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Abstract: This study reviews the originality and development of the Brain Computer Interface (BCI) system and 
focus on the BCI system design based on Blind Source Separation (BSS) techniques. The study also provides the 
recent trends and discusses some of a new ideas for BSS techniques in BCI architecture, articles which discussing 
the BCI system development were analysed, types of the BCI systems and the recent BCI design were explored. 
Since 1970 when the research of BCI system began in the  California Los Angeles University, the interest and the 
amount of research in BCI have been increased significantly; especially, when the BSS theory emerged in 1982 by a 
simple discussion between researchers. A lot of refereed journals and conference papers are reviewed and 
categorized to make this study in useful form. However, there are a few comprehensive reviews of BSS techniques 
in BCI literature. The review concludes with a brief discussion and expected future of the BCI. 
 
Keywords: Artifact rejection, Brain Computer Interface (BCI), Blind Source Separation (BSS), Independent 
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INTRODUCTION 

 
Brain Computer Interface (BCI) is a 

communication system that translates the user’s intent 
into control signals. Its research deals with establishing 
communication pathways between the brain and 
external world (Mugler et al., 2010; Jin et al., 2011). 
Generally the BCI system consists of four components: 
a signal’s acquisition unit; a signal processing system; 
an output device; and an operating protocol. The second 
part (i.e., signal processing system) is the most 
important in BCI, therefore the recent research focus on 
this part and based on the blind signal processing 
techniques such as Blind Source Separation (BSS). BSS 
techniques offer at least a way of improving the 
effective Signal to Noise Ratio (SNR) and enhance 
some brain patterns (Cichocki, 2004). Actually BSS 
algorithms investigate several alternatives and even 
more promising approaches. These algorithms used not 
only for noise reduction or artifacts removal, but also in 
source localization and improving spatial resolution of 
the brain signal (Musha et al., 2002; Cichocki, 2004).  

Expert knowledge is required in medicine, in 
neuroscience and in statistical signal processing to 
extract the relevant information from the brain for 
diagnosis, analysis and therapy (Cichocki, 2004). 
Besides traditional signal processing analysis tools; 
emerging blind signal processing techniques, 
especially, generalized component analysis including  

 
 
Fig. 1: Graph describing the increase of articles published in 

BCI from a PubMed search engine with key word: 
Brain computer interface 

 
Independent    Component    Analysis    (ICA),   Sparse 
Component Analysis (SCA), Time-Frequency 
Component Analyzer (TFCA) and Nonnegative Matrix 
Factorization (NMF) are appeared to analyze the brain 
signals (Makeig et al., 1996, 2004; Cichocki, 2004). 

Since 1970 when the first basic idea of Brain 

Computer Interface (BCI) systems appear, the BCI stay 

in inactive case because the computers were very slow 

and the treatments of a big streams data were not 

sufficient (Mileros, 2003; Salim, 2007). Then in late 
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1980’s, began to develop significantly and attracted 

much attention by the researchers. 

Figure 1 shows the rapid increase in articles 
published during the last. 

BCI have been reviewed in various papers; some of 
the review’s areas are particular, like Cichocki (2004) 
discussed in his review how the various BSS and signal 
decomposition algorithms applied for analysis and 
processing EEG data in BCI. Also discuss a promising 
application of blind source separation in early detection 
of Alzheimer Disease (AD). Nicolas-Alonso and Jaime 
(2012) prepare an important reviewed article for BCI 
system and discuss the developments, advantages, 
drawbacks, latest advances and survey the numerous 
technologies reported in the scientific literature to 
design each step of a BCI. 

This study reviews the development of BCI signal 
processing based on BSS algorithms and touches some 
new notice from current researches which are very 
important for this field. The study also reviews the 
recent trends and discusses some of the new ideas 
which contribute to the development of BCI in 
commercial manufacturing and research fields. Authors 
hope that, this review study is a useful for the 
researchers to develop the BCI systems and determine 
further research areas in the field. 
 

