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Abstract: Clustering technique is used to put similar data items in a same group. K-mean clustering is a commonly 
used approach in clustering technique which is based on initial centroids selected randomly. However, the existing 
method does not consider the data preprocessing which is an important task before executing the clustering among 
the different database. This study proposes a new approach of k-mean clustering algorithm. Experimental analysis 
shows that the proposed method performs well on infectious disease data set when compare with the conventional k-
means clustering method. 
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INTRODUCTION 

 
Data analysis techniques are necessary on studying 

actually increasing huge range of large sizing data. 
Regarding the same edge, cluster analysis (Hastie et al., 
2001) tries to pass through data easily to achieve 1st 
structure experience by dividing data items straight into 
disjoint classes in a way that data items owned by 
identical cluster are the same whereas data items owned 
by another clusters tend to be different. Among the 
significant well known as well as effective clustering 
techniques is known as the K-means technique 
(Hartigan and Wang, 1979) utilizing prototypes 
(centroids) so as to signify clusters through perfecting 
the error sum squared operation. (The specifics report 
for K-means as well as relevant techniques has been 
provided in (Jain and Dubes, 1988). 

The computational difficulty with traditional K-
means algorithm is extremely large, specifically with 
regard to huge data units. Moreover the amount of 
distance computations rises greatly with the increase 
with the dimensionality of the data. When the 
dimensionality increases usually, just a few dimensions 
are highly relevant to specific clusters, however data on 
the unimportant dimensions may possibly generate 
extremely very much noise and also conceal the true 
clusters that will possibly be observed. Furthermore 
whenever dimensionality elevates, data normally turn 
out to be extremely short, data elements positioned on 
separate measurements may be regarded virtually all 
equally distanced as well as the distance amount, that, 
primarily for grouping exploration, turns into useless. 

Therefore, feature reduction or just dimensionality 
lessening is the central data-preprocessing approach 
regarding cluster analysis for datasets which has a huge 
number of features. 

However, huge dimensional data are sometimes 
enhanced into reduce dimensional data through 
Principal Component Analysis (PCA) (Jolliffe, 2002) 
(or singular value decomposition) whereby coherent 
patterns could be detected more easily. This type of 
unsupervised dimension reduction is commonly 
employed in tremendously broad areas which includes 
meteorology, image processing, genomic analysis and 
information retrieval. It is additionally well-known that 
PCA can be used to project data into a reduced 
dimensional subspace and then K-means will then be 
applied to the subspace (Zha et al., 2002). In other 
instances, data are embedded in a low-dimensional 
space just like the eigenspace from the graph Laplacian 
and K-means will then be employed (Ng et al., 2001). 

A very important reason for PCA reliant dimension 
lowering is that often it holds the dimensions 
considering the main variances. This is the same with 
locating the optimal low rank approximation (in L2 
norm) for the data employing the SVD (Eckart and 
Young, 1936). Also, the dimension lowering property 
on its own is actually inadequate in order to elucidate 
the potency of PCA. 

On this study, we take a look at the link concerning 
both of these frequently used approaches and also a 
data standardization process. We show that principal 
component analysis and standardization approaches are 
basically the continuous solution for the cluster 
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membership indicators on the K-means clustering 
technique, i.e., the PCA dimension reduction 
automatically executes data clustering in line with the 
K-means objective function. This gives an essential 
justified reason of PCA-based data reduction. 

The result also provides best ways to address the 
K-means clustering problem. K-means technique 
employs K prototypes, the centroids of clusters, to 
characterize the data. These are determined by 
minimizing error sum of squares. 
 
K-means clustering algorithm: A conventional 
procedure for k-means clustering is straightforward. 
Getting started we can decide amount of groups K and 
that we presume a centroid or center of those groups. 
Immediately consider any kind of random items as 
initial centroids or a first K items within the series 
which can also function as an initial centroids.  

After that the K-means technique will perform the 
3 stages listed here before convergence. Iterate until 
constant (= zero item move group):  

 

• Decide the centroid coordinate 

• Decide the length of every item to the centroids  

• Cluster the item according to minimal length 
 
Principal component analysis: PCA can be looked at 
mathematically as the transformation of the linear 
orthogonal of the data to a different coordinate so that 
the largest variance of any of the data projections lie on 
the first coordinate (known as the first principal 
coordinate), the next largest on the second coordinate 
and so on. It transforms a numerous possibly correlated 
variables into a compact quantity of uncorrelated 
variables called principal components. PCA is a 
statistical technique for determining key variables in a 
high dimensional dataset which accounts for differences 
in the observations and is very important for analysis 
and visualization where information is very little 
lacking. 
 
