that
communicate and interact with each other to solve a
complex problem or to achieve their user's goals.

For agents to be able to communicate with and
understand each other they need to use results of all
areas of artificial intelligence such as learning,

negotiation or knowledge management. This study
focuses on one of them-a use of knowledge
management by agent systems. During negotiations the
agents use the knowledge about the problem domain in
order to fulfill their goals.

Most ontology matching techniques belong to
either rule based or learning-based ones. Cupid
Madhavan et al. (2001) proposed a mapping algorithm
between schema elements based on their names,
constraints, data types and schema structure. Cupid has
a bias toward leaf structure where much of the schema
content resides.

Madhavan et al. (2005) describes how a corpus of
schemas and mappings can be used to match schemas.
Such a corpus typically contains multiple schemas that
model similar schemas concepts and their properties.
First they increase the evidence about each concept
being matched by including evidence from similar
concepts in the corpus. Then they learn statistics about
concepts and their relationships to infer constraints.

Williams (2004) proposed an algorithm for

multiagent knowledge sharing and learning in a peer-

to-peer setting. It enables multiagent systems to assist

groups of people in locating, translating and sharing

knowledge. After locating similar concepts, agents can

continue to translate concepts and then are able to share

meanings and learning and translating similar semantic

concepts between them.

PROBLEM STATEMENT

Depending on our knowledge, ontology defines a

common vocabulary for those who need to share

information in a domain. In other words, ontology

represents a common ground for those wishing to enter

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014

455

in meaningful interactions. This is one of the primary

reasons why we need to develop ontologies.

While ontologies serve as a basis for solving this

problem, the heterogeneity among different ontologies

considered to be a serious problem. This is due to the

fact that the domains are developed by different parties

that can design ontologies according to their own

conceptual views of that domain.

Confusion and misunderstanding may arise on the

following cases:

• The same names do not necessarily indicate the

same semantics and different names may be used

to represent the same real-world concept. If agents

refer to the same concepts by employing different

terms as an example, agent i refer to anyone who

buys products as a client whereas agent j refers to

such an entity as a customer. Thus, the same thing

can be described in different ways, each

representing different perspectives or ways of

thinking.

Confusion may also arias when agents refer to

different concepts using the same term. For agent i an
employee is anyone in the payroll system, whereas for
agent j an employee is anyone receiving benefits. If
agents are not aware of this distinction, they will not be
able to enter into a meaningful dialogue. In addition
Element names may be encrypted or abbreviated so that
they are only understandable by their creators. Also
building Ontologies by different languages and
different conceptual modeling can be used.

PROPOSED SOLUTION

Heterogeneity alleviating will be achieved by

providing mechanisms in which intelligent agents that

work in open environments could communicate in an

efficient way, even in the cases when they use

completely different ontologies. To handle this

heterogeneity issue in ontologies, many approaches

have been proposed. Generally, there are two different

kinds of solutions (Huang et al., 2007):

• Centralized solution: In which a central ontology

that is agreed-upon, global and unique and includes

every concept that can satisfy the needs of different

parties is built. However, a central ontology will

never be large and compatible enough to include

all concepts of interest to every individual ontology

designer, so it will have to be modified and

extended. Each new extension will be different and

increase incompatibility.

• Distributed solution: This solution focuses on the

ability for individual ontologies to match and

reconcile with each other and possibly reuse each

other. The ontology matching is initially carried

out by a human. There are some drawbacks to this

manual process, including that it is time-consuming

and error-prone, as ontologies can contain

thousands of concepts. Therefore, this solution

focuses on developing tools that are either

automatic or semi-automatic and can help people in

matching ontologies.

Algorithm structure: The Three-Dimensional

algorithm matches two ontologies O1 and O2,

depending on three major steps:

• Matching concepts based on name similarity

• Matching concepts based on content similarity

• Matching concepts based on relationship similarity

We have defined ontologies as “a formal

representation of a set of concepts within a domain,

properties of each concept and the relationships

between those concepts”. We have suggested our

algorithm depending on this definition, since we say

that these three features together specify a concrete

view for each concept:

• The name of concept

• The properties of concept

• The relationships of the concept

By comparing different concepts according to these
three features we can trust our result. For example,
some concepts that give the same meaning may differ
in their names in this case we can match them by
relying on the similarity on their properties and the
relationship among them. On contrary, some matchers
that rely on concept name similarity will fail in this case
since the names are different. Also we have used
learning techniques in our algorithm.

