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Abstract: In Wireless Sensor Networks (WSN), Efficient-Energy Coverage (EEC) is one of the important issues for 
considering the (WSNs) implementation. In this study, we have developed the new algorithm ECO (Enhanced 
Coverage Optimization) for solving the EEC problem effectively. The proposed algorithm uses three types of major 
work for effectively solving the problem. One of the three pheromones is the local pheromone, which helps an ant 
organize its coverage set with fewer sensors. The other two pheromones are global pheromones, one of which is 
used to optimize the number of required active sensors per Point of Interest (PoI) and the other is used to form a 
sensor set that has as many senses as an ant has selected the number of active sensors by using the former 
pheromone. This study also introduces one technique that leads to a more realistic approach to solving the EEC 
problem that is to utilize the probabilistic sensor detection model. The main goal of ECO is Efficient Coverage on 
target area with minimum energy consumption and increased network's lifetime. 
 

Keywords: Ant Colony Optimization (ACO), energy efficient coverage, three types of pheromones, Point of 
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INTRODUCTION 

 

Wireless Sensor Networks (WSNs) have attracted 
significant attention over the past few years. A growing 
list of civil and military applications can employ WSNs 
for increased effectiveness; especially in hostile and 
remote areas. Examples include disaster management, 
border protection, combat field surveillance. In these 
applications, a large number of sensors are expected, 
requiring careful architecture and management of the 
network. 

The Wireless Sensor Network (WSN) is a class of 
wireless networks in which sensor nodes collect process 
and transmit data acquired from the physical 
environment to an external base station directly or, if 
required, uses other wireless sensor nodes to forward 
data to an external base station (Li et al., 2010). The 
transmitted data is then presented to the system by the 
gateway connection. The ideal wireless sensor is 
networked and scalable, consumes very little power, is 
smart and software programmable, capable of fast data 
acquisition, reliable and accurate over the long term, 
costs less to purchase and install and requires no real 
maintenance. WSN applications are used to monitor the 
surrounding environment in a wide range of areas, for 
example, medical, security, military and agricultural 
industries. 

A Wireless Sensor Network (WSN) is a complex 
structure consisting of a large number of sensor nodes 
distributed over a target region. Each sensor has limited 
computational and storage capacity, a restricted sense 
and communication radios and a finite power supply. 
These constraints have led researchers to find better 
ways of using the sensor nodes looking for a reduction 
of energy consumption, while maintaining an 
acceptable coverage threshold. The increasingly 
cheaper and better technology, along with a wide 
range of applications, has played an important role in 
the growing popularity of WSNs. There are primarily 
four techniques used by efficient power management 
algorithms: 
 

• Long term scheduling, which uses a successive 

activation of disjoint covers (sets of sensors). 

• Short term scheduling, which selectively activates 

nodes based on their individual battery status 

• Routing selection, which establishes the shortest 

path for data transmission. 

• Rate allocation, which reduces the amount of data 

to be coded and transmitted by exploiting its 

correlation. These techniques, or any combination 

of them, could be implemented using either a 

distributed or centralized method. 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(4): 696-701, 2014 

 

697 

A sensor node can only be equipped with a limited 
energy supply in all application scenarios. Energy is 
consumed during computation and communication 
among the nodes. The Sensor node lifetime shows a 
very strong dependency on battery lifetime (Luntovskyy 
et al., 2010). Selecting the optimum sensors and 
wireless communications link requires knowledge of the 
application and problem definition. Battery life, sensor 
update rates and size are all major design considerations. 
Examples of low data rate sensors include temperature, 
humidity and peak strain captured passively. Examples 
of high data rate sensors include strain, acceleration and 
vibration. 