Principal component: Principal components can be 
determined by the Eigen value decomposition of a data 
sets correlation matrix/covariance matrix or SVD of the 
data matrix, normally after mean centering the data for 
every feature. Covariance matrix is preferred when the 
variances of features are extremely large on comparison 
to correlation. It will be best to choose the type of 
correlation once the features are of various types. 
Likewise SVD method is employed for statistical 
precisions. 
 

LITERATURE REVIEW 
 

Many efforts have been made by researchers to 
enhance the performance as well as efficiency of the 
traditional k-means algorithm. Principal Component 
Analysis by Valarmathie et al. (2009) and Yan et al. 
(2006) is known as an unsupervised Feature Reduction 
technique meant for projecting huge dimensional data 

into a new reduced dimensional representation of the 
data that explains as much  of  the  variance  within  the  
data as possible with minimum error reconstruction.  

Chris and Xiaofeng (2006) Proved that principal 
components remain the continuous approaches to the 
discrete cluster membership indicators for K-means 
clustering and also, proved that the subspace spanned 
through the cluster centroids are given by spectral 
expansion of the data covariance matrix truncated at K-
1 terms. The effect signifies that unsupervised 
dimension reduction is directly related to unsupervised 
learning. In dimension reduction, the effect gives new 
insights to the observed usefulness of PCA-based data 
reductions, beyond the traditional noise-reduction 
justification. Mapping data points right into a higher 
dimensional space by means of kernels, indicates that 
solution for Kernel K-means provided by Kernel PCA. 
In learning, final results suggest effective techniques for 
K-means clustering. In (Ding and He, 2004), PCA is 
used to reduce the dimensionality of the data set and 
then the k-means algorithm is used in the PCA 
subspaces. Executing PCA is the same as carrying out 
Singular Value Decomposition (SVD) on the 
covariance matrix of the data. Karthikeyani and 
Thangavel (2009) Employs the SVD technique to 
determine arbitrarily oriented subspaces with very good 
clustering.  

Karthikeyani and Thangavel (2009) extended K-
means clustering algorithm by applying global 
normalization before performing the clustering on 
distributed datasets, without necessarily downloading 
all the data into a single site. The performance of 
proposed normalization based distributed K-means 
clustering algorithm was compared against distributed 
K-means clustering algorithm and normalization based 
centralized K-means clustering algorithm. The quality 
of clustering was also compared by three normalization 
procedures, the min-max, z-score and decimal scaling 
for the proposed distributed clustering algorithm. The 
comparative analysis shows that the distributed 
clustering results depend on the type of normalization 
procedure. Alshalabi et al. (2006) designed an 
experiment to test the effect of different normalization 
methods on accuracy and simplicity. The experiment 
results suggested choosing the z-score normalization as 
the method that will give much better accuracy. 
 
Removal of the weaker principal components: The 
transformation on the data set to the new principal 
component axis provides the number of PCs same as 
the number in the initial features. Although for various 
data sets, the first few PCs mention most of the 
variances and so the others can easily be eliminated 
with minimum loss of information. 
 

MATERIALS AND METHODS 
 

Let Y = {X1, X2, …, Xn} imply the d-dimensional 
raw data set. 
Then the data matrix is an n×d matrix given by: 
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The z-score is a form of standardization used for 

transforming normal variants to standard score form. 
Given a set of raw data Y, the z-score standardization 
formula is defined as: 
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= =                                            (2) 

 
where, �̅j and σj are the sample mean and standard 
deviation of the j

th
 attribute, respectively. The 

transformed variable will have a mean of 0 and a 
variance of 1. The location and scale information of the 
original variable has been lost (Jain and Dubes, 1988). 
One important restriction of the z-score standardization 
Z is that it must be applied in global standardization and 
not in within-cluster standardization (Milligan and 
Cooper, 1988). 
 
