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Abstract: Homotopy perturbation method is used for solving the multi-point boundary value problems. The 

approximate solution is found in the form of a rapidly convergent series. Several numerical examples have been 

considered to illustrate the efficiency and implementation of the method and the results are compared with the other 

methods in the literature. 
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INTRODUCTION 

 

Multipoint boundary value problems arise in 

applied mathematics and physics. For example, the 

vibrations of a guy wire of uniform cross-section and 

composed of N  parts of different densities can be 

given as a multi-point boundary value problem 

(Moshiinsky, 1950). Hajji (2009), considered the multi-

point boundary value problems which occurs in many 

areas of engineering applications such as in modelling 

the flow of fluid such as water, oil and gas through 

ground layers, where each layer constitutes a sub 

domain. In Timoshenko (1961), many problems in the 

theory of elastic stability are handled by multi-point 

problems. In Geng and Cui (2010) large size bridges are 

sometimes contrived with multi-point supports which 

correspond to a multi-point boundary value condition. 

Many authors studied the existence and multiplicity of 

solutions of multi-point boundary value problems (Eloe 

and Henderson, 2007; Feng and Webb, 1997; Graef and 

Webb, 2009; Henderson and Kunkel, 2008; Liu, 2003). 

Some research works are available on numerical 

analysis of the multi-point boundary value problems. 

Numerical solutions of multi-point boundary value 

problems have been studies by Geng (2009), Lin and 

Lin (2010), Tatari and Dehghan (2006) and Wu and Li 

(2011). Siddiqi and Akram (2006a, b) presented the 

solutions of fifth and sixth order boundary value 

problems using non-polynomial spline technique. In 

(Siddiqi et al., 2012a, b) and (Siddiqi and Iftikhar, 

2013a) solutions of seventh order boundary value 

problems are discussed. Recently, Akram and Rehman 

(2013a) used the reproducing Kernel space method to 

solve the eighth-order boundary value problems and in 

Akram and Rehman (2013b) find the solution of a class 

of sixth order boundary value problems using the 

reproducing kernel space method. Siddiqi and Iftikhar 

(2013b) presented the solution of higher order boundary 

value problems using the homotopy analysis method. 

He (1999, 2003, 2004, 2005) developed the 

homotopy perturbation method for solving nonlinear 

initial and boundary value problems by combining the 

standard homotopy in topology and the perturbation 

technique. By this method, a rapid convergent series 

solution can be obtained in most of the cases. Usually, a 

few terms of the series solution can be used for 

numerical calculations. Chun and Sakthivel (2010), 

implement the homotopy perturbation method for 

solving the linear and nonlinear two-point boundary 

value problems. The convergence of the homotopy 

perturbation method was discussed in Biazar and 

Ghazvini (2009), He (1999), Hussein (2011) and 

Turkyilmazoglu (2011). This method has been 

successfully applied to ordinary differential equations, 

partial differential equations and other fields (Belndez 

et al., 2007; Dehghan and Shakeri, 2008; He, 1999, 

2003, 2004, 2005; Rana et al., 2007; Yusufoglu, 2007).  

In this study, the application of the homotopy 

perturbation method for finding an approximate 

solution for multi-point boundary value problems has 

been investigated. 

 

ANALYSIS OF THE HOMOTOPY 

PERTURBATION METHOD (HE, 1999) 

 

Consider the nonlinear differential equation: 
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( ) ( ) ( ),L u N u f r+ =  r ∈Ω                (1) 

 

With boundary conditions: 

 

( , ) 0,
u

B u
n

∂
=

∂
 r∈Γ                                             (2) 

where, 

L :  A linear operator 

N  :  A nonlinear operator 

ƒ(r) :  A known analytic function 

B  :  A boundary operator 

Γ  :  The boundary of the domain Ω  

 

By He's homotopy perturbation technique (He, 

1999), define a homotopy ( , ) : [0,1]v r p RΩ× →  which 

satisfies: 

 

0
( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0,H v p p L v L u p L v N v f r= − − + + − =         

(3) 

 

or: 

 

0 0
( , ) ( ) ( ) ( ) [ ( ) ( )] 0,H v p L v L u pL u p N v f r= − + + − =

      
(4) 