We have summarized our contribution on the

following:

• Building a three dimensional algorithm for

ontology matching.

• Our algorithm integrates an Artificial Neural

Network (ANN) technique.

• Integrating syntactic and semantic matching in our
matching algorithm.

Parameters used in the algorithm: Ontology

matching is defined as "a function f, which, from a pair

of ontologies to match O and O~, a set of parameters p

and a set of resources r, returns an alignment A

between these ontologies". In this section we will

explain the two parameters that used by the algorithm

and how these parameters will have a significant

influence on the final result.

Similarity threshold: The similarity threshold
parameter dictates a minimum similarity values

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014

456

between two concepts in order to consider them as a
matched concepts. We have used two similarity
thresholds in our algorithm, the first one in content
matching step; at this step we consider for any two
compared attributes that having a name similarity
greater than a threshold which we determine to be 0.60
they will matched from content dimension. Also we
have another threshold, for the final results which are
obtained by a weighted sum of sN, sC and sR. If this
final results is greater than 0.30 then the compared
concepts will be considered as a matching concepts.

We have determined these thresholds by trial-and-
error. As an example, when we compare two attributes
LCD Screen Size to Screen Size we will have a
similarity value equals to 0.76 and so they will consider
to be matched, since their similarity value is greater
than the specified threshold.

Similarity weights: During the matching process
different aspects, i.e., concept names, concept
properties and concept relationships, contribute in
different degrees to the matching result. So we need to
assign weights to these aspects according to their
importance, a more accurate matching result is favored.

We will use machine learning techniques, such that
the weights can be learned from training examples
instead of being ad-hoc defined by domain experts, the
learning process will be achieved by using Artificial
Neural Network (ANN) (Huang et al., 2007). On the
following we will explain the neural network design
and the learning process.

Neural network design: We build a two-layer 3×1
network, as shown in Fig. 1. On the following we will
summarize the neural network characteristics.

Network inputs:

sN : Similarity in name
sC : Similarity in contents
sR : Similarity in relationship

Network outputs:

O1 : sN multiplying by weight (w1)
O2 : sC multiplying by weight (w2)
O3 : sR multiplying by weight (w3)

Target function: Each pair of compared concepts
correspond to cell (i, j) in O1, O2, O3; Target function
tries to find the maximum value of row (i) and column
(j).

Training set: We will randomly take a set of concepts
from source ontology (Products) and find the equivalent
concepts by manual matching with target ontology
(Electronic equipments).

Training process: The training process consists of the
following main steps:

Fig. 1: Neural network structure

Step 1: Initialization: Set initial weights randomly:

 W1 = 0.27, W2 = 0.40, W3 = 0.33

Step 2: Activation: Activate the network by applying

inputs (SN, sC and sR) and the randomly initialized

weights and then calculate the actual outputs.

Step 3: Error Calculation:

E (wi) = [((max_row) - Oi) + ((max_column) - Oi)]

Step 4: Weight training:

w1N = w1 + α*Σ [((max_row) - O1) +

((max_column) - O1)] * sN

w2N = w2 + α*Σ [((max_row) - O2) +

((max_column) - O2)] * sC

w3N = w3 + α*Σ [((max_row) - O3) +

((max_column) - O3)] * sR

We randomly set w1 = 0.35, w2 = 0.32, w3 = 0.33,

learning rate α is set to 0.2 and then we randomly pick

up a set of concepts from product ontology and find the

corresponding equivalent concepts by a manual

matching with electronic equipments ontology. Each of

such manually matched pairs will be processed by the

network and the similarity values in name, properties

and relationships for these two concepts are calculated

and used as a training example to the network. We then

use the learned weights (w1 = 0.27, w2 = 0.40, w3 =

0.33) to match the remaining concepts.

