
Research Journal of Applied Sciences, Engineering and Technology 7(3): 454-461, 2014 

DOI:10.19026/rjaset.7.275 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2014 Maxwell Scientific Publication Corp. 

Submitted: May 07, 2013                         Accepted: June 11, 2013 Published: January 20, 2014  

 

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 
454 

 

Research Article 

Ontology Matching Algorithm by Using Agent Technology 
 

Abdulsalam Alarabeyyat 
Faculty of Information Technology, Al Balqa Applied University, Salt, Jordan 

 

Abstract: In this study we Introduce a three dimensional algorithm for ontology matching problem by comparing 
ontologies concepts from three dimensions (i) matching concepts based on name similarity (ii) matching concepts 
based on content similarity (iii) matching concepts based on relationship similarity. By comparing concepts from 
three dimensions we can trust our result since; the same concepts may be named by different labels or they may 
have the same names but differ in their attribute or their relations. In these cases if we rely on one dimension in the 
matching process; we will not discover the similarities. On the contrary, when the matching process relies on three 
dimensions, if one dimension can't discover the similarity the other will do. 
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INTRODUCTION 

 
The main subject of this study is to study ontology 

matching, the task of identifying the correspondences 
between elements of two ontologies, where solving 
such match problems has a significant importance in 
different application domains.  

 In order to have a comprehensive view of the work 
presented in this study, it is necessary to take a view on 
terms such as agents, ontology, ontology matching and 
multi-agents system. Agents are computational systems 
that are capable of autonomous, reactive and proactive 
behavior endowed with the ability to interact with other 
agents (Fasli, 2007).   

Software agents differ from other traditional 
software applications, where traditional software 
applications need to be told explicitly what it is that 
they need to accomplish and the exact steps that they 
have to perform, agents need to be told what the goal is 
but not how to achieve it. Then being smart, they will 
actively find ways to satisfy this goal, acting with the 
minimum intervention from the user. Agents will 
determine what needs to be done to achieve their goal, 
but also react to any changes in the environment as they 
occur, which may affect their plans and goals, 
accomplishments, then according to these changes they 
will modify their course of action. An agent is usually 
not an isolated entity; it is located within an 
environment and continuously interacts with it as well 
as with other entities, including agents and humans. A 
multi-agent system consists of number of agents that 
communicate and interact with each other to solve a 
complex problem or to achieve their user's goals.  

For agents to be able to communicate with and 
understand each other they need to use results of all 
areas of artificial intelligence such as learning, 

negotiation or knowledge management. This study 
focuses on one of them-a use of knowledge 
management by agent systems. During negotiations the 
agents use the knowledge about the problem domain in 
order to fulfill their goals.  

Most ontology matching techniques belong to 
either rule based or learning-based ones. Cupid 
Madhavan et al. (2001) proposed a mapping algorithm 
between schema elements based on their names, 
constraints, data types and schema structure. Cupid has 
a bias toward leaf structure where much of the schema 
content resides.  

Madhavan et al. (2005) describes how a corpus of 
schemas and mappings can be used to match schemas. 
Such a corpus typically contains multiple schemas that 
model similar schemas concepts and their properties. 
First they increase the evidence about each concept 
being matched by including evidence from similar 
concepts in the corpus. Then they learn statistics about 
concepts and their relationships to infer constraints.  

Williams (2004) proposed an algorithm for 

multiagent knowledge sharing and learning in a peer- 

to-peer setting. It enables multiagent systems to assist 

groups of people in locating, translating and sharing 

knowledge. After locating similar concepts, agents can 

continue to translate concepts and then are able to share 

meanings and learning and translating similar semantic 

concepts between them. 

 

PROBLEM STATEMENT 

 

Depending on our knowledge, ontology defines a 

common vocabulary for those who need to share 

information in a domain. In other words, ontology 

represents a common ground for those wishing to enter 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(3): 454-461, 2014 

 

455 

in meaningful interactions. This is one of the primary 

reasons why we need to develop ontologies.  

While ontologies serve as a basis for solving this 

problem, the heterogeneity among different ontologies 

considered to be a serious problem. This is due to the 

fact that the domains are developed by different parties 

that can design ontologies according to their own 

conceptual views of that domain. 

Confusion and misunderstanding may arise on the 

following cases: 

 

• The same names do not necessarily indicate the 

same semantics and different names may be used 

to represent the same real-world concept. If agents 

refer to the same concepts by employing different 

terms as an example, agent i refer to anyone who 

buys products as a client whereas agent j refers to 

such an entity as a customer. Thus, the same thing 

can be described in different ways, each 

representing different perspectives or ways of 

thinking. 