 

where, r∈Ω , [0,1]p∈ is an embedding parameter and 

0u
 is an initial approximation of Eq. (1) which satisfies 

the boundary conditions. Clearly: 

 

0( , 0) ( ) ( ) 0,H v L v L u= − =
                                 

(5) 

 

( ,1) ( ) ( ) ( ) 0,H v L v N v f r= + − =               (6) 

 

As p changes from 0 to 1, then v(r,p) changes from 

0
( )u r  

to ( )u r  
This is called a deformation and

0( ) ( )L v L u− , ( ) ( ) ( )L v N v f r+ −  
are said to be 

homotopic in topology. According to the homotopy 

perturbation method, firstly, the embedding parameter p  

can be used as a small parameter and assume that the 

solution of Eq. (3) and (4) can be expressed as a power 

series in p, that is: 

  
2

0 1 2v v pv p v= + + +L
                (7) 

 

For p = 1, the approximate solution of Eq. (1) 

therefore, can be expressed as: 

 

0 1 2
1

lim
p

v v v v v
→

= = + + +L
                (8) 

 

The series in Eq. (8) is convergent in most cases 

and the convergence rate of the series depends on the 

nonlinear operator, see (Biazar and Ghazvini, 2009; He, 

1999). Moreover, the following judgments are made by 

He (1999, 2006): 

 

• The second order derivative of N(v) w.r.t. v must 

be small as the parameter may be reasonably large, 

i.e., 1p→  
 

• 

1 N
L

v

− ∂ 
 ∂ 

 

must be smaller than one, so that, the 

series converges 

 

To implement the method, several numerical 

examples are considered in the following section. 

 

NUMERICAL EXAMPLES 

 

Example 1: Consider the following third-order linear 

differential equation with three point boundary 

conditions: 

 
2( ) ( ) 0, 0 1,

(0) (1) 0, (0.5) 0.

u x k u x a x

u u u

′′′ ′ − + = ≤ ≤


′ ′= = = 

             (9) 

 

The exact solution of the Example 1 is: 

  

3 2 3

1
( ) (sinh sinh ) ( ) tanh (cosh cosh )

2 2 2 2

a k a a k k
u x kx x kx

k k k
= − + − + −

  

 

where,  the  constants  are  k = 5  and a = 1 (Akram 

et al., 2013c; Ali et al., 2010; Saadatmandi and 

Dehghan, 2012; Tirmizi et al., 2005). 

Using the homotopy perturbation method, the 

following homotopy for the system (1) is 

constructed: 

 

[25 ] 1,u p u′′′ ′= −                (10) 

 

where, [0,1]p∈  
is the embedding parameter. Assume 

that the solution of Problem (1) is: 

 
2

0 1 2u u pu p u= + + +L
                           (11) 

 

Substituting Eq. (3) in Eq. (2) and equating the 

coefficients of like powers of p, gives the following 

set of differential equations: 

 

0 :p
0 1,u ′′′ = −

 0 0 0(0) 0, (0) , (0)u u A u B′ ′′= = =
 

 

1 :p
1 025 ,u u′′′ ′=

 1 1 1(0) 0, (0) 0, (0) 0u u u′ ′′= = =
 

 
2 :p

2 125 ,u u′′′ ′= 2 2 2(0) 0, (0) 0, (0) 0u u u′ ′′= = = M  
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Table 1: Comparison of numerical results for Example 1

x 
Exact 
solution 

Approximate 
Series solution 

0.0 -0.01210710 -0.012107100 

0.1 -0.01126850 -0.011268500 

0.2 -0.00922221 -0.009222210 
0.3 -0.00646687 -0.006466870 

0.4 -0.00332019 -0.003320190 

0.5  0.000000000 -4.03581E-18 
0.6  0.003320190  0.0033201900 

0.7  0.006466870  0.0064668700 

0.8  0.009222210  0.0092222100 
0.9  0.011268500  0.0112685000 

1.0  0.012107100  0.0121071000 

 

 
Fig. 1a: Plot of errors

 
 

 
Fig. 1b: Plot of errors

 
 

where, A and B are unknown constants to be 

determined. The corresponding solutions for the 

above system of equations are the series solution 

given as: 
 

2 3

0

1
( ) (6 3 )