Principal  component  analysis: Let v =  (v�, v	, …,  
v�)′  be a vector of d random variables, where ′ is the 
transpose operation. The first step is to find a linear 
function ��

� � of the elements of v that maximizes the 
variance, where α1 is a d-dimensional vector 
(��� ��	, … , ���)′ so: 
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After finding ��
� �, �	

� �, … , ����
� �, we look for a 

linear function ��
� � that is uncorrelated with 
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� �, �	
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and has maximum variance. Then 

we will find such linear functions after d steps. The j
th

 
derived variable �́jv is the j

th
 PC. In general, most of the 

variation in v will be accounted for by the first few PCs.  
To find the form of the PCs, we need to know the 

covariance matrix Σ of v. In most realistic cases, the 

covariance matrix Σ is unknown and it will be replaced 

by a sample covariance matrix. That is for j = 1, 2, ..., d, 

it can be shown that the j
th

 PC is:  z = ��
� �, where aj is 

an eigenvector of Σ correspond with the j
th

 main 

eigenvalue λj. 

In fact, in the first step, z = ��
� � can be found by 

solving the following optimization problem: 

 

Maximize var (�́1v) subject to �́1a  = 1,  

where, var (�́1v) is computed as: 

var (�́j v) = �́j Σ a1 
 

To solve the above optimization problem, the 
technique of Lagrange multipliers can be used. Let λ be 
a Lagrange multiplier. We want to maximize: 

 

( )' '

1 1 1 1a a a aλΣ − −                              (4) 

Differentiating Eq. (4) with respect to a1, we have: 
 

Σa1 - λa1 = 0 
or, 
 

( ) 1 0dI aλΣ − =  

 
where, Id is the d×d identity matrix. 

Thus λ is an eigenvalue of Σ and a1 is the 
corresponding eigenvector. Since, 

 

1 1 1 1
' 'a a a aλ λΣ = =  

 
a1 is the eigenvector corresponding with the main 

eigenvalue of Σ. In fact, it can be shown that the j
th

 PC 

is ��
� �, where aj is an eigenvector of Σ corresponding to 

its j
th

 largest eigenvalue λj
 
(Jolliffe, 2002). 

 
Singular value decomposition: Let D = {x1, x2, …, 
xn} be a numerical data set in a d-dimensional space. 
Then D can be represented by an n×d matrix X as: 
 

( )ij n d
xX

×
=   

 
where, xij is the j-component value of xi. 
Let �̅ = (�̅�, �̅	, … , �̅�) be the column mean of X: 
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And let en be a column vector of length n with all 

elements equal to one. Then SVD expresses X - en�̅ as:  

 
T

nX e USVµ− =                               (5) 

 
where, U is an n×n column orthonormal matrix, i.e., 
U

T
U = I is an identity matrix, S is an n×d diagonal 

matrix containing the singular values and V is a d×d 
unitary matrix, i.e., V

H
V = I, where V

H
 is the conjugate 

transpose of V. The columns of the matrix V are the 
eigenvectors of the covariance matrix C of X; precisely: 
 

1 T T TC X X V V
n

µ µ= − = Λ                             (6) 

 
Since C is a d×d positive semi definite matrix, it 

has d nonnegative eigenvalues and d orthonormal 
eigenvectors. Without loss of generality, let the 
eigenvalues of C be ordered in decreasing order: λ1≥λ2≥ 
… ≥λd. Let σj (j = 1, 2, …, d) be the standard deviation 
of the j

th
 column of X, i.e.: 
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The trace Σ of C is invariant under rotation, i.e.: 
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Noting that e
T

nX = n�̅ and e
T

nen = n from Eq. (5) 
and (6), we have: 
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TnV V= Λ                  (7) 

 
Since V is an orthonormal matrix, from Eq. (7), the 

singular values are related to the eigenvalues by: 
  

2 , 1, 2, ...,j j j dS nλ ==  

 

The eigenvectors constitute the PCs of X and 

uncorrelated features will be obtained by the 

transformation Y = (X - en�̅) V. PCA selects the 

features with the highest eigenvalues. 

 

K-means clustering: Provided some series involving 

observations (x1, x2, …, xn), in which each observation 

is known as a d-dimensional real vector, k-means 

clustering is designed to partition an n observations to k 

units (k = n) S = S1, S2, …, Sk as a way to reduce the 

Within-Cluster Sum of Squares (WCSS): 

 

2
arg min / / / /

1

k
x j iS i x Sj i

µ−∑ ∑
= ∈               (8) 

 

at which µi stands out as the mean for items within Si. 