Many techniques have been proposed to conserve 
energy and prolong the network’s lifetime (Noah et al., 
2010; Anastasi et al., 2009). Among them, scheduling 
methods, which reduce energy consumption by planning 
the activities of the devices, have been shown to be 
effective (Lin et al., 2010). These activity scheduling 
methods need to have devices densely deployed in an 
interest area. Then, only part, or a subset of the devices 
accomplishes the sensing task, while the other devices 
can be scheduled into a sleep state to save energy. By 
scheduling the devices’ activities from active to sleep, or 
vice versa, this method needs only a subset of the 
devices for monitoring an area of interest at any time. 
Therefore, the lifetime of the WSN is prolonged. To 
achieve a longer lifetime, it is important to find the 
maximum number of disjoint subsets of devices in the 
scheduling method. Many scheduling algorithms have 
been proposed to solve the EEC problem. 

 

RELATED METHODOLOGY 
 

The main objective of the sensor network is to 
cover the region. The random deployment of sensors to 
cover a given square-shaped area, where the circles 
represent the sensing range, each point of the area is 
monitored by at least one sensor (Ming et al., 2010). 
According to the sensor network architecture, two 
assumptions are made:  
 

• All the sensor nodes are static once deployed and 
each one knows its own location which can achieve 
by using some location system. 

• Every sensor independently in their sensing 
activities and schedules itself for or sleep intervals.   

 
For a centralized approach to work effectively, 

targets must have fixed locations as well as the 
deployed sensors. This unchangeable structure of the 
network permits long term scheduling to take place only 
once in a central computing unit, where information 
about all sensor’s location is gathered just after 
deployment to solve the EDSC problem. When a 
solution to the problem is available, it is transmitted to 
each sensor in the form of an index representing its 
membership to a cover that is used as the number of 
battery periods a sensor has to wait before turning 

itself to active mode. Clearly, the biggest disadvantage 
of centralized algorithms is that their functionality 
relies on the network’s ability to transmit data from 
every single node to the central computing unit and vice 
versa. In probabilistic disc model (Chen et al., 2010) 
takes into account the uncertainty of the signal detection 
process and assumes that the detection probability is a 
continually decreasing function of the distance. 
Therefore, it is more realistic to presume that a sensor 
node can detect the occurrence of an event with a certain 
probability if the distance between the sensor and a PoI 
is greater than the sensing radius in the Boolean disc 
model. 

Heinzelman et al. (2002) developed a cluster based 
routing scheme called Low Energy adaptive cluster in 
hierarchy In LEACH the role of the cluster head is 
periodically transferred among the nodes in the 
network in order to distribute the energy consumption. 
The performance of LEACH is based on rounds. Then, 
a cluster head is elected in each round. In this election, 
the number of nodes that have not been cluster heads 
and the percentage of cluster heads are used. Once the 
cluster head is defined in the setup phase, it establishes 
a TDMA schedule for the transmissions in its cluster 
this scheduling allows nodes to switch off their 
interfaces when they are not going to be employed. The 
cluster head is the router to the sink and it is also 
responsible for the data aggregation. As the cluster 
head controls the sensors located in a close area, the 
data aggregation performed by this leader permits to 
remove redundancy. A centralized version of this 
protocol is LEACH-C (Lindsey and Raghavendra, 
2002). This scheme is also based on time rounds which 
are divided into the setup phase and the steady-phase. In 
the setup phase, sensors inform the base station about 
their positions and about their energy level. With this 
information, the base station decides the structure of 
clusters and their corresponding cluster heads. Since the 
base station posses a complete knowledge of the status 
of the network, the cluster structure resulting from 
LEACH-C is considered an optimization of the results 
of LEACH. 

The conventional ACO algorithm is based on the 
behavior of real ants. When a group of ants set out from 
their nest to search for a food source, they use a special 
kind of chemical to communicate with each other. The 
chemical is referred to as the pheromone. Once the ants 
discover a path to a food source, they deposit 
pheromone on the path. By sensing pheromone on the 
ground, ants can follow the path to food source 
discovered by other ants. As this process continues, 
most of the ants tend to choose the shortest path to food 
as there have been a huge amount of pheromones 
accumulated on this path (Selcuk and Karaboga, 2009). 
As time goes on, pheromones evaporate, opening up 
new possibilities and ants cooperate to choose a path 
with heavily laid pheromones. The ACO algorithm has a 
parallel architecture and a positive feedback loop 
mechanism. 
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Fig. 1: Flowchart of the proposed algorithm 

 

PROPOSED ENERGY COVERAGE 
OPTIMIZATION ALGORITHM 

 

The main objective of the proposed COA algorithm 

is efficient coverage of target areas with minimum 

energy consumption and also increased network’s 

lifetime. Here, we are using one technique that is to 

utilize the probabilistic sensor detection model lead to a 

more realistic approach to solving the EEC problem.  