BRAIN COMPUTER INTERFACE (BCI) 

 

• Originality and development: In 1970’s the 
United States department of defense tried to 
develop a systems helping pilots to interact with 
their aircraft therefore, this trial gave the basic idea 
of Brain Computer Interface (BCI) systems. But 
unfortunately that dream was ahead of its time, 
because the computers were very slow and the 
treatments of a big streams data were not sufficient 
(Mileros, 2003; Salim, 2007). Initial progress and 
development in BCI research was very slow and 
limited by computer capabilities, knowledge of 
brain physiology and brain signal processing 
analysis. In 1950’s the mu and beta rhythms (i.e., 
sensorimotor rhythms) was first recorded in EEG 
signals as a prominent oscillatory phenomenon 
over sensorimotor cortex and known to be 
associated with movement or movement imagery 
(Gastaut, 1952). Although in late 1960’s, the 
experimental work with monkeys showed that: can 
be used the signals from single cortical neurons to 
control a meter needle. And the systematic 
investigations with humans really began in the 
1970’s. The question posted by Vidal (1973) can 
be observe the electrical brain signals to work as 
carriers of information in person-computer 
communication or for the control purpose of 
prostheses, his BCI was an early attempt to enable 
computer to be a prosthetic extension of the brain 

by evaluate the feasibility of using neuronal signals 
in a person -computer dialogue (Vidal, 1973; Jerry 
et al., 2012). 

 
In the late of 1970's, Kuhlman demonstrate and 

used EEG feedback training to enhance the mu rhythm. 
Based on this information; Wolpaw et al. (2002) trained 
some of volunteers to control on the amplitudes of 
sensorimotor rhythm and use it to move a cursor on a 
computer screen accurately in 1 or 2 dimensions 
(Wolpaw et al., 1991; Wolpaw and McFarland, 1994, 
2004). 

In the 1980s, an experiment on rhesus macaque 
monkeys by Georgopoulos et al. (1989) at Johns 
Hopkins University (JHU) to measure the electrical 
responses of single motor cortex neurons and found a 
mathematical relationship between the measured 
responses and the direction in which they moved their 
arms based on a cosine function (Georgopoulos et al., 
1989).  

Since 1990 the BCI researches really scoot, 
because computer’s development, better EEG devices 
offered new possibilities and appropriate brain signal 
processing techniques are developed. 

There are some eye-catching researches of the 
current BCI systems based on the modulation of brain 
rhythms. For example, power modulation of 

mu�µ�/beta (β) rhythms is used based on the motor 
imagery (Pfurtscheller and Neuper, 2001). Besides, 
phase modulation is also employed in a Steady-State 
Visual Evoked Potential (SSVEP) (Kluge and 
Hartmann, 2007). Generally there are five major brain 
waves distinguished by their different frequency ranges. 
These frequency bands are: alpha (α), theta (θ), beta 
(β), delta (δ) and gamma (γ). 

By 2006, a practical experiment by implanted a 
microelectrode array in the primary motor cortex of a 
person with complete tetraplegia. A brain computer 
interface system enabled the patient to open simulated 
e-mail, a television, open/close a prosthetic hand and 
perform simple actions with a robotic arm based on the 
recorded signals obtained from microelectrode array 
(Hochberg et al., 2006).  

In Krusienski and Shih (2011), used the 
Electrocorticography (ECoG) to record directly the 
cortical surface signals to demonstrate that signals can 
be translated by a brain computer interface to allow a 
person to accurately spell words on a computer screen 
(Krusienski and Shih, 2011).  

In 2012, hybrid brain computer interface that uses 
the motor imagery-based on mu rhythm and the P300 
potential to control a real wheelchair; two experiments 
were conducted to assess the BCI control system, 
simulated wheelchair in a virtual environment and a 
real wheelchair were tested and the subjects steered 
effectively by controlling the direction and speed (Long 
et al., 2012).  
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Table 1: Common neurophysiological signals used in Non-invasive BCI (Bayliss, 2001; Salim, 2007) 
Signal  Description 
Mu, and Alpha 
rhythm 

Mu is an 8-12 Hz spontaneous EEG rhythm associated with motor activities and maximally recorded over 
sensorimotor cortex. But Alpha is in the same frequency, but is recorded over occipital cortex.  

 
ERS/ERD 

Movement-related increases and decreases in specific frequency maximally located over sensorimotor cortex. 
Individuals may be trained through biofeedback to alter the amplitude of signals. It exist even when the individual 
imagines.  