 
Confusion may also arias when agents refer to 

different concepts using the same term. For agent i an 
employee is anyone in the payroll system, whereas for 
agent j an employee is anyone receiving benefits. If 
agents are not aware of this distinction, they will not be 
able to enter into a meaningful dialogue. In addition 
Element names may be encrypted or abbreviated so that 
they are only understandable by their creators. Also 
building Ontologies by different languages and 
different conceptual modeling can be used. 

 

PROPOSED SOLUTION 

 

Heterogeneity alleviating will be achieved by 

providing mechanisms in which intelligent agents that 

work in open environments could communicate in an 

efficient way, even in the cases when they use 

completely different ontologies. To handle this 

heterogeneity issue in ontologies, many approaches 

have been proposed. Generally, there are two different 

kinds of solutions (Huang et al., 2007): 

 

• Centralized solution: In which a central ontology 

that is agreed-upon, global and unique and includes 

every concept that can satisfy the needs of different 

parties is built. However, a central ontology will 

never be large and compatible enough to include 

all concepts of interest to every individual ontology 

designer, so it will have to be modified and 

extended. Each new extension will be different and 

increase incompatibility. 

• Distributed solution: This solution focuses on the 

ability for individual ontologies to match and 

reconcile with each other and possibly reuse each 

other. The ontology matching is initially carried 

out by a human. There are some drawbacks to this 

manual process, including that it is time-consuming 

and error-prone, as ontologies can contain 

thousands of concepts. Therefore, this solution 

focuses on developing tools that are either 

automatic or semi-automatic and can help people in 

matching ontologies. 

 

Algorithm structure: The Three-Dimensional 

algorithm matches two ontologies O1 and O2, 

depending on three major steps: 

 

• Matching concepts based on name similarity 

• Matching concepts based on content similarity 

• Matching concepts based on relationship similarity 

 

We have defined ontologies as “a formal 

representation of a set of concepts within a domain, 

properties of each concept and the relationships 

between those concepts”. We have suggested our 

algorithm depending on this definition, since we say 

that these three features together specify a concrete 

view for each concept: 

• The name of concept  

• The properties of concept  

• The relationships of the concept  

 
By comparing different concepts according to these 
three features we can trust our result. For example, 
some concepts that give the same meaning may differ 
in their names in this case we can match them by 
relying on the similarity on their properties and the 
relationship among them. On contrary, some matchers 
that rely on concept name similarity will fail in this case 
since the names are different. Also we have used 
learning techniques in our algorithm. 

We have summarized our contribution on the 

following: 

 

• Building a three dimensional algorithm for 

ontology matching.  

• Our algorithm integrates an Artificial Neural 

Network (ANN) technique. 

• Integrating syntactic and semantic matching in our 
matching algorithm. 

 

Parameters used in the algorithm: Ontology 

matching is defined as "a function f, which, from a pair 

of ontologies to match O and O~, a set of parameters p 

and a set of resources r, returns an alignment A 

between these ontologies". In this section we will 

explain the two parameters that used by the algorithm 

and how these parameters will have a significant 

influence on the final result. 

 
Similarity threshold: The similarity threshold 
parameter dictates a minimum similarity values 
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between two concepts in order to consider them as a 
matched concepts. We have used two similarity 
thresholds in our algorithm, the first one in content 
matching step; at this step we consider for any two 
compared attributes that having a name similarity 
greater than a threshold which we determine to be 0.60 
they will matched from content dimension. Also we 
have another threshold, for the final results which are 
obtained by a weighted sum of sN, sC and sR. If this 
final results is greater than 0.30 then the compared 
concepts will be considered as a matching concepts. 

We have determined these thresholds by trial-and-
error. As an example, when we compare two attributes 
LCD Screen Size to Screen Size we will have a 
similarity value equals to 0.76 and so they will consider 
to be matched, since their similarity value is greater 
than the specified threshold. 
 
Similarity weights: During the matching process 
different aspects, i.e., concept names, concept 
properties and concept relationships, contribute in 
different degrees to the matching result. So we need to 
assign weights to these aspects according to their 
importance, a more accurate matching result is favored. 

We will use machine learning techniques, such that 
the weights can be learned from training examples 
instead of being ad-hoc defined by domain experts, the 
learning process will be achieved by using Artificial 
Neural Network (ANN) (Huang et al., 2007). On the 
following we will explain the neural network design 
and the learning process.  