The proposed system COA uses three types of 

pheromones to find the solution efficiently. One of the 

three pheromones is the local pheromone, which helps 

an ant organize its coverage set with fewer sensors. The 

other two pheromones are global pheromones, one of 

which is used to optimize the number of required active 

sensors per Point of Interest (PoI) and the other is used 

to form a sensor set that has as many senses as an ant 

has selected the number of active sensors by using the 

former pheromone.  

The proposed algorithm can be viewed as the 

following procedures: 

 

• Initialization of the algorithm: Collect the 

position information of sensors and PoIs. And also 

all pheromone values and parameters are initialized 

• Initialization of ants: Initialized the number of 

ants M, which compose a colony and the also 

initialized the number of colonies ��, which is the 

repeated count within a time slot 

• Selection: Select the number of active sensors p���� and also select the active sensors p�� using 

roulette wheel selection 

• Local pheromone updating: Local pheromone 	

�  

is updated at the end of each ant k’s travel for PoI j. 

• Rank list: Ant k organizes a subset �
� is stored as 

the set �� . Each set that is made by M ants is saved 

on the Rank List cell 

• Global pheromones updating: Global pheromone 

trail amount 	���
 and 	�
  are updated, if Rank list 

M is completed 

• Find �����: The set with minimum cost among M 

is individually saved at �����. To update �����, 

repeat the same process �� times. 

The flowchart of this algorithm is given by Fig. 1. 

These procedures are described in details below. 

  
Initialization of the algorithm: In the first stage, we 
collect position information of the sensors and the PoIs. 
After loading, we find and store a set of ������  sensors 
which cover each PoI ‘j’. The set ������  is a TxN matrix 
that consists of the following elements: 

  ������,
� ! " ,�# ��$��� � ������ %&' 
 (,��)��*���                           +                   (1) 

 

And also we initialized local pheromone and two 

global pheromones. This matrix (1) is used to initialize 

the global pheromone field 	�
 (for organizing the 

Active Sensors (AS)) per PoI at the initial stage, for 

every time slot as follows: 

 	�
,
� = ������,
�  × ./012345 67/89:�(<0)       (2) 

 

where ./012345 67/89:�(<0) is the residual energy of 

the sensor ‘I’ at time slot (ts). 

Determining the Number of Active Sensors 

(NoAS) is an axiomatic fact that the fewer the number 

of active sensors per PoI, the length is the lifetime of 

the WSN. Initialize the global pheromone field using a 

Gaussian function which is based on the following 

equation: 

 

	���
,
>(0) = @ "A√CD /E(>EµF    )G CAG⁄      0,                    I<ℎ/8K10/+  , 1L M ≤ 7
(3) 
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where  7
 is the number of sensors covered at PoI and M = 1 … 7
. This function has a constant σ and the men 

µ
  used in Eq. (3) is zero at the beginning of the 

proposed algorithm but increases with the number of 

times that the first ant of the first colony fails to 

organize the sensor set, which met the condition is, PoI 

in the region is mostly covered by at least some sensors. 

The repeated failure of this ant under the 

initialized 	�&�
 means that the current distribution 

with the mean is  µ
 insufficient to determine the 

number of active sensors at PoI. Thus, there is a higher 

chance to organize the efficient set of the sensors for all 

of the ants. 

 

Selection: The Selection process is based on Roulette 

wheel selection. In Roulette wheel selection, each 

individual is selected with a probability proportional to 

its fitness value. Thus, weak solutions are eliminated 

and strong solutions are considered to form the next 

iteration. 