6
u x A Bx x= + −

 

  

4 5

1

5
( ) (5 )

24
u x Bx x= −

 
M  

 
    
Using the 11-term approximation, that is:
 

0 1 2 10
( ) ( ) ( ) ( ) ( )U x u x u x u x u x= + + + +L

 
Imposing the boundary conditions of the system (1) 

on Eq. (12) the values of the constants A and B can be 

obtained as: 
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Table 1: Comparison of numerical results for Example 1 

Absolute Error 
Present method 

Absolute error 
(Tirmizi et al., 2005) 

Absolute error 
(Ali et al., 2010) 

2.07338E-10 0.00003515 1.298 E-10 

2.02182E-10 0.00003850 3.099E-09 

1.85398E-10 0.00003028 6.959E-09 
1.52702E-10 0.00002231 1.086E-09 

9.57487E-11 0.00001403 1.065E-08 

4.03581E-18 0.00000700 6.155E-17 
1.58981E-10 0.00001260 1.065E-08 

4.21657E-10 0.00001260 1.086E-09 

8.52404E-10 0.00001956 6.959E-09 
1.51972E-09 0.00002741 3.099E-09 

2.12120E-09 0.00002395 1.298E-10 

 

 

are unknown constants to be 

determined. The corresponding solutions for the 

above system of equations are the series solution 

term approximation, that is: 

0 1 2 10
( ) ( ) ( ) ( ) ( )U x u x u x u x u x              (12) 

Imposing the boundary conditions of the system (1) 

on Eq. (12) the values of the constants A and B can be 

0.012107085822126442,A= − 0.19732286064025403.B =

 

Then, the series solution can be expressed as:

 

U (x) = -0.0121071 + 0.0986614x

0.205545x
4
 - 0.208333x

5 

0.124008x
7 

+ 0.0764675x
8
 

0.021241x
10

 - 0.009785x
11 

+ 

(x
13

) 

 

The comparison of the approximate series solution 

of the problem (1) with the results of methods in 

Akram et al. (2013c), Ali et al. (2010), Saadatmandi 

and Dehghan (2012) and Tirmizi et al

in Table 1, which shows that the method is quite 

efficient. In Fig. 1a and 1b errors

Exact

Exact

U u

u

−  are plotted, respectively. Figure 1 shows 

that the method is in excellent agreement with (Tatari 

and Dehghan, 2006). 

 

Example 2: Consider the linear fourth

boundary value problem:   

 

(4) (3)

(1)

(2)

( ) ( ) ( ) 1 cosh( ) 2sinh( ),0 1

1 1 1 1
1 sinh , 1 cosh ,

4 4 4 4

1 1 1 3 1 3
sinh , sinh sinh .

4 4 2 4 2 4

x xu x e u x u x e x x x

u u

u u u

− + = − + ≤ ≤

       
= + = +       

       

           
= − = −           

           

 

The exact solution of the problem (2) is 

( ) 1 sinh( )u x x= + (Lin and Lin, 2010; Wu and Li, 

2011). 

Using the homotopy perturbation method, the 

following homotopy for the system (5) is constructed:

 
(4) (3)( ) 1 cosh( ) 2sinh( ) [ ( ) ( )]x xu x e x x p e u x u x= − + + −

 

where, [0,1]p∈  
is the embedding parameter. Assume 

that the solution of Problem (5) is:

Absolute error 

(Akram et al., 
2013c) 

8.37E-07 

3.39E-07 

9.16E-08 
7.22E-08 

7.86E-08 

6.55E-08 
6.35E-08 

6.26E-08 

9.54E-08 
3.37E-07 

8.48E-07 

0.19732286064025403.  

Then, the series solution can be expressed as: 

0.0986614x
2 

- 0.16667x
3 

+  
 

+ 0.171287x
6 

- 

 - 0.0430583x
9 

+ 

 0.00402291x
12 

+ O 

The comparison of the approximate series solution 

the results of methods in 

. (2010), Saadatmandi 

et al. (2005) is given 

that the method is quite 

efficient. In Fig. 1a and 1b errors 
ExactU u− and 

are plotted, respectively. Figure 1 shows 

that the method is in excellent agreement with (Tatari 

Consider the linear fourth-order nonlocal 

( ) ( ) ( ) 1 cosh( ) 2sinh( ),0 1

1 1 1 1
1 sinh , 1 cosh ,

4 4 4 4

1 1 1 3 1 3
sinh , sinh sinh .