Resources used in the proposed algorithm: In order

to identify mappings between the concepts of ontology,

called the source ontology with concepts of another

one, called the target ontology, a lot of recent works use

additional resource called background knowledge. The

common objective for using an external resource is to

detect desired matches which may fail in some cases. In

our algorithm we will use WordNet as background

knowledge.

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014

457

Fig. 2: Ontology matching process

Table 1: Relations in Word Net

Relations Description Example

Hypernym Is a generalization of Motor vehicle is a hypernym of car

Hyponym Is a kind of Car is a hyponym of motor vehicle

Meronym Is a part of Lock is a meronym of door

Holonym Contains part Door is a holonym of lock

Troponym Is a way to Fly is a troponym to travel

Antonym Opposite of Stay in place is an antonym or travel

Attribute Attribute of Fast is an attribute of speed

Entailment Entails Calling on phone entails dialing

Cause Cause to To hurt cause to suffer

Also see Related verb To lodge is related to reside

Similar to Similarly to Evil is similar to bad

Participle of Is participle of Stored is the participle of to store

Pertainym Pertains to Radial pertains to radius

Word Net Yatskevich and Giunchiglia (2004) is a
lexical database which is available online and provides
a large repository of English lexical items. Word Net
contains synsets (or senses), structures containing sets
of terms with synonymous meanings. Each synset has a
gloss that defines the concept that it represents. For
example, the words night, nighttime and dark constitute
a single synset that has the following gloss: the time
after sunset and before sunrise while it is dark outside.
The relations of Word Net are presented on Table 1.

Matching process: The proposed algorithm will take

as input two ontologies which intend to match and

computes as output a set of matched elements in three

major steps, firstly calculating similarities in names

then the similarities in contents are computed, which

include comparing for the data type and attributes of the

concepts and finally discovering the relationships

between compared concepts. For each step the process

of calculating the similarities for all concepts (one from

the first ontology and the other from the second one,

considering all combinations) is done by building an

m1×m2 matrix to record all the calculated values, where

m1 is the number of concepts in the first ontology and

m2 is the number of concepts in the second one and the

value in cell [i, j] store the similarity between the i
th

concept in first ontology and the j
th

 concept in the

second, then the overall similarities between all

concepts from two ontologies is given by the

summation for the results of multiplying each

similarity matrix by the assigned weight to it. Figure 2

clarifies our matching process.

Direct ontology matching: In steps 1 and 2, we

generate the similarities depending on direct matching,

that is we depend only on the information contained on

the ontologies we are interested to match.

The first step of our algorithm attempts match

concepts between two ontologies by measuring

similarities between their names. We will find the

similarities between concepts names depending on edit

distance function which calculate the minimum number

of edit operations required to transform one string into

the other. Most commonly, the edit operations allowed

for this purpose are:

• Insert a character into a string

• Delete a character from a string

• Replace a character of a string by another character

for these operations, edit distance is sometimes known

as Levenshtein distance. We have used edit distance

Chirstopher et al. (2009) for the following features

which show the importance of edit distance comparing

with other available functions:

• Edit distance can find the distance between

concepts of different length.

• Edit distance gives more realistic and flexible

results comparing with some lexical matchers such

as string equality matcher and substring matcher,

which give 1 for the similar words and 0 for non

similar without saying anything about the degree of

similarity or dissimilarity.

• Edit distance can find similarities in any part of the

word, on the contrary to some matchers that are

able to find the similarities in prefix or in suffix of

the word only.

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014

458

Fig. 3: Content matching

Fig. 4: XML schema built-in datatype (Biron et al., 2004)

Similarities in names are calculated according to

the following function:

sN = 1 - (Edit_ Distance/ (max_length)) (1)

where, sN is the name similarity and has a real value in
the range of [0, 1], Edit_Distance calculates the edit
distance between two strings and max_length calculates
the length of the longer string.

The second step in our algorithm attempts match
concepts from two ontologies by measuring similarities
between their contents. The content of a concept is a list
of attributes; each attribute has a name and a data type.
To compare the content for two concepts we will
actually compare two lists of attributes, this comparison
will proceed in two steps, firstly comparing the data
type then comparing attribute name in order to find the
matched attribute.