To find a covering sensor set at PoI ’j’, ant ‘k’ first 

determines the number of active sensors, 7
� , using the 

global pheromone field 	�&�
. Then, ant chooses with a 

probability determined in accordance with the intensity 

of pheromone. The selection probability of the 7
� for 

ant ’k’ is as follows: 

 

p����(7
�) = Q RSTUV,FWFX(Y)∑ RSTUV,F[(Y)S[\]0,      I<ℎ/8K10/ + , 1L 7
� ≤ 7
    (4) 

 

where, 7
 is the number of sensors covered at PoI. 

Eventually, ant k determines 7
�  through roulette wheel 

selection (or the fitness proportionate selection) using 

the above probabilities. 

The selection probability of the sensor 0�,
 � for ant 

‘k’, when ant ‘k’ plays the roulette wheel selection is as 

follows: 

 ^�
_0�,
� ` =
 a RUV,Fb  (c)dτee,f g(c)∑ (h∈jkklmnoh τpq,rh(c)dτqq.h f (c))0,      I<ℎ/8K10/ + , 1L allowedz       (5)   

 

where, allowed = ������  (j)-{tab3
�}, or this is the set of 

remainder sensors, except that the first one is selected 
among sensors, except that the first one is selected 
among sensors, is the local pheromone, which has 
effects in the third loop, i.e., while ant travels alone. In 

contrast, the global pheromone fields, 	�&�
  and, 	�
 
which have influence in one time slot, i.e., the time it 
takes to complete the travel of the colonies. 

  

Local pheromone updating: After finishing ant k’s 

selection, this pheromone field is initialized and is then 

used by the ant k+1. This field is updated whenever ant 

‘k’ decides on the sensors that cover the PoI ‘j’. The 

selected sensor gets the value {
�  every time it is 

selected by ant ‘k’, as follows: 

 	

,�� (< + 1) = 	

,�� (<) + ∆	

.
��                          (6) 

 

The local pheromone  	

.��  is updated at the end of 

ant k’s travel for the PoI ‘j’. Thus, this equation 

describes the policy of the pheromone update at t+1 

which is the point when ant ‘k’ has organized the subset 0
� to cover the PoI ‘j’ if ‘t’ is the point of the previous 

update. ∆	

.
��  is the amount of pheromone trail added 

on the element of vector  	

�  for sensor ‘i’ chosen by ant 

‘k’ at the PoI ‘j’ and where ∆	

.
��  is the amount of the 

updated pheromone trail and is given as follows: 

 ∆	

.
�� =
! {
�,    �# ~$� � ������� ��$����0,   I<ℎ/8K10/                              +                          (7) 

 

Rank list maintenance: Ant organizes a subset �
� that 

covers the PoI ‘i’ through the roulette method. The 

subset is generated and stored as the set �� , which is 

selected by ant k and is the union set of �
�  . Each set 

that is made by ‘M’ ants is saved on the Rank List cell. 

The tour of a colony ends here. When the colony 

finished .Cost from the Eq. (7) with the M sets collected 

by the previous colonies, until the (cn-1) th iteration (or 

colony) and the new M sets are made by the current cn 

th colony. Then, we have to arrange the total 2M sets in 

increasing numerical order. Among them, we cut M sets 

in order and store them in the Rank List again. 

 

Global pheromones updating: After the tour of a 

colony ends again, the global pheromone trail amount 	 ���
,
$ and  	�
,
�  are updated, using the cost of the 

sets in RankList (M) if the configuration of the 

RankList (M) is completed.  

The global pheromone trail amount 	���
  is 

updated according to the following formula: 

  	���
,
$(< + �) = (1 − �). 	���
,
$(<) + ∆	���
,
$ (8) 

 

where, ρ is the pheromone decay parameter. The 

pheromone is evaporated as time goes on. As 

mentioned above, the global pheromone is updated at 

the end of travel of a colony that has M ants. Thus, this 

equation describes the policy of the pheromone update 

at t+M if t is the point of the previous update and where ∆	���
,
$ is the added pheromone trail amount at t+M, 

given as follows: 