4 4 2 4 2 4

u x e u x u x e x x x


− + = − + ≤ ≤

       
       

        
           

= − = −            
              

The exact solution of the problem (2) is 

(Lin and Lin, 2010; Wu and Li, 

Using the homotopy perturbation method, the 

homotopy for the system (5) is constructed: 

(4) (3)( ) 1 cosh( ) 2sinh( ) [ ( ) ( )]x xu x e x x p e u x u x= − + + −   (13) 

is the embedding parameter. Assume 

that the solution of Problem (5) is: 
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Table 2: Comparison of numerical results for problem 

x 
Exact 
solution 

Approximate 
series solution 

0.0 1.00000 1.00000 
0.1 1.10017 1.10017 
0.2 1.20134 1.20134 
0.3 1.30452 1.30452 
0.4 1.41075 1.41075 
0.5 1.52110 1.52110 
0.6 1.63665 1.63665 
0.7 1.75858 1.75858 
0.8 1.88811 1.88811 
0.9 2.02652 2.02652 
1.0 2.17520 2.17520 

 
2

0 1 2u u pu p u= + + +L    

 

Substituting Eq. (13) in Eq. (14) and equating 

the coefficients of like powers of

following set of differential equations:

 
0 :p (4)

0 ( ) 1 cosh( ) 2 sinh( ),xu x e x x= − +

 
(1) (2) (3)

0 0 0 0(0) , (0) , (0) , (0) ,u A u B u C u D= = = =

 
1 :p  (4) (3)

1 0 0( ) ,xu x e u u= −
 

 
(1) (2) (3)

1 1 1 1(0) 0, (0) 0, (0) 0, (0) 0,u u u u= = = =

 
2 :p (4) (3)

2 1 1( ) ,xu x e u u= −  
 

(1) (2) (3)

2 2 2 2(0) 0, (0) 0, (0) 0, (0) 0,u u u u= = = =

M
 

 

where, A, B, C and D are unknown constants to be 

determined. The corresponding solutions for the 

above system of equations are the series solution 

given as: 

 
2 3 2 3 4

0

1
( ) ( 96 96 3 (3 96 6( 31 16 ) 6(1 8 ) 4( 7 4 ) 2 ))

96

x x x
u x e e e A B x C x D x x= − + − + + + − + + + + − + +

 
3 4 2

1

1
( ) ( (1451520 93555 4480 362880 ( 19 4 2 ) (5354125

1451520

x x x x x
u x e e e e C x e

−= + − + − + + +

 
2 3 4 57446810 1828890 923580 1890( 31 32 ) 756( 31 16 ) 2x x x A x B x+ + + − − + − − + −

 
6 7 8 2 3 78 ) 504 18 288 (5040 5040 2520 840 ))))C x x x D x x x x+ + − − + + + +

M   
 

Using only 6-term approximation that is:

 

0 1 2 5( ) ( ) ( ) ( ) ( )U x u x u x u x u x= + + + +L                    
 

Imposing the boundary conditions of the system (5) 

on Eq. (15) the values of the constants

can be obtained as: 
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Table 2: Comparison of numerical results for problem (2) 

 
Absolute error 
present method 

Absolute error 
in (Lin and Lin, 2010) 

1.95677E-09 1.02E-4 
5.83738E-10 1.81E-5 
1.04897E-10 5.33E-7 
9.55858E-11 3.94E-7 
3.01129E-10 7.60E-6 
2.05711E-09 2.36E-5 
5.14444E-09 3.90E-5 
6.73259E-09 3.73E-5 
1.47844E-08 2.42E-6 
1.55269E-07 1.06E-4 
7.92993E-07 3.05E-4 

            (14) 

Eq. (13) in Eq. (14) and equating 

the coefficients of like powers of p, gives the 

following set of differential equations: 

( ) 1 cosh( ) 2 sinh( ),u x e x x
 

(0) , (0) , (0) , (0) ,u A u B u C u D= = = =
 

(0) 0, (0) 0, (0) 0, (0) 0,= = = =  

(1) (2) (3)