Data type comparing: In order for a pair of attributes

to be matched their data type should be compatible with

each other we will use data type matching in order to

restrict the number of attribute to be compared. Figure 3

presents an example of data type matching.

We have two list of attributes one for product

concept and the other for electronic equipments

concept. If we want to match the attribute from two lists

with each other without firstly comparing their data

type, we will do twelve operation since product concept

has three attributes and electronic equipments has four

attributes, but by using data type comparing firstly we

will restrict the matching operations as an example

instead of comparing brand to four attribute in

electronic equipment attribute list this will be restricted

to compare with condition and brand since they have

the same data type of brand which is string.

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014

459

Fig. 5: Content matching based on data type abstraction

We still have a problem with data type comparison,

as noticed in Fig. 3 there is more than one way to

encode the same data type. For example, in product

concept price is encoded as double, while in the second

concept price is encoded as float. However, both

attributes used for the same purpose. This different

encoding for the same attribute will misled the attribute

matching process since it depends firstly on data type

matching. The proposed solution in order to take data

types into account is to build abstractions out of the

data types, Fig. 4 shows the classification of built in

XML data type (Biron et al., 2004).

Data type will be abstracted into:

• Numeric (double, float, decimal)

• String (token, name, normalized String)

• Booleans (true/false, yes/no, 1/0)

• Date and time

Using data type abstractions will alleviate the

problem that if the compared datatypses belong to the

same category then they will be matched. As an

example, attribute such as price will be matched from

two lists if they have any numeric value, because price

may be int, float, double, positiveInteger, etc. As

noticed from Fig. 5, price and amount from product

concept will be compared to price and amount from

electronic equipments concept. Also, brand from

product concept will be compared to brand and

condition in the second concept since they have the

same data type which is string. As a conclusion,

depending on data type abstractions and by comparing

the data-type for the element before the actual matching

for the attribute the number of comparison is reduced to

sex comparisons instead of twelve.

Attribute comparing: Until now we have defined the

attributes that have compatible data types, for these

attributes the next step is to find the similarities in

attributes names in order to find the number of matched

attributes between the compared lists, the process of

computing similarities between attributes names will

depend on the Eq. (1) on the first step, then if the

similarity value for the compared attributes names is

greater than a specific threshold which we set equal to

0.60 then the compared attributes will considered to be

matched. The content similarity value between two

concepts sC is a real value in the range [0, 1] and

calculated according to the following function:

sC = Count/N (2)

where,
Count = The number of pairs of properties matched
N = The length of the list with more attributes

Indirect ontology matching: Traditional ontology
matching algorithms are restricted to the use of direct
matching which depend on the information in the
ontologies being matched, some of the new techniques
(Giunchiglia et al., 2005; Laclavík, 2005; Małgorzata,
2009; Zharko et al., 2006) go beyond this and use
external background knowledge in the matching. In our
algorithm we will use background knowledge in the
form of Word Net.

The third step in our algorithm attempts match
concepts from two ontologies by discovering the
relationships between the compared concepts, the
relationships are discovered by using Word Net.

The relations provided by WordNet will be
translated to semantic relations according to the
following rules:

• A ⊑ B if A is a hyponym, meronym or troponym
of B

• A ⊒ B if A is a hypernym or holonym of B

• A ≡ B if they are connected by synonymy relation
or they belong to one synset

• A ⊥ B if they are connected by antonymy relation

Then each of the semantic relations will take a
value in [0, 1] range according to its strength:

• ≡ take the value 1

• ⊑, ⊒ take the value 0.5

• ⊥, idk take the value 0.0

EXPERIMENT AND RESULTS

We have performed our experiment in which we

matched product ontology to electronic equipments

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014

460

Table 2: Name similarity

Electronic
equipment Phone

Cell
phone

Digital
camera Computer Processer Monitor

Computer
memory

Product 0.20 0.28 0.00 0.00 0.12 0.33 0.00 0.13
Book 0.05 0.20 0.10 0.00 0.12 0.22 0.28 0.13
Text book 0.15 0.12 0.20 0.07 0.00 0.11 0.12 0.20
Magazine 0.10 0.25 0.20 0.21 0.00 0.00 0.12 0.13
Camera 0.15 0.00 0.10 0.42 0.37 0.11 0.00 0.26
Camcorder 0.15 0.22 0.10 0.21 0.44 0.22 0.22 0.33
Mobile phone 0.25 0.41 0.58 0.14 0.16 0.16 0.33 0.26
Laptop 0.20 0.16 0.30 0.14 0.25 0.11 0.28 0.20
Peripheral device 0.15 0.17 0.23 0.23 0.11 0.17 0.11 0.23
CPU 0.10 0.00 0.20 0.07 0.37 0.11 0.00 0.20
Monitor 0.15 0.14 0.10 0.21 0.37 0.33 1.00 0.26
TV 0.05 0.00 0.00 0.70 0.12 0.00 0.14 0.06
Clothing 0.20 0.25 0.40 0.70 0.12 0.11 0.12 0.13
Shoes 0.10 0.60 0.30 0.70 0.12 0.22 0.14 0.06
Running shoe 0.15 0.16 0.25 0.14 0.00 0.16 0.25 0.13
Handbag 0.05 0.14 0.00 0.14 0.00 0.00 0.14 0.00

Computer
accessory Printer

Matrix
printer Television

Musical
instruments Guitar Drum

Product 0.16 0.28 0.14 0.00 0.11 0.00 0.28
Book 0.16 0.00 0.00 0.10 0.00 0.00 0.00
Text book 0.16 0.00 0.14 0.10 0.05 0.12 0.00
Magazine 0.16 0.12 0.30 0.10 0.27 0.10 0.00
Camera 0.27 0.14 0.30 0.10 0.22 0.00 0.00
Camcorder 0.27 0.22 0.28 0.00 0.22 0.11 0.11
Mobile phone 0.22 0.08 0.35 0.25 0.22 0.08 0.00
Laptop 0.16 0.14 0.21 0.20 0.11 0.16 0.00
Peripheral device 0.16 0.29 0.17 0.17 0.11 0.11 0.05
CPU 0.16 0.00 0.07 0.00 0.11 0.00 0.25
Monitor 0.22 0.28 0.28 0.20 0.16 0.42 0.00
TV 0.05 0.14 0.07 0.20 0.05 0.16 0.00
Clothing 0.11 0.00 0.14 0.20 0.22 0.12 0.00
Shoes 0.16 0.14 0.07 0.20 0.11 0.00 0.00
Running shoe 0.16 0.16 0.14 0.16 0.22 0.16 0.08
Handbag 0.05 0.00 0.07 0.00 0.11 0.14 0.14

ontology by using the general matching process of our

algorithm. In this section we will explain the main

results from our algorithm.
Table 2 shows the similarity values between

different concepts names according to Eq. (1). The cell
[i, j] in this table stores the similarity value between the
i
th

 concept in product ontology and the j
th

 concept in
electronic equipment ontology.

As an example, the cell [7, 4] stores the name
similarity value between laptop from product ontology
and computer from electronic equipment ontology
where:

sN = 1 - (edit_distance) / (max_length)

edit_distance (laptop, computer) = 6

max_length = 8

sN = 1- (6/8) which equals to 0.25

The content similarity value between laptop and

computer according to Eq. (2) is:

sC = 8/10 = 0.8

According to our example the overall similarity

between laptop and computer is calculated as:

Os = (w1*sN) + (w2*sC) + (w3*sR)

Os = (0.27*0.25) + (0.40*0.8) + (0.33*0.5)

Os = 0. 55

We have determined that any two concepts have an

overall similarity value greater than 0.30 will be
considered equivalence and so laptop and computer will
be matched according to our algorithm.

CONCLUSION

We have conclude that ontologies can be used to
support different tasks in multiple research areas,
because it form the heart of knowledge representation
for any given domain, we can say that ontology form as
data source for many different interested parties.
However, due to the heterogeneity among ontologies
which arises when different parties design ontologies
according to their own conceptual views of the domain,
ontologies need to be matched before they are able to
be made better for use. The objective of the work is to
introduce a method for finding semantic
correspondence among the ontologies with the intention
to bridge communications between heterogeneous
systems.