Slow cortical 
potential 

Large negative or positive shifts in the EEG signal lasting from 300ms up to several minutes. Individuals may be 
trained through biofeedback to produce these shifts 

P3 component of the 
evoked potential 

A positive shift in the EEG approximately 300-400ms after a task stimulus. Maximally located over the central 
parietal region, this is an inherent response and no training is necessary. 

Short-latency visual 
evoked potentials 

To produce the component, a response to the presentation of a short visual stimulus is necessary. Maximally located 
over the occipital region, this is an inherent response and no training is necessary. 

Steady-State Visual 
Evoked Potential 
(SSVER) 

A response to a visual stimulus modulated at a specific frequency. The SSVER is characterized by an increase in 
EEG activity at the stimulus frequency. Typically, the visual stimulus is generated using white fluorescent tubes 
modulated at around 13.25 Hz or by another kind of strobe light. A system may be constructed by conditioning 
individuals to modulate the amplitude of their response or by using multiple SSVERs  

 

 
 
Fig. 2:  BSS schematic diagram  

 
To date there have been over than 20 research 

groups in BCI field , they taken different methods and 
approaches to the subject, less than half of the BCI 
research groups have built an online BCI (Lehtonen, 
2002; Salim, 2007).  

 

• Types: Most of the brain computer interface 
systems are based on the synchronous experimental 
protocol in which the subject (individual) must 
follow a fixed repetitive planner to switch from one 
mental task to the next. The other rely on more 
flexible asynchronous protocol where the subject 
makes self-paced decisions on when to stop doing 
a mental task and start the next one (Millan, 2003). 
Electrodes are used to receive neural inputs. 
Currently there are three main types of BCI 
systems, based on the acquisition of 
neurophysiological signals associated with various 
aspects of brain function (Millan, 2003).  

o Direct (invasive) BCI: Direct BCIs involve 
invasive procedure to implant electrodes in the 
brain (i.e., Electrode is placed directly into grey 
matter of patient) (Fig. 2). Thus the signals 
acquired from single or small groups of neurons 
used to control the BCI. In most cases the most 
suitable option for placing the electrodes is the 
motor cortex region, because of its direct relevance 
to motor tasks (Ochoa, 2002). 

o Partially invasive BCI: Partially Invasive BCIs 
are implanted inside the skull but outside the brain 
(i.e., Electrode is placed directly on the surface of 
the brain (beneath the dura) to record neural 
signals-also known as Electrocorticography 
(ECoG)) (Fig. 2). The signal strength for this type 

is a bit weaker, but less risk of scar tissue 
formation (Aarts et al., 2009).  

o Non-invasive BCI: Non-invasive BCIs are based 
on the analysis of Electroencephalogram (EEG) 
phenomena. These EEG phenomena are acquired 
through  macro  electrodes  covering  the scalp 
(Fig. 2). The common neurophysiological signals, 
used for noninvasive BCI control are summarized 
as shown in Table 1 (Bayliss, 2001; Salim, 2007). 
Figure 2 show the neurophysiological signals 
acquisition methods. 
 

• Components: The main function of a Brain 
Computer Interface (BCI) is to convert the person's 
intent into an outside action by detect and extract 
the features of brain signals which are measured by 
electrodes to indicate the user’s intentions and to 
translate these features into device commands that 
accomplish the user’s intent in real time (Fig. 3). 

 
Generally, the brain signals generated from activity 

of neurons are detected by electrodes located on the 
(scalp, cortical surface, or within the brain). The brain 
signals are amplified and digitized. The relevant 
characteristics of the brain signal are extracted and 
translated into commands that control an output device 
such as (a prosthetic limb, a spelling program, a 
motorized wheelchair and so on). The feedback signal 
from the device used by user to modify the brain signals 
in order to maintain effective device performance (Mak 
and Wolpaw, 2009; Jerry et al., 2012). 