 ∆	���
,
$ = ∑ ∆	����
,
$�� "                             (9) 
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∆	���
,
$� = a�X$FX ,    �# ~$� � ������� ��$����  $FX~� %�' 
0,   I<ℎ/8K10/                              +      (10) 

 {� is determined in accordance with the ranking of 

rank list is as follows: 

 {� = ����(�~$�����("))����(�~$�����(�))                        (11) 

 

Calculation of C-Best: If the number of colonies that 

accomplish the task is more than Mc, the current time 

slot is finished and then ����� at that time is the optimal 

cover set of sensors. After that, a new time slot begins 

and the global pheromone fields and the ranking list are 

initialized at the beginning. The IACO algorithm finds 

the optimal cover set of sensors in every time slot, 

recursively. However, this iteration process goes on 

until, each PoI must be covered by at least some sensors 

(i.e., There is no longer satisfied by any of the PoIs, or 

the network fails to cover any PoIs). The final set C cell 

is the group of ����� and the final solution of the EEC 

problem. The number of the time slot, TS, also becomes 

the lifetime of the WSN.  

 

SIMULATION RESULTS AND  

PERFORMANCE EVALUATION 

 

The performance evaluation is carried out as a 

simulation study using NS2. We use the following 

metrics in evaluating the performance of the 

different multicast routing protocols. The packet 

delivery ratio is computed as the r a t i o  of total 

number of unique packets received by the receivers 

to the total number of packets transmitted by all 

sources times the number of receivers. Routing 

overhead is the ratio between the number of 

control bytes transmitted to the number of data 

bytes received. 

The simulation results of our proposed ECO 

algorithm are compared to other leading algorithm ACO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Packet delivery ratio as a function of traffic load 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3: Routing overhead as a function of traffic load 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Packet delivery ratio as a function of number of 

traffic sources 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Routing overhead as a function of traffic sources 

 

and LEACH clustering algorithm (LEACH-C). In these 

simulations, we use synthetic MANET scenarios, in 

which we subject the optimization algorithm to a 

wide range of mobility, traffic load, and multicast 

group characteristics (i.e., group size and number 

of sources). 

Figure 2 shows the packet delivery ratio as a 

function of traffic load. It is observed that all 

optimization algorithm are affected by the increase in 

network traffic. For the traffic loads considered, 

ECO algorithm still outperforms ACO and 

LEACH-C in terms of delivery ratios. T h e  

performance of the Proposed ECO algorithm is 
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much better to ACO and LEACH-C as traffic load 

increases on account of the great number of 

redundant transmissions. 

Figure 3 depicts the control overhead per data 

byte delivered as a function of traffic load. It can be 

seen that Proposed algorithm control overhead 

remains almost constant with increasing load. The 

high routing overhead seems to suggest that ECO 

algorithm can be quite expensive at higher traffic 

loads and, hence, not scalable with increased traffic 

loads. 

Figure 4 shows the packet delivery ratio as a 

function of the number of senders. Note that both 

the Proposed optimization algorithm and ACO 

packet delivery ratios remain fairly constant with the 

number of senders; thus, they do not suffer from 

increased contention except at a higher number of 

sources, where a slight drop off can be observed and 

is attributed to data packet loss due to collisions. 

Figure 5 depicts how control overhead varies with 

the number of traffic sources.  

 

CONCLUSION 

 

In this study, a novel ECO algorithm is optimized to 

solve the EEC problem. The proposed algorithm has 

new characteristics that are different from conventional 

ACO algorithms. It uses three types of pheromones to 

solve the EEC problem efficiently. One is the local 

pheromone, which helps an ant organize a coverage set 

with fewer sensors; the others are the global 

pheromones. One global pheromone is used to optimize 

the number of required active sensors per PoI and the 

second global pheromone is used to form a sensor set 

that has as many sensors as an ant has selected the 

number of active sensors by using the former 

pheromone. It also utilizes a reduced number of the 

user’s parameters. To achieve this, it introduced the 

heterogeneous WSN, which is made by the random 

selection of the parameters of the probabilistic sensor 

detection model. So the simulation result shows that the 

ECO algorithm used to decrease the energy 

consumption and also increase the network's lifetime. 
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