2 2 2 2(0) 0, (0) 0, (0) 0, (0) 0,u u u u= = = =
 

are unknown constants to be 

determined. The corresponding solutions for the 

above system of equations are the series solution 

2 3 2 3 4
( ) ( 96 96 3 (3 96 6( 31 16 ) 6(1 8 ) 4( 7 4 ) 2 ))u x e e e A B x C x D x x= − + − + + + − + + + + − + +

( ) ( (1451520 93555 4480 362880 ( 19 4 2 ) (5354125
x x x x x

u x e e e e C x e= + − + − + + +
 

2 3 4 57446810 1828890 923580 1890( 31 32 ) 756( 31 16 ) 252(1x x x A x B x+ + + − − + − − + −  

6 7 8 2 3 78 ) 504 18 288 (5040 5040 2520 840 ))))C x x x D x x x x+ + − − + + + +  

term approximation that is: 

( ) ( ) ( ) ( ) ( )                    
   (15) 

Imposing the boundary conditions of the system (5) 

on Eq. (15) the values of the constants A, B, C  and D 

 
Fig. 2: Plot of errors 

 

0.9999999980259633,A =  
 

1.0000000216759806,B =  
 

1.6366491839105507 10 ,C −= − ×

 

1.00000056811826.D =  

 

Then, the series solution can be expressed as:

 
8 2 3 8 4 5 9 6( ) 1 8.16726 10 0.16667 +2.38316 10 0.00833334 4U x x x x x x x− − −= + − × + × + + ×

 
7 10 8 6 9 10 10+0.000198414 +7.15518 10 2.75604 10 1.2948 10 0x x x x− − −× × + × −

 
8 11 8 12 1310 1.31503 10 ( ).x x O x− −× − × +

 

The approximate series solution of the problem (2) 

is compared with ( ) 1 sinh( )u x x= +

Wu and Li, 2011) in Table 2, which shows that the 

method is quite efficient. Absolute errors 

plotted in Fig. 2. 

 

Example 3: The following fourth order nonlinear 

boundary value problem is considered:

 
(4) 2

3

(1) 4

( ) ( ) 0,0 1

3
(0) (0) 1, , (1) .

4

xu x e u x x

u u u e u e

−− = ≤ ≤

 
= = = = 

 

Absolute error 
in (Wu and Li, 2011) 

2.54E-8 
4.70E-9 
1.39E-10 
1.25E-10 
2.40E-9 
7.58E-9 
1.13E-8 
4.30E-9 
2.80E-8 
1.05E-7 
2.52E-7 

 

0.9999999980259633,

71.6366491839105507 10 ,−

 

Then, the series solution can be expressed as: 

8 2 3 8 4 5 9 6( ) 1 8.16726 10 0.16667 +2.38316 10 0.00833334 4.15407 10U x x x x x x x− − −= + − × + × + + ×           

7 10 8 6 9 10 10+0.000198414 +7.15518 10 2.75604 10 1.2948 10 02.49988x x x x− − −× × + × −       

8 11 8 12 1310 1.31503 10 ( ).x x O x      (16) 

The approximate series solution of the problem (2) 

( ) 1 sinh( )u x x (Lin and Lin, 2010; 

Wu and Li, 2011) in Table 2, which shows that the 

method is quite efficient. Absolute errors 
ExactU u− are 

The following fourth order nonlinear 

boundary value problem is considered: 

( ) ( ) 0,0 1

(0) (0) 1, , (1) .u u u e u e





= = = = 


       (17) 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(4): 778-785, 2014 

 

782 

Table 3: Comparison of numerical results for problem (3) 

x 

Exact 

solution 

Approximate 

series solution 

Absolute error 

present method 

0.0 1.00000 1.00000 6.26543E-12 

0.1 1.10517 1.10517 2.55342E-09 

0.2 1.22140 1.22140 8.60246E-09 

0.3 1.34986 1.34986 1.57141E-08 

0.4 1.49182 1.49182 2.15020E-08 

0.5 1.64872 1.64872 2.35332E-08 

0.6 1.82212 1.82212 1.96291E-08 

0.7 2.01375 2.01375 8.27396E-09 

0.8 2.22554 2.22554 9.18081E-09 

0.9 2.45960 2.45960 2.28539E-08 

1.0 2.71828 2.71828 8.86402E-12 

 