 
BCI system consists of 4 sequential components: 
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Fig. 3: Brain signal analysis: Blind source separation problem 

(Tahir, 2010) 

 
o Signal Acquisition: Involves the electrodes which 

pick up the electrical activity of the brain with an 
amplifier and filters unit. The signals are amplified 
to levels suitable for electronic processing and 
filtering to remove electrical noise or other 
undesirable signal characteristics. The signals are 
then digitized and transmitted to a computer 
(Wolpaw et al., 2002; Jerry et al., 2012). 

o Feature Extraction: Converts the brain signals 
into relevant feature components (Alwasiti et al., 
2010). It is the process of analyzing the digital 
signals to distinguish the signal features with 
strong correlations related to the person’s intent. In 
current BCI systems the most features are: Time-
Triggered EEG or ECoG response amplitudes and 
latencies, power within specific EEG or ECoG 
frequency bands, or firing rates of individual 
cortical neurons (Jerry et al., 2012).  

 

The external artifacts and physiologic artifacts 
signals must be avoided or removed to ensure accurate 
measurement (Wolpaw et al., 2002). 
 
o Feature translation: The feature components are 

classified into logical controls (Alwasiti et al., 
2010). It is converts the features into the 
appropriate commands that accomplish the user’s 
intent for the output device. For example, a power 
decrease in a given frequency band could be 
translated into an upward displacement of a 
computer cursor, or a P300 potential could be 
translated into selection of the letter that evoked it 
(Jerry et al., 2012).  

o Device Output: In current BCIs, the most devices 
is a computer screen and the output is the selection 
of targets, to operate the external device, such as 
letter or icons selection, cursor control, robotic arm 
operation and so on. In order to obtain the closed 
loop system, the output device operation provides 
feedback to the user (Mak and Wolpaw, 2009). 

 

BLIND SOURCE SEPARATION 

 

Blind Source Separation (BSS) is an important 
research area in signal and image processing used to 
extracted or recover source signals from their mixtures  

 
 
Fig. 4: Brain signals acquisition method 

 
(without/with little) information about source signals or 
mixing process. Or can be say, the task is to determine 
approximately the individual source (independent 
source signals) from their mixtures based on minimum 
of priori of information. The term blind refers to the 
fact that there is no specific information about the 
mixing process or about the existing source signals 
(Hyvarinen, 1999; Sanjeev et al., 2012). 

Generally, the BSS mixture types can be 
considered as: 

 

• Instantaneous (static) linear mixtures 

• Convolutive mixtures 

• Nonlinear mixtures 
 
Convolutive Blind Source Separation (CBSS) 

refers to the separation in a dispersive environment 
based on procedures that do not have specific 
knowledge of the source properties or the mixing 
conditions (Olyaee et al., 2010; Sanjeev et al., 2012). 
Wide applications of CBSS, in speech, music, 
underwater signals recorded in passive sonar, radio 
communications, antenna arrays, astronomical data, 
satellite images and interpret functional brain imaging 
data (Hansen and Dyrholm, 2003; Mansour et al., 2006; 
Pedersen et al., 2007).  

In Nonlinear transformations often told that it is 
information overload or data overload. The task is to 
arrival large amounts of data containing relatively small 
amounts of useful information. This is true both in daily 
lives and within much science (Comon and Jutten, 
1996; Basak and Amari, 1999).  

The linear mixtures have three global properties 
(Stone, 2001): 

 

• Temporal predictability.  
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Fig. 5: Components of a BCI system (Jerry et al., 2012) 

 

• Gaussian probability density functions: The 
probability density function (pdf) of any mixture 
approximates a Gaussian distribution is greater 
than (or equal to) any of its component source 
signals based on the central limit theorem. 

• Statistical Independence: The degree of statistical 
independence between any two signal mixtures is 
less than (or equal to) the degree of independence 
between any two source signals.  

 
The BSS schematic diagram model is shown in Fig. 4. 

In a non-invasive technique (EEG), the sensors 
(electrodes) are sited at the surface or around the head 
(scalp) at very close distance. For each action of the 
human, a lot of numbers of sources (neurons) are active 
(stimulus). Each sensor (electrode) is measuring a 
mixture of these stimuli from sources and each sensor 
measures a different mixture depending upon its 
distance from the sources as shown in Fig. 5.  

No idea about the sources and the mixing process 
that has occurred inside the head. Therefore, cerebral 
signal analysis can be considered as a BSS problem. 