 

Neural network design: We build a two-layer 3×1 
network, as shown in Fig. 1. On the following we will 
summarize the neural network characteristics. 
 
Network inputs: 
 
sN :  Similarity in name 
sC  :  Similarity in contents 
sR  :  Similarity in relationship 
 
Network outputs: 
 
O1  :  sN multiplying by weight (w1) 
O2  :  sC multiplying by weight (w2) 
O3  :  sR multiplying by weight (w3) 
 
Target function: Each pair of compared concepts 
correspond to cell (i, j) in O1, O2, O3; Target function 
tries to find the maximum value of row (i) and column 
(j). 
 
Training set: We will randomly take a set of concepts 
from source ontology (Products) and find the equivalent 
concepts by manual matching with target ontology 
(Electronic equipments). 
 
Training process: The training process consists of the 
following main steps: 

 
 

Fig. 1: Neural network structure 

 

Step 1:  Initialization: Set initial weights randomly: 

  

 W1 = 0.27, W2 = 0.40, W3 = 0.33 

 
Step 2: Activation: Activate the network by applying 

inputs (SN, sC and sR) and the randomly initialized 

weights and then calculate the actual outputs. 

 

Step 3: Error Calculation: 

 

E (wi) = [((max_row) - Oi) + ((max_column) - Oi)] 

 

Step 4: Weight training: 

  

w1N = w1 + α*Σ [((max_row) - O1) + 

((max_column) - O1)] * sN 

 

w2N = w2 + α*Σ [((max_row) - O2) + 

((max_column) - O2)] * sC 

 

w3N = w3 + α*Σ [((max_row ) - O3) + 

((max_column) - O3)] * sR 

 

We randomly set w1 = 0.35, w2 = 0.32, w3 = 0.33, 

learning rate α is set to 0.2 and then we randomly pick 

up a set of concepts from product ontology and find the 

corresponding equivalent concepts by a manual 

matching with electronic equipments ontology. Each of 

such manually matched pairs will be processed by the 

network and the similarity values in name, properties 

and relationships for these two concepts are calculated 

and used as a training example to the network. We then 

use the learned weights (w1 = 0.27, w2 = 0.40, w3 = 

0.33) to match the remaining concepts. 

 

Resources used in the proposed algorithm: In order 

to identify mappings between the concepts of ontology, 

called the source ontology with concepts of another 

one, called the target ontology, a lot of recent works use 

additional resource called background knowledge. The 

common objective for using an external resource is to 

detect desired matches which may fail in some cases. In 

our algorithm we will use WordNet as background 

knowledge. 
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Fig. 2: Ontology matching process 

 
Table 1: Relations in Word Net 

Relations  Description  Example   

Hypernym  Is a generalization of Motor vehicle is a hypernym of car 

Hyponym Is a kind of Car is a hyponym of motor vehicle  

Meronym   Is a part of Lock is a meronym of door  

Holonym Contains part Door is a holonym of lock  

Troponym Is a way to  Fly is a troponym to travel  

Antonym Opposite of  Stay in place is an antonym or travel 

Attribute  Attribute of  Fast is an attribute of speed  

Entailment  Entails  Calling on phone entails dialing  

Cause  Cause to To hurt cause to suffer  

Also see Related verb  To lodge is related to reside  

Similar to  Similarly to Evil is similar to bad  

Participle of  Is participle of  Stored is the participle of to store  

Pertainym  Pertains to Radial pertains to radius  

 

Word Net Yatskevich and Giunchiglia (2004) is a 
lexical database which is available online and provides 
a large repository of English lexical items. Word Net 
contains synsets (or senses), structures containing sets 
of terms with synonymous meanings. Each synset has a 
gloss that defines the concept that it represents. For 
example, the words night, nighttime and dark constitute 
a single synset that has the following gloss: the time 
after sunset and before sunrise while it is dark outside. 
The relations of Word Net are presented on Table 1. 