 

RESULTS AND DISCUSSION 

 

The presence of noise in a large amount of data is 

easily filtered out by the normalization and PCA/SVD 

preprocessing stages, especially since such a treatment 

was specifically designed to denoise large numerical 

values while preserving edges. 

In this section, we examine as well as evaluate the 
tasks for the approaches below: conventional k-means 
with the original dataset, k-means with normalized 
dataset, k-means with PCA/SVD dataset and k-means 
with normalized and PCA/SVD dataset seeing as 
methods of response to the goal intent behind the k-
means technique. The level of a particular clustering are 
as well be evaluated, whereby level is analyzed with the 
error sum of squares for the intra-cluster range, that is a 

range among data vectors in a group as well as the 
centroid   for   the   group,   the  lesser  the  sum  of   the 

 
 
Fig. 1: Basic K-means algorithm 

 

differences is, the better the accuracy of clustering and 

the error sum of squares. 

Figure 1 presents the result of the basic K-means 

algorithm using the original dataset having 20 data 

objects and 7 attributes as shown in Table 1. Two 

points attached to cluster 1 and four points attached to 

cluster 2 are out of the cluster formation with the error 

sum of squares equal 211.21. 

The number of PCs found is in fact same with the 

actual number of initial features. To remove the 

weakened components out of the PC set we worked out 

the corresponding variance, its percentage and 

cumulative percentage, shown in Table 2 and 6. There 

after we considered the PCs with variances lower than 

the mean variance, disregarding others. The lessened 

PCs are shown in Table 3 and 7. 

Table 2 presents the variances, the percentage of 
the variances and cumulative percentage which 
corresponds to the principal components.  

Figure 2 explained the pareto plot of for the 

variances percentages against the principal component 

for the original dataset having 20 data objects and 7 

variables.  
The improve matrix using lessened PCs has been 

made this also transformed matrix is simply employed 
on the initial dataset to generate a different lessened 
estimated dataset, that will be utilized for the remaining 
data exploration and also reduced dataset containing 4 
attributes is also shown in Table 4. 

Figure 3 presents the result of the K-means 

algorithm applying principal component analysis to the 
original dataset. The reduced datasets containing 20 

data objects and 4 attributes as shown in Table 4 and all 

the points attached to both cluster 1 and 2 are within the 

cluster formation with the error sum of squares equal 

143.14. 

Figure 4 presents the result of the K-means 
algorithm using the rescale dataset with z-score 

standardization method, having 20 data objects and 7 

attributes    as    shown    in    Table 5.   All   the   points 
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Table 1: The original datasets with 20 data objects and 7 attributes 

 X1 X2 X3 X4 X5 X6 X7 

Day 1 3 6 7 1 2 1 5 

Day 2 4 5 5 3 1 2 1 

Day 3 8 7 6 2 2 3 2 

Day 4 6 3 2 1 1 1 2 

Day 5 6 12 3 3 3 2 5 

Day 6 10 5 13 1 1 2 4 

Day 7 8 3 2 3 2 1 3 

Day 8 9 2 3 7 2 4 3 

Day 9 4 3 2 1 2 1 3 

Day 10 5 7 1 2 1 2 1 

Day 11 8 3 7 1 1 3 1 

Day 12 13 9 5 4 3 2 5 

Day 13 11 3 4 3 1 1 5 

Day 14 8 2 1 9 2 1 2 

Day 15 7 3 1 2 1 2 3 

Day 16 12 11 3 4 2 1 4 

Day 17 9 4 1 7 1 3 2 

Day 18 18 3 2 2 1 1 1 

Day 19 12 8 3 8 1 2 1 

Day 20 7 5 7 4 2 1 3 

 

Table 2: The variances cumulative percentages 

 

Variances 

Percentage of 

variances 

Cumulative 

percentage of 

variances 

PC1 17.0108 30.2768 30.2768 

PC2 14.5370 25.8738 56.1506 

PC3 11.8918 21.1658 77.3164 

PC4 6.2813 11.1799 88.4963 

PC5 4.5518 8.1016 96.5979 

PC6 1.3865 2.4678 99.0657 

PC7 0.5249 0.9343 100.0000 

 