 
 
Fig. 3: Plot of absolute errors 

 

The exact solution of the problem (3) is xexu =)(  

Using the homotopy perturbation method, the 

following homotopy for the system (17) is constructed: 

 
( 4 ) 2( ) [ ],xu x p e u−=               (18) 

 

where, [0,1]p∈ is the embedding parameter. Assume 

that the solution of the given problem is: 

 
2

0 1 2u u pu p u= + + +L               (19) 

 

The nonlinear term ( )N u  in Eq. (18) can be 

expressed as: 

 
2

0 0 1 0 1 2( ) ( ) ( , ) ( , , ) ,N u N u pN u u p N u u u= + + +L (20) 

 

where, 

 

0 1

0 0

1
( , , , ) ,

!

n n
k

n kn
k p

d
N u u u N p u

n dp = =

  
=   

  
∑K  

0,1, 2,n = K  

 

is called He’s polynomial (Ghorbani, 2009) 

Substituting Eq. (19) and (20) in Eq. (18) and 

equating the coefficients of like powers of p, gives 

the following set of differential equations: 

0 :p (4)

0 ( ) 0,u x =
 

 
(1) (2) (3)

0 0 0 0(0) 1, (0) 1, (0) , (0) ,u u u A u B= = = =  

 

1 :p
(4) 2

1 0( ) ,xu x e u−=
   

(1 ) ( 2 ) ( 3 )

1 1 1 1(0 ) 0 , (0 ) 0 , (0 ) 0 , (0 ) 0 ,u u u u= = = =  

 
2 :p (4)

2 0 1( ) ,xu x e u u−=
 

 
(1) (2) (3)

2 2 2 2(0) 0, (0) 0, (0) 0, (0) 0,u u u u= = = =
 

M
 

 

where, A and B are unknown constants to be 

determined. Following Example (1), using the 3-term 

approximation and imposing the boundary conditions 

at 0.75x = and
 

1x = , the constants are obtained as: 

 
0.9999994087690695,A =  

 

1.0000024198861392.B =  

 

Then, the series solution can be expressed as: 

 
2 3 4 5 6( ) 1 0.5 0.166667 +0.416667 0.008333337 0.00138889U x x x x x x x= + − + + +

7 8 6 9 7 100.000198414 +0.0000248016 2.75573 10 0.75571 10x x x x− −+ + × + ×
8 11 7 12 132.50527 10 1.524 10 ( ).x x O x− −+ × − × +   

 

In Table 3, the comparison of the exact solution 

with the series solution of the problem (3) is given, 

which shows that the method is quite efficient. In Fig. 3 

absolute errors ExactU u−
 are plotted in Fig. 3. 

 

Example 4: The following fifth order nonlinear three 

point’s boundary value problem is considered: 

 
(5) 2

1

(1) (2)2

( ) ( ) 0,0 1

1
(0) (0) 1, , (1) (1) .

2

x
u x e u x x

u u u e u u e

− − = < <

 

= = = = =  
  

           (21) 

 

The exact solution of the problem (4) is xexu =)( .  

Using the homotopy perturbation method, the 

following homotopy for the system (21) is constructed: 

 
(5) 2( ) [ ],xu x p e u−=                            (22) 

 

where, [0,1]p∈  
is the embedding parameter. Assume 

that the solution of the given problem is: 

 
2

0 1 2u u pu p u= + + +L                            (23) 

 

The nonlinear term ( )N u  in Eq. (18) can be 

expressed as: 
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Table 4: Comparison of numerical results for problem (4) 

x 

Exact 

solution 

Approximate 

series solution 

Absolute error 

present method 

0.0 1.00000 1.00000 0.000000 
0.1 1.10517 1.10517 5.58569E-10 

0.2 1.2214 1.22140 3.80139E-10 

0.3 1.34986 1.34986 4.51430E-10 
0.4 1.49182 1.49182 2.60672E-10 

0.5 1.64872 1.64872 2.39371E-10 

0.6 1.82212 1.82212 7.77565E-11 
0.7 2.01375 2.01375 1.64396E-10 

0.8 2.22554 2.22554 8.80967E-10 

0.9 2.45960 2.45960 1.39270E-10 
1.0 2.71828 2.71828 2.48480E-10 

 