 

Matching process: The proposed algorithm will take 

as input two ontologies which intend to match and 

computes as output a set of matched elements in three 

major steps, firstly calculating similarities in names 

then the similarities in contents are computed, which 

include comparing for the data type and attributes of the 

concepts and finally discovering the relationships 

between compared concepts. For each step the process 

of calculating the similarities for all concepts (one from 

the first ontology and the other from the second one, 

considering all combinations) is done by building an 

m1×m2 matrix to record all the calculated values, where 

m1 is the number of concepts in the first ontology and 

m2 is the number of concepts in the second one and the 

value in cell [i, j] store the similarity between the i
th

 

concept in first ontology and the j
th

 concept in the 

second, then the overall similarities between all 

concepts from two ontologies is given by the 

summation for the results of multiplying each  

similarity  matrix by the assigned weight to it. Figure 2 

clarifies our matching process. 

 

Direct ontology matching: In steps 1 and 2, we 

generate the similarities depending on direct matching, 

that is we depend only on the information contained on 

the ontologies we are interested to match. 

The first step of our algorithm attempts match 

concepts between two ontologies by measuring 

similarities between their names. We will find the 

similarities between concepts names depending on edit 

distance function which calculate the minimum number 

of edit operations required to transform one string into 

the other. Most commonly, the edit operations allowed 

for this purpose are:  

 

• Insert a character into a string 

• Delete a character from a string 

• Replace a character of a string by another character 

 

for these operations, edit distance is sometimes known 

as Levenshtein distance. We have used edit distance 

Chirstopher et al. (2009) for the following features 

which show the importance of edit distance comparing 

with other available functions: 

 

• Edit distance can find the distance between 

concepts of different length. 

• Edit distance gives more realistic and flexible 

results comparing with some lexical matchers such 

as string equality matcher and substring matcher, 

which give 1 for the similar words and 0 for non 

similar without saying anything about the degree of 

similarity or dissimilarity. 

• Edit distance can find similarities in any part of the 

word, on the contrary to some matchers that are 

able to find the similarities in prefix or in suffix of 

the word only. 
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Fig. 3: Content matching 

 

 
 

Fig. 4: XML schema built-in datatype (Biron et al., 2004) 

 
Similarities in names are calculated according to 

the following function: 
 
sN = 1 - (Edit_ Distance/ (max_length))             (1) 

 
where, sN is the name similarity and has a real value in 
the range of [0, 1], Edit_Distance calculates the edit 
distance between two strings and max_length calculates 
the length of the longer string.  

The second step in our algorithm attempts match 
concepts from two ontologies by measuring similarities 
between their contents. The content of a concept is a list 
of attributes; each attribute has a name and a data type. 
To compare the content for two concepts we will 
actually compare two lists of attributes, this comparison 
will proceed in two steps, firstly comparing the data 
type then comparing attribute name in order to find the 
matched attribute. 

Data type comparing: In order for a pair of attributes 

to be matched their data type should be compatible with 

each other we will use data type matching in order to 

restrict the number of attribute to be compared. Figure 3 

presents an example of data type matching.  

We have two list of attributes one for product 

concept and the other for electronic equipments 

concept. If we want to match the attribute from two lists 

with each other without firstly comparing their data 

type, we will do twelve operation since product concept 

has three attributes and electronic equipments has four 

attributes, but by using data type comparing firstly we 

will restrict the matching operations as an example 

instead of comparing brand to four attribute in 

electronic equipment attribute list this will be restricted 

to compare with condition and brand since they have 

the same data type of brand which is string. 
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Fig. 5: Content matching based on data type abstraction 

 

We still have a problem with data type comparison, 

as noticed in Fig. 3 there is more than one way to 

encode the same data type. For example, in product 

concept price is encoded as double, while in the second 

concept price is encoded as float. However, both 

attributes used for the same purpose. This different 

encoding for the same attribute will misled the attribute 

matching process since it depends firstly on data type 

matching. The proposed solution in order to take data 

types into account is to build abstractions out of the 

data types, Fig. 4 shows the classification of built in 

XML data type (Biron et al., 2004).  

Data type will be abstracted into: 
 

• Numeric (double, float, decimal) 

• String (token, name, normalized String) 

• Booleans (true/false, yes/no, 1/0 ) 

• Date and time 
 

Using data type abstractions will alleviate the 

problem that if the compared datatypses belong to the 

same category then they will be matched. As an 

example, attribute such as price will be matched from 

two lists if they have any numeric value, because price 

may be int, float, double, positiveInteger, etc. As 

noticed from Fig. 5, price and amount from product 

concept will be compared to price and amount from 

electronic equipments concept. Also, brand from 

product concept will be compared to brand and 

condition in the second concept since they have the 

same data type which is string. As a conclusion, 

depending on data type abstractions and by comparing 

the data-type for the element before the actual matching 

for the attribute the number of comparison is reduced to 

sex comparisons instead of twelve.    