Typical linear mixing model of BSS for a number 
of signals emitted by n independent physical 
sources �����, �����, … �	���; such as (different brain 
areas emitting electric signals, or mobile phones 
emitting their radio waves); with m observed mixtures 

����, 
����, … 
���� is:  
 

x1(t) = a11s1(t) + a12s2(t) + a13s3(t) +… a1nsn(t) 
x2(t) = a21s1(t) + a22s2(t) + a23s3(t) +… a2nsn (t) 
x3(t) = a31s1(t) + a32s2(t) + a33s3(t) +… a3nsn (t) 
xm(t) =am1s1(t) + am2s2(t) + am3s3(t)+…amnsn (t) 

Or  
 


���� =                                                                  (1) 

 

�������� + �������� + ��	�	���  � = 1,2, . �       (2) 

 
In vector notation: 

 X��� = A S ���                                                      (3) 
 
where,  
 

 X��� =  [
����, … 
����]�                                   (4) 
 
         ���� =  [�����, … �	���]�                                    (5) 
 
Also, n (k) is a vector of additive noise: 
 

 n��� =  [n����, … n����]�                                   (6) 
 
Now, the mixing can be expressed as: 
 

X��� = A S ��� + n���                                           (7) 
 
The superscript T refers transpose operator.  
A ∈ R�×" is a mixing matrix.  
Symbol (t) is time or sample index. 

Upon the number of sensor and sources, the BSS 
can be divided into three categories (Sanjeev et al., 
2012): 

 

• Over-Determined mixing  

• No. of sources < No. of sensors 

• Determined mixing 
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• No. of sources = No. of sensors  

• Under-Determined mixing  

• No. of sources > No. of sensors  
 

The observed signals are the weighted sums of the 
original source signals, where the coefficients depend 
on the distances between the sources and the sensors. 
Where A is the unknown mixing weights. The weights 
and the original sources are unknown as well as those 
cannot be recorded directly, this is the Blind Source 
Separation (BSS) problem. Safely can be assume that, 
the matrix made by mixing coefficients is invertible 
(i.e., full rank matrix). Independent Component 
Analysis (ICA) is one approach for solving this 
problem, it’s assume that si(t) are statistically 
independent at each time. ICA, a method for finding 
underlying factors or components from multivariate 
(multidimensional) statistical data, based on the 
information of independence and nongaussianity then 
can estimate wij , which allows us to separate the 
original source signals si(t) from their mixtures 
xj(t).Thus there exists a matrix with coefficients wij, 
such that we can separate them as Tahir (2010): 

 
s1(t) = w11x1(t) + w12x2(t) + w13x3(t) +… w1mxm (t) 
s2(t) = w21x1(t) + w22x2(t) + w23x3(t) +… w2mxm (t) 
s3(t) = w31x1(t) + w32x2(t) + w33x3(t) +… w3mxm (t) 

⋮ 
sn(t) = wn1x1(t) +wn2x2(t) +wn3x3(t) +… wnmxm(t)                                   

                                                                                     (8) 
 

Or based on Fig. 1: the separating model without 
noise is: 
  

 E Y��� = W X ���                                                (9) 
                 

E is a permutation and scaling matrix and Y(t) the 
recovered sources: 
 

 Y��� =  ['����, … '	���]�                                  (10) 
 

BSS problem is to estimate the best separating 
matrix W and its ideal value equal to: 

 
 W = A(�                                                            (11) 

 
BSS BASED BCI 

 
Artifacts are undesirable signals that can interfere 

with neurological phenomena. They represent one of 
the limitations in the signal acquisition unit of brain 
computer interface system, most significant of which 
are: Ballistocardiogram (BCG), Electrooculogram 
(EOG), Electromyographic (EMG) and line artifacts, 
(Tahir, 2010). They may change the characteristics of 
neurological phenomena or even be mistakenly used as 
the source of control in BCI systems (Mehrdad et al., 
2007). BCG artifact, due to the tiny movement of EEG 
electrodes because of the pulsatile changes in blood 
flow tied to cardiac cycle and EOG artifact, by the 

movement of eyes (Allen et al., 2000; Sijbers et al., 
2000). Currently the most approaches used for the BCG 
and EOG artifacts in BCI system are:  

 

• Averaged Artifact Subtraction (AAS)  