 
 
Fig. 4: Comparison of the approximate solution with the 

exact solution for problem (4). Dotted line: 

Approximate solution, solid line: the exact solution 

 

 
2

0 0 1 0 1 2( ) ( ) ( , ) ( , , ) ,N u N u pN u u p N u u u= + + +L      (24) 

 

where, 

 

0 1

0 0

1
( , , , ) ,

!

n n
k

n kn
k p

d
N u u u N p u

n dp = =

  
=   

  
∑K  0,1, 2,n = K  

 

is called He’s polynomial (Ghorbani, 2009). 

Substituting Eq. (23) and (24) in Eq. (22) and 

equating the coefficients of like powers of p , gives 

the following set of differential equations: 

 
0 :p

(5)

0 ( ) 0,u x =
 

 
(1) (2) (3) (4)

0 0 0 0 0(0) 1, (0) 1, (0) , (0) , (0) ,u u u A u B u C= = = = =  

 
1 :p  (5) 2

1 0( ) ,
x

u x e u
−=

 

 
(1) (2) (3) (4)

1 1 1 1 1(0) 0, (0) 0, (0) 0, (0) 0, (0) 0,u u u u u= = = = =  

 
2 :p

(5)

2 0 1( ) ,xu x e u u−=
 

(1) (2) (3) (4)

2 2 2 2 2(0) 0, (0) 0, (0) 0, (0) 0, (0) 0,u u u u u= = = = =  
M

 
 

where, A, B and C are unknown constants to be 

determined. Following Example (1), using the 3-term 

approximation and imposing the boundary conditions 

at 0.75x = and
 

1x = , the constants are obtained as: 

 
1.00000000568,A= 0.99999994805,B =  

  

1.00000014256.C =  
 

Then, the series solution can be expressed as: 
 

U(x) = 1+x−05000000028x
2 
+0.166666x

3
+ 

0.4166667x
4
+0.008333333x

5
+0.001388889x

6

7 8 6 9 7 100.00019841 +0.00002480 2.7557327 10 2.7557319 10x x x x− −+ + × + ×
8 11 9 12 132.50521 10 2.087675 10 ( ).x x O x− −+ × + × +  

 
In Table 4, the comparison of the exact solution 

with the series solution of the problem (4) is given, 
which shows that the method is quite efficient. In Fig. 4 

absolute errors ExactU u−
are plotted. 

 
Example 5: The following sixth order nonlinear 

boundary value problem is considered:  

  
(6) 2

1

(1) (2) (3) 2

( ) ( ) 0,0 1

1
(0) (0) (0) (0) 1, , (1) .

2

xu x e u x x

u u u u u e u e

− − = < <

 

= = = = = =  
       

(25) 

 

The exact solution of the problem (5) is xexu =)( .  

Using the aforesaid method, the series solution can 
be expressed as: 
 

2 3 4 5 6( ) 1 (1.) 0.5 0.166667 +0.4166667 0.008333333 0.00138885U x x x x x x x= + − + + +
7 8 6 9 7 100.000198432 +0.0000247952 2.75728 10 2.75381 10x x x x− −+ + × + ×

 8 11 9 12 132.49973 10 2.14303 10 ( ).x x O x− −+ × + × +  

 
The comparison of the exact solution with the 

series solution of the problem (5) is given in Table 5, 
which shows that the method is quite accurate. 
 
Example 6: The following seventh order nonlinear 
boundary value problem is considered: 
 

(7) 2

1

(1) (2) (3) (4) 2

( ) ( ) 0,0 1

1
(0) (0) (0) (0) (0) 1, , (1) .

2

xu x e u x x

u u u u u u e u e

− − = < <

 

= = = = = = =  
     

(26)

 
 

The exact solution of the problem (6) is xexu =)( .  