Table 3: Reduced PCs with variances greater than mean variance 

PC1 PC2 PC3 PC4 

-0.4098 -0.7136 0.2094 -0.4792 

0.7357 -0.3791 -0.2958 -0.2609 

-0.1232 0.0638 0.4822 0.1758 

-0.3600 -0.2979 -0.3529 0.4073 

0.2261 0.1115 0.6276 -0.2034 

-0.2945 0.4878 -0.3377 -0.6552 

0.0902 0.0620 -0.0611 0.1868 

Table 4: The reduced data set with 20 data objects and 4 attributes 

 X1 X2 X3 X4 

Day 1 -3.4812 -3.0173 -2.1682 0.1004 

Day 2 -1.9385 -2.6762 -0.3191 3.3180 

Day 3 -4.1721 -0.5174 -0.5050 2.4220 

Day 4 1.7915 -1.7384 -4.5129 -0.8758 

Day 5 -0.7461 6.6411 -2.4782 -4.1123 

Day 6 -3.2393 -2.1040 3.4439 -4.6208 

Day 7 1.1282 2.0127 -3.6750 0.2451 

Day 8 -4.4465 2.6318 -1.9869 -0.3308 

Day 9 -0.2875 2.6619 7.8169 2.3143 

Day 10 3.1641 2.3946 2.3333 0.7282 

Day 11 -6.4781 -8.3654 1.2773 -0.0041 

Day 12 4.6517 1.2276 -0.8176 3.1338 

Day 13 -2.4837 2.6939 2.3137 -2.9135 

Day 14 -3.8746 6.3476 -3.0006 -1.0623 

Day 15 8.1750 -0.2952 -4.3566 0.6056 

Day 16 3.6607 -5.2778 0.3021 -1.3892 

Day 17 -0.4212 -4.4088 -2.7642 -0.6398 

Day 18 8.4253 -2.7439 2.3826 -2.2940 

Day 19 -1.7364 2.4879 -0.3124 5.4735 

Day 20 2.3086 2.0453 7.0267 -0.0983 

 

attached to both cluster 1 and 2 are within the cluster 

formation with the error sum of squares equal 65.57. 

Table 6 presents the variances, the percentage of 

the variances and cumulative percentage which 

corresponds to the principal components. 

The improve matrix using lessened PCs (Table 7) 

manufactured this also transformed matrix simply 

employed on a standardized dataset so as to generate 

different lessened estimated dataset, that will be utilized 

for the remaining data exploration and the lessened 

dataset containing 4 attributes shown in Table 8. 

Figure 5 presents the result of the K-means 
algorithm applying standardization and principal 

component analysis to the original dataset. The reduced 

datasets containing 20 data objects and 4 attributes as 

shown in Table 8 and all the points attached to both 

cluster 1 and 2 are within the cluster formation with the 

error sum of squares equal 51.26. 