• Adaptive Filtering Techniques (AFT) 

• Blind Source Separation (BSS) 
 

Independent Component Analysis (ICA) is a well-
established technique for BSS. In biomedical signal 
analysis, researchers have used this technique for 
artifact attenuation, rejection and extract the statistically 
independent components from spontaneous EEG 
(Niazy et al., 2005; Srivastava et al., 2005). Based on 
Makeig et al. (1996) and Jung et al. (2000), the ICA is 
highly effective when: 

 
(i) The mixing medium is linear and propagation 

delays are negligible.  
(ii) The time courses of the sources are independent. 
(iii) The number of sources is the same as the number 

of sensors.  
(iv) Mixing and the independent components (ICs) are 

stationary. 
 
In the case of neurological signals, assume that the 

recordings signals are mixtures of underlying brain and 
artifact signals. Because volume conduction is thought 
to be linear and instantaneous, assumption (i) is 
satisfied. Assumption (ii) is also reasonable because the 
sources of eye, muscle activity, line noise and cardiac 
signals are not generally time locked to the sources of 
EEG activity which is thought to reflect synaptic 
activity of cortical neurons (Jung et al., 2000). 
Assumption (iii) is questionable, because don’t know 
the effective number of statistically independent signals 
contributing to the scalp EEG. Finally Assumption (iv) 
discussed by Blanco et al. (1995); The data are 
considered as random variables in batch ICA 
algorithms and their distributions are estimated from 
the whole data set. Therefore, the nonstationarity of the 
signals is not really a violation of the assumptions of 
the model (Tahir, 2010). However, the assumption of 
stationary of the mixing matrix A agrees widely 
accepted (Scherg and Cramon, 1985; Mosher and 
Leahy, 1992). More Details about the validity of ICA 
model for brain signal in Hyvarinen et al. (2001). Jung 
et al. (2000) proposes a new and generally applicable 
method for removing a wide variety of artifacts from 
EEG records based on ICA/BSS.  

Automatic removal of electro-ocular artifacts from 
EEG data procedure based on blind source separation 
(BSS) is presented in Carrie et al. (2004). Two ICA 
algorithms InfoMax (I-ICA) and Extended-InfoMax 
(EI-ICA) were utilized to extract eye movements and 
power  noise  of  50Hz  in  EEG  data  is  proposed in 
Xue et al. (2006), it is proven that (EI-ICA) method can 
isolate both superguassian artifacts (Eye blinks) and 
subguassian interference (line noise), but (I-ICA) 
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method is only restricted to remove superguassian 
artifacts (eye blinks). 

Erfanian and Erfani (2004) are used ICA approach 
to design a new EEG-based BCI for natural control of 
prosthetic hand grasp and suggest the possibility of 
using ICA to separate different independent brain 
activities during motor imagery into separate 
components.  

In 2006, a comprehensive study (Nakamura et al., 
2006) has been conducted on different conventional 
ICA algorithms to evaluate their performance for the 
BCG artifact attenuation from EEG signals measured 
inside MRI.  

James and Wang (2006) present a technique for 
applying BSS to single channel recordings of 
Electromagnetic brain signals. Single channel 
recordings of brain signals are pre-processed through 
the method of delays and the delay matrix processed 
with the BSS technique called LSDIAGTD, which uses 
temporal decorrelation to implement the ICA. BSS 
applied to extracts a series of codebook vectors 
representing the spectral content underlying the 
recorded signal then identify and extract particular 
rhythmic activity underlying the recordings (James 
and Wang, 2006). Shoker and Sanei (2006) propose a 
hybrid Blind Source Separation-Support Vector 
Machines (BSS-SVM) approach for distinguishing 
between left and right finger movements in EEG signal. 
SVM is used to classify the extracted features 
incorporating BSS and Directed Transfer Functions 
(DTF), where 200 trials of 64 electrodes trained the 
classifier and tested the system. 

Halder et al. (2007) propose a combination of blind 
source separation techniques with support vector 
machines for signal decomposition into (artifacts, non-
artifacts) and automatic classification that are designed 
for online usage. Three ICA algorithms (JADE, 
Infomax and FastICA) used in order to select a suitable 
method and one BSS algorithm (AMUSE) are 
evaluated to determine their ability to isolate 
Electromyographic (EMG) and EOG artifacts into 
individual components 

 
However BSS/ICA has some disadvantages: 
 

• The number of independent components is equal to 
the number of observations. 