Using the aforesaid method, the series solution can 
be expressed as: 
 

U(x) = 0.999998 +(1.) x−0.499998x
2 
+0.166668x

3
+ 

0.4166661x
4
+0.00833367x

5
+0.00138876x

6 

7 8 6 9 7 100.000198417 +0.0000248361 2.72677 10 2.89152 10x x x x− −+ + × + ×
8 11 9 12 132.14384 10 2.0249 10 ( ).x x O x− −+ × + × +  

 

The comparison of the exact solution with the 

series solution of the problem (6) is given in Table 6, 

which shows that the method is quite accurate. 
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Table 5: Comparison of numerical results for problem (5) 

x 
Exact 
solution 

Approximate 
Series solution 

Absolute error 
present method 

0.0 1.00000 1.00000 7.77951E-09 
0.1 1.10517 1.10517 1.16784E-08 
0.2 1.22140 1.22140 7.57914E-09 
0.3 1.34986 1.34986 2.04205E-08 
0.4 1.49182 1.49182 1.75262E-08 
0.5 1.64872 1.64872 1.03601E-08 
0.6 1.82212 1.82212 1.60579E-09 
0.7 2.01375 2.01375 4.20526E-10 
0.8 2.22554 2.22554 2.25408E-08 
0.9 2.45960 2.45960 8.26443E-09 
1.0 2.71828 2.71828 1.69864E-08 

 
Table 6: Comparison of numerical results for problem (6) 

x 

Exact 
solution 

Approximate 
series solution 

Absolute error 
present method 

0.0 1.00000 1.00000 7.53520E-09 
0.1 1.10517 1.10517 5.25690E-07 
0.2 1.22140 1.22140 6.70140E-07 
0.3 1.34986 1.34986 1.66395E-06 
0.4 1.49182 1.49182 1.38077E-07 
0.5 1.64872 1.64872 1.15557E-07 
0.6 1.82212 1.82212 4.62997E-07 
0.7 2.01375 2.01375 7.00576E-07 
0.8 2.22554 2.22554 1.52829E-06 
0.9 2.45960 2.45960 2.48422E-07 
1.0 2.71828 2.71828 6.29186E-07 

 
Table 7: Comparison of numerical results for Example (7) 

x Exact solution 
Approximate 
series solution 

Absolute Error 
Present method 

0.0 0.0000  0.0000 0.0000 
0.1 0.9946  0.9946 5.69961E-14 
0.2 0.1954  0.1954 8.93730E-15 
0.3 0.2835  0.2835 4.05231E-15 
0.4 0.3580  0.3580 1.54876E-14 
0.5 0.4122  0.4122 1.45550E-133 
0.6 0.4373  0.4373 1.03195E-13 
0.7 0.4229  0.4229 4.16889E-14 
0.8 0.3561  0.3561 2.33036E-13 
0.9 0.2214  0.2214 2.39697E-13 
1 . 0  0.0000 -2.1729E-09 2.17290E-13 

 
Example 7: The following seventh order nonlinear 
boundary value problem is considered: 
  

( 7 ) 2

(1) ( 2 ) (3) ( 4 )

1

2

( ) ( ) (35 12 2 ), 0 1

(0) 0, (0) 1, (0) 0, (0) 3, (0) 8,

1
, (1) .

2 4

xu x u x e x x x

u u u u u

e
u u e



= − − + + ≤ ≤


= = = = − = − 

 

= =  
    (27) 

 
The exact solution of the problem (7) is

( ) (1 ) xu x x x e= − . Using the aforesaid method, the series 

solution can be expressed as: 
 

3 4 5 6 7 8( ) 0.5 0.333333 0.125 0.333333 0.00694444 0.00119048U x x x x x x x x= − − − − − −
9 10 6 11 7 12 130.000173611 0.0000220459 2.48016 10 2.50521 10 ( ).x x x x O x− −− − − × − × +

      
 The comparison of the exact solution with the 

series solution of the problem (7) is given in Table 7, 
which shows that the method is quite accurate. 

 
CONCLUSION 

 
In this study, the homotopy perturbation method 

has been applied to solve the multi-point boundary 

value problems. It is clearly seen that homotopy method 

is a powerful and accurate method for finding solutions 

for multi-point boundary value problems in the form of 

analytical expressions and presents a rapid convergence 

for the solutions. The numerical results showed that the 

homotopy perturbation method can solve the problem 

effectively and the comparison shows that the present 

method is in good agreement with the existing results in 

the literature. 
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