  

Attribute comparing: Until now we have defined the 

attributes that have compatible data types, for these 

attributes the next step is to find the similarities in 

attributes names in order to find the number of matched 

attributes between the compared lists, the process of 

computing similarities between attributes names will 

depend on the Eq. (1) on the first step, then if the 

similarity value for the compared attributes names is 

greater than a specific threshold which we set equal to 

0.60 then the compared attributes will considered to be 

matched. The content similarity value between two 

concepts sC is a real value in the range [0, 1] and 

calculated according to the following function: 

 
sC = Count/N                   (2) 

 
where,  
Count  = The number of pairs of properties matched 
N         = The length of the list with more attributes 
 
Indirect ontology matching: Traditional ontology 
matching algorithms are restricted to the use of direct 
matching which depend on the information in the 
ontologies being matched, some of the new techniques 
(Giunchiglia et al., 2005; Laclavík, 2005; Małgorzata, 
2009; Zharko et al., 2006) go beyond this and use 
external background knowledge in the matching. In our 
algorithm we will use background knowledge in the 
form of Word Net. 

The third step in our algorithm attempts match 
concepts from two ontologies by discovering the 
relationships between the compared concepts, the 
relationships are discovered by using Word Net. 

The relations provided by WordNet will be 
translated to semantic relations according to the 
following rules: 
 

• A ⊑ B if A is a hyponym, meronym or troponym 
of B 

• A ⊒ B if A is a hypernym or holonym of B 

• A ≡ B if they are connected by synonymy relation 
or they belong to one synset 

• A ⊥ B if they are connected by antonymy relation 
 

Then each of the semantic relations will take a 
value in [0, 1] range according to its strength: 
 

• ≡ take the value 1 

• ⊑, ⊒ take the value 0.5 

• ⊥, idk take the value 0.0 
 

EXPERIMENT AND RESULTS 

 
We have performed our experiment in which we 

matched product ontology to electronic equipments 
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Table 2: Name similarity 

 
Electronic  
equipment  Phone  

Cell 
phone  

Digital 
camera Computer  Processer  Monitor 

Computer 
memory  

Product  0.20 0.28 0.00 0.00 0.12 0.33 0.00 0.13 
Book 0.05 0.20 0.10 0.00 0.12 0.22 0.28 0.13 
Text book 0.15 0.12 0.20 0.07 0.00 0.11 0.12 0.20 
Magazine  0.10 0.25 0.20 0.21 0.00 0.00 0.12 0.13 
Camera 0.15 0.00 0.10 0.42 0.37 0.11 0.00 0.26 
Camcorder  0.15 0.22 0.10 0.21 0.44 0.22 0.22 0.33 
Mobile phone  0.25 0.41 0.58 0.14 0.16 0.16 0.33 0.26 
Laptop 0.20 0.16 0.30 0.14 0.25 0.11 0.28 0.20 
Peripheral device  0.15 0.17 0.23 0.23 0.11 0.17 0.11 0.23 
CPU 0.10 0.00 0.20 0.07 0.37  0.11 0.00 0.20 
Monitor 0.15 0.14 0.10 0.21 0.37 0.33 1.00 0.26 
TV 0.05 0.00 0.00 0.70 0.12 0.00 0.14 0.06 
Clothing  0.20 0.25 0.40 0.70 0.12 0.11 0.12 0.13 
Shoes 0.10 0.60 0.30 0.70 0.12 0.22 0.14 0.06 
Running shoe 0.15 0.16 0.25 0.14 0.00 0.16 0.25 0.13 
Handbag 0.05 0.14 0.00 0.14 0.00 0.00 0.14 0.00 