• Neither the energies nor the signs of independent 
components can be predefined. 

• Ordering of independent components is random. 

• Possibility of breaking up of the artifacts into 
multiple independent components, making the 
selection task even difficult.  

 
As a result of these disadvantages, seriously began 

to study new or modified approaches, such as: Tahir 
(2010) proposes algorithm which tries to overcome the 
disadvantages of the conventional as well as the 
existing  spatiotemporal  algorithm. A  complete artifact  

Table 2: Summarized the two important techniques related with BSS 
used in BCI system (Nicolas-Alonso, and Jaime, 2012) 

Method  Properties 

PCA • Linear transformation. 

• Transform a set of possibly correlated observations 
in to a set of uncorrelated variables. 

• Data representation in terms of minimal mean-
square-error. 

• No guarantees for a classification 

• Valuable noise and dimension reduction method.  

• Artifacts must be uncorrelated with the EEG signal 
ICA • Separate a set of mixed signals into its original 

sources. 

• Assume statistical independence of underlying 
sources. 

• Powerful and robust tool for artifact rejection. 

• Artifacts and EEG signal are independent. 

• May corrupt the power spectrum. 

 
rejection system based on constrained independent 
component  analysis  (cICA). The  proposed system can 
remove BCG and EOG artifacts from EEG signals 
measured inside MRI. It has some advantages 
compared to the conventional system e.g. automatic 
artifact rejection system and any reject any number of 
artifacts at the same time (Tahir, 2010). 

The Nonlinear blind source separation methods are 
also used to extract the brain signals in BCI system, 
where (Torse et al., 2012) propose a Nonlinear 
BSS/ICA neural network model to analyze the complex 
epileptic EEG signals and remove the artifacts . The 
epileptic recorded EEG signals are highly complex and 
non-Gaussian. Thus the conventional methods are 
limited to extract the blind signals. 

Finally, can be summarized the two important 
techniques related with BSS theory used in BCI system:  

 

• Principal Component Analysis (PCA): PCA has 
been used to determine the artifactual components 
in a reasonably successful way in EEG based BCI 
system and to recover the signals (Boye, 2008; 
Nicolas-Alonso and Jaime, 2012). But, must be 
there are no correlations between artifacts are EEG. 
The feature space dimensionality has also been 
employed by principle component analysis (Lin 
and Hsieh, 2009). 

• Independent Component Analysis (ICA): ICA 

has usually been used as a preprocessing technique 

before the feature extraction step, to remove the 

artifacts in BCI (Flexer et al., 2005; Gao et al., 

2010). Although ICA has been proven to be a 

powerful and robust technique for reject the artifact 

in BCI system, some studies have indicated that 

artifact rejection may also corrupt the power 

spectrum of the underlying neural activity 

(Wallstrom et al., 2004) In addition, the artifacts 

must be independent in relation to the EEG. Also 

some of researchers have been used it as a 

classifier (Nicolas-Alonso and Jaime, 2012). ICA 

can be modified for classification process by fitting 
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the generative ICA model and employing 

Bayes’rule to create the classifier (Chiappa and 

Barber, 2006; Nicolas-Alonso and Jaime, 2012). 

The properties for these methods are shown in 

Table 2. 

 

CURRENT RESEARCH DIRECTIONS 

 
Recently, the BCI achievements research and 

development remain almost in the laboratory and based 
on the data gathered from the volunteers. One of the 
main aims of BCI system has barely begun to improve 
the daily lives of people with disabilities (Jerry et al., 
2012). The Analysis of brain signals depending on the 
signal processing techniques are seen as a very 
important key to the interpretation of user’s intent, 
where in 2011, the research team in Colorado State 
University has obtained a five year, ($1.2 Million) grant 
to develop BCI that could help people with severe 
motor impairments do something as simple as turn on a 
TV by changing what they are thinking about, the 
development based on advanced signal processing 
techniques. 