 
Table 5: The standardized dataset with 20 data objects and 7 attributes 

 X1 X2 X3 X4 X5 X6 X7 

Day 1 0.8425 -0.0820 -0.1378 1.6390 -0.5523 0.2773 0.1442 

Day 2 0.2713 -0.3554 0.2559 0.8677 -0.9332 -1.0276 -0.8173 

Day 3 0.2713 -1.1756 -0.5316 0.8677 -0.5523 -0.3751 0.1442 

Day 4 -0.0143 1.0116 -0.9253 0.4821 -0.9332 0.2773 0.1442 

Day 5 -0.8711 -0.3554 -0.5316 -1.0605 -0.1714 2.2345 -0.8173 

Day 6 1.6993 -0.3554 0.6497 -0.6749 0.5904 0.6035 -0.8173 

Day 7 -0.8711 1.0116 1.4372 0.8677 -0.9332 1.2559 1.1058 

Day 8 -0.0143 -1.1756 -0.5316 0.0964 -0.9332 0.9297 0.1442 

Day 9 -0.2999 -0.9022 2.6184 -1.0605 1.3522 -0.7014 1.1058 

Day 10 -0.8711 0.1914 0.6497 -1.0605 0.5904 -0.3751 -0.8173 

Day 11 2.5560 -0.3554 1.0434 1.6390 -0.9332 -0.7014 -0.8173 

Day 12 -1.1566 0.7382 0.2559 -0.2892 -0.1714 -0.7014 3.0289 

Day 13 0.2713 -0.9022 -0.1378 -0.6749 0.9713 0.9297 -0.8173 

Day 14 -0.8711 -1.1756 -0.5316 0.0964 -0.5523 1.9083 0.1442 

Day 15 -1.1566 1.8317 -1.3191 -1.0605 -0.9332 -0.7014 1.1058 

Day 16 0.8425 1.2850 -0.5316 -0.2892 0.2095 -1.0276 -0.8173 

Day 17 0.8425 0.4648 -1.3191 0.8677 -0.5523 -0.3751 -0.8173 

Day 18 -0.0143 1.8317 -0.9253 -1.0605 2.1141 -1.0276 0.1442 

Day 19 -1.1566 -1.1756 -0.5316 1.2534 0.2095 -0.7014 0.1442 

Day 20 -0.2999 -0.3554 1.0434 -1.4462 2.1141 -0.7014 -0.8173 
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Table 6: The variances cumulative percentages 

 Variances 
Percentage of 
variances 

Cumulative 

percentage of 
variances 

PC1 1.9368 27.6685 27.6685 

PC2 1.6162 23.0892 50.7577 

PC3 1.3526 19.3232 70.0809 
PC4 1.1089 15.8412 85.9221 

PC5 0.5407 7.7248 93.6469 

PC6 0.2552 3.6451 97.2920 
PC7 0.1896 2.7080 100.0000 

 

Table 7: Reduced PCs with variances greater than mean variance 

PC1  PC2 PC3 PC4 

-0.3938 0.4602 -0.3783 0.0452 

0.2573 -0.3475 -0.5667 -0.1679 

0.1739 0.3771 0.2291 0.6772 
-0.6084 -0.1400 -0.1310 0.3352 

0.5300 0.4492 -0.0348 -0.0901 

-0.1839 -0.1011 0.6771 -0.3459 
0.2523 -0.5419 0.0803 0.5206 

 

Table 8: The reduced dataset with 20 data objects and 4 attributes 

 X1 X2 X3 X4 

Day 1 -1.6813 -0.2195 -0.3000 0.5369 

Day 2 -1.1936  0.3510 -0.6851 0.5501 

Day 3 -1.2170 -0.0769 0.1050 0.3951 
Day 4 -0.6975 -1.2999 -0.6112 -0.5723 

Day 5 0.0965 -0.1893 2.0014 -1.8781 

Day 6 -0.2414 1.8921 0.1182 -0.3372 
Day 7 -0.1213 -1.4772 0.9434 1.2802 

Day 8 -1.0771 -0.4033 1.2108 -0.2933 

Day 9 2.1110 1.3905 0.9302 2.2522 
Day 10 1.3261 0.6722 0.1687 -0.3360 

Day 11 -2.4857 1.5585 -1.2492 1.3324 

Day 12 1.6681 -2.2993 -0.1100 1.7351 
Day 13 0.1853 1.2661 0.9955 -0.9904 

Day 14 -0.7177 -0.7254 2.1843 -0.7049 

Day 15 1.2560 -2.4654 -1.1173 -0.7063 
Day 16 0.1761 0.4221 -1.8994 -0.7236 

Day 17 -1.3994 -0.1600 -1.2983 -0.8884 

Day 18 2.3070 0.1316 -1.8635 -1.0502 
Day 19 -0.4255 -0.4128 0.3473 0.5040 

Day 20 2.1311 2.0448 0.1292 -0.1054 

 

 
 
Fig. 2: Pareto plot of variances and principal components 

 

CONCLUSION 

 

We have proposed a novel hybrid numerical 

algorithm that draws on the speed and  simplicity  of  k- 

 
 
Fig. 3: K-means with PCA/SVD 

 

 
 
Fig. 4: K-means algorithm with standardized dataset 

 

 
 
Fig. 5: K-means with rescaled and PCA/SVD datasets 
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the continuity solutions of the k-means clustering 

technique and guarantees the time reduction for 

clustering as a result of smaller number of features. 

Also in comparison the results of the analysis obtained 

by the standard k-means algorithm with the proposed k-

means algorithm the sum of squares error are 211.21, 

143.14, 65.57 and 51.26 respectively. This also shows 

the reliability as well as efficiency of the presented k-

means technique. 
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