 
Computer 
accessory Printer  

Matrix 
printer Television  

Musical 
instruments  Guitar Drum  

Product  0.16 0.28 0.14 0.00 0.11 0.00 0.28 
Book 0.16 0.00 0.00 0.10 0.00 0.00 0.00 
Text book 0.16 0.00 0.14 0.10 0.05 0.12 0.00 
Magazine  0.16 0.12 0.30 0.10 0.27 0.10 0.00 
Camera 0.27 0.14 0.30 0.10 0.22 0.00 0.00 
Camcorder  0.27 0.22 0.28 0.00 0.22 0.11 0.11 
Mobile phone  0.22 0.08 0.35 0.25 0.22 0.08 0.00 
Laptop 0.16 0.14 0.21 0.20 0.11 0.16 0.00 
Peripheral device  0.16 0.29 0.17 0.17 0.11 0.11 0.05 
CPU 0.16 0.00 0.07 0.00 0.11 0.00 0.25 
Monitor 0.22 0.28 0.28 0.20 0.16 0.42 0.00 
TV 0.05 0.14 0.07 0.20 0.05 0.16 0.00 
Clothing  0.11 0.00 0.14 0.20 0.22 0.12 0.00 
Shoes 0.16 0.14 0.07 0.20 0.11 0.00 0.00 
Running shoe 0.16 0.16 0.14 0.16 0.22 0.16 0.08 
Handbag 0.05 0.00 0.07 0.00 0.11 0.14 0.14 

 

ontology by using the general matching process of our 

algorithm. In this section we will explain the main 

results from our algorithm. 
Table 2 shows the similarity values between 

different concepts names according to Eq. (1). The cell 
[i, j] in this table stores the similarity value between the 
i
th

 concept in product ontology and the j
th

 concept in 
electronic equipment ontology.  

As an example, the cell [7, 4] stores the name 
similarity value between laptop from product ontology 
and computer from electronic equipment ontology 
where: 

  

sN = 1 - (edit_distance) / (max_length) 

edit_distance (laptop, computer) = 6 

max_length = 8 

sN = 1- (6/8) which equals to 0.25 

 

The content similarity value between laptop and 

computer according to Eq. (2) is: 

 

sC = 8/10 = 0.8 

 

According to our example the overall similarity 

between laptop and computer is calculated as: 

 

Os = (w1*sN) + (w2*sC) + (w3*sR) 

Os = (0.27*0.25) + (0.40*0.8) + (0.33*0.5) 

Os = 0.  55  
 
We have determined that any two concepts have an 

overall similarity value greater than 0.30 will be 
considered equivalence and so laptop and computer will 
be matched according to our algorithm. 
 

CONCLUSION 
 

We have conclude that ontologies can be used to 
support different tasks in multiple research areas, 
because it form the heart of knowledge representation 
for any given domain, we can say that ontology form as 
data source for many different interested parties. 
However, due to the heterogeneity among ontologies 
which arises when different parties design ontologies 
according to their own conceptual views of the domain, 
ontologies need to be matched before they are able to 
be made better for use. The objective of the work is to 
introduce a method for finding semantic 
correspondence among the ontologies with the intention 
to bridge communications between heterogeneous 
systems.  

In this study we have introduced a three 
dimensional algorithm for ontology matching problem 
by comparing ontologies concepts from three 
dimensions: 
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• Matching concepts based on name similarity  

• Matching concepts based on content similarity  

• Matching concepts based on relationship similarity  

 

By comparing concepts from three dimensions we can 

trust our result since; the same concepts may be named 

by different labels or they may have the same names 

but differ in their attribute or their relations. In these 

cases if we rely on one dimension in the matching 

process; we will not discover the similarities. On the 

contrary, when the matching process relies on three 

dimensions, if one dimension can't discover the 

similarity the other will do.  

At the first step in our matching algorithm we have 

computed the similarities in names for every concept 

from our source and target ontology according to edit 

distance function. At the second step we have computed 

the contents similarities; this process proceeds in two 

steps. Firstly, comparing the data type this will restrict 

the number of attribute to be compared; if the data types 

for the compared attributes are compatible with each 

other then the attributes names is compared in order to 

find the matched attributes. At the third step, we have 

used Word Net as external background knowledge in 

order to discover the semantic relation between the 

compared concepts. The overall similarity for the 

compared concept is calculated as a weighted sum for 

names similarity; contents similarity and relationship 

similarity, respectively. 

We have conducted our experiment using a real-

life ontology matching scenario, we have developed our 

datasets from electronic market places; the data in our 

ontologies is collected from: 

 

• Amazon.com  

• Shopping.com  

• Buy.com  

 

Finally the results from our algorithm are summarized. 

We have summarized the main contribution of this 

study on the following: 

 

• Building a three dimensional approach for 
ontology matching  

• We have implement a program to learn weights for 

different dimension of ontologies concepts through 

Applying a neural network technique  

• Integrating syntactic and semantic matching in our 
algorithm 

 

In future study we would like to implement the 

three dimensional algorithm in different domains. By 

using datasets specialize in some domain; according to 

this datasets we will use an external resource that is 

specialize at the same domain of the dataset in order to 

discover more accurate relationships. 
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