In this study we have introduced a three
dimensional algorithm for ontology matching problem
by comparing ontologies concepts from three
dimensions:

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014

461

• Matching concepts based on name similarity

• Matching concepts based on content similarity

• Matching concepts based on relationship similarity

By comparing concepts from three dimensions we can

trust our result since; the same concepts may be named

by different labels or they may have the same names

but differ in their attribute or their relations. In these

cases if we rely on one dimension in the matching

process; we will not discover the similarities. On the

contrary, when the matching process relies on three

dimensions, if one dimension can't discover the

similarity the other will do.

At the first step in our matching algorithm we have

computed the similarities in names for every concept

from our source and target ontology according to edit

distance function. At the second step we have computed

the contents similarities; this process proceeds in two

steps. Firstly, comparing the data type this will restrict

the number of attribute to be compared; if the data types

for the compared attributes are compatible with each

other then the attributes names is compared in order to

find the matched attributes. At the third step, we have

used Word Net as external background knowledge in

order to discover the semantic relation between the

compared concepts. The overall similarity for the

compared concept is calculated as a weighted sum for

names similarity; contents similarity and relationship

similarity, respectively.

We have conducted our experiment using a real-

life ontology matching scenario, we have developed our

datasets from electronic market places; the data in our

ontologies is collected from:

• Amazon.com

• Shopping.com

• Buy.com

Finally the results from our algorithm are summarized.

We have summarized the main contribution of this

study on the following:

• Building a three dimensional approach for
ontology matching

• We have implement a program to learn weights for

different dimension of ontologies concepts through

Applying a neural network technique

• Integrating syntactic and semantic matching in our
algorithm

In future study we would like to implement the

three dimensional algorithm in different domains. By

using datasets specialize in some domain; according to

this datasets we will use an external resource that is

specialize at the same domain of the dataset in order to

discover more accurate relationships.

REFERENCES

Biron, P., K. Permanente and A. Malhotra, 2004. XML

Schema Part 2: Datatypes. 2nd Edn., W3C

Recommendation.

Chirstopher, M.D., R. Prabhakar and H. Schütze, 2009.

An Introduction to Information Retrieval.

Cambridge University Press, New York.

Fasli, M., 2007. Agent Technology for E-commerce.

Wiley and Sons, Chichester.

Giunchiglia, F., P. Shvaiko and M. Yatskevich, 2005.

Semantic schema matching. Proceedings of the

13th International Conference on Cooperative

Information Systems (CoopIS 05), AgiaNapa,

Cyprus.

Huang, J., J. Dang, J. Vidal and M. Huhns 2007.

Ontology matching using an artificial neural

network to learn weights. Proceeding of the IJCAI

Workshop on Semantic Web for Collaborative

Knowledge Acquisition, pp: 80-85.

Laclavík, M., 2005. Ontology and agent based approach

for knowledge management. Ph.D. Thesis, Institute

of Informatics, Slovak Academy of Sciences.

Madhavan, J., P.A. Bernstein and E. Rahm, 2001.

Generic Schema Matching with Cupid. VLDB

2001.

Madhavan, J., P.A. Bernstein, A. Doan and A. Halevy,

2005. Corpus-based schema matching. Proceedings

of the 25th International Conference on Data

Engineering (ICDE 05), Tokyo, Japan.

Małgorzata, M., 2009. The methodology for finding

suitable ontology matching approaches. Ph.D.

Thesis, Universität of Berlin.

Williams, A.B., 2004. Learning to share meaning in a

multi-agent system. Auton. Agents Multi Ag. Syst.,

8(2): 165-193.

Yatskevich, M. and F. Giunchiglia, 2004. Element level

semantic matching. Proceeding of the Workshop

on Meaning Coordination and Negotiation at

ISWC, Hiroshima, Japan.

Zharko, A., K. Michel, K. Warner and H. Frank, 2006.

Matching unstructured vocabularies using

background ontology. Proceeding of the 15th

International Conference on Knowledge

Engineering and Knowledge Management (EKAW

2006), pp: 182-197.