Neurophysiological signals have a significant 
temporal structure and it is clear to use the 
BSS based on the time lagged covariance matrix for the 
separation process. As mentioned by Mukul and 
Matsuno (2011) which present a novel signal pre-
processing technique to enhance the rhythmic 
information related to movement 
imagination based on the BSS/AMUSE algorithm to 
estimates the separating matrix by an eigenvalue 
decomposition of a single time lagged covariance 
matrix of the EEG signals. 

Some of the recent technologies toward merging of 
Translation Invariant Wavelet and ICA to obtain a 
better result in noise filtering, as demonstrated by 
Williams and Li (2011) where they present a new 
algorithm called Cycle Spinning Wavelet Transform 
ICA (CTICA).  

A good way of gaining further insights on the EEG 
signals is to introduce nonlinear ICA as introduced by 
Torse et al. (2012), where the main aim is to design of a 
nonlinear BSS/ICA neural network model, which can 
be used to analyze the complex epileptic EEG signals 
which are assumed to be blind signals. The epileptic 
signals are highly complex and non-Gaussian. Thus the 
traditional methods are limited to extract the desired 
signals from blind mixtures. The proposed work 
consists of two stages: removing and separation, the 
Nonlinear BSS algorithm is used for the separation and 
NBSS learning rule is used for ICA estimation. Also the 
suggestion for future work suggested, by connect the 
ICA algorithms with soft-computing techniques like 
Fuzzy logic (FL) and Genetic Algorithms (GAs) to 
extend their tasks to many other developed tasks such 
as classification and feature extraction of EEG 
waveforms. 

In recent years, to increase the accuracy of BCI 
systems by increase the number of electrodes causes a 
non-linear increase in computational complexity (i.e. 
decrease transfer rate). Therefore (Ghanbari et al., 
2012; Sun et al., 2008) discus this problem and try to 
solve it by Genetic Algorithm (GA) to select the 
effective number of electrodes and to reduce the 
redundancy, where the proposed a scheme combine the 
liner filtering, Genetic Algorithm (GA) and Neural 
Network (NN) classifiers for EEG signal classification. 
The liner filtering is used to artifact removal. The GA 
select essential EEG channels and the best features then 
selected features serve as input feature vector for the 
classifiers. Two neural networks, including 
probabilistic neural network (PNN), Multilayered 
Perceptron (MLP) and support vector machine (SVM) 
were employed and their effects were compared; finally 
Ghanbari et al. (2012) suggested future works, based on 
another intelligent method and evolutionary algorithms 
such as partial swarm optimization (PSO) for selecting 
the most suitable features and channels (Ghanbari et al., 
2012).  

Allison et al. (2012); introduce a hybrid new type 
of brain computer interface to control on two 
dimensional cursor movement. Where the vertical 
position control via ERD activity associated with 
imagined movement while horizontal position control 
with SSVEP activity resulting from visual attention, , 
this type of hybrid system, processed by signal 
processing techniques based on blind source separation 
for artifact rejection and separation.  
 

CONCLUSION 

 

Various blind source separation algorithms have 
been clearly contributed to develop the brain computer 
interface systems in artifact rejection and separation 
process to extract the relevant information. The 
invention of a new designs for BCI will going on for 
more progress, simple, ease of use, an affordable, on-
line and high bit transfer rate, less number of electrodes 
with high accuracy. 

In this study, a reviews for BCI signal processing 

based on BSS algorithms. Also provides the recent 

trends and discusses some of the new ideas for BSS 

techniques in BCI architecture for artifact rejection and 

separation. Most of current BCI studies are still at the 

stage of laboratory demonstrations. 

The future may be producing a high technical BCI 
systems and speed up the effectiveness of determine the 
relevant task, more workable and more affordable. It is 
vision that one day the BCI systems can be applicable 
for all users. By the rapid development in artificial 
intelligence and computer science nowadays we 
expected new invention of smart BCI system that can 
be able to determine the relevant tasks, with very high 
accuracy.  
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Finally can be conclude from this study, that the 
world is heading to merge BCI system with the 
intelligent soft-computing techniques such as (Fuzzy 
logic, Genetic algorithms, partial swarm optimization) 
to improve the performance of the entire system and 
this is what we saw from the direction of the research in 
recent years. 
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