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Abstract: This study presents a numerical method for the solution of one type of PDEs equation. In this study, apply 

the pseudo-spectral successive integration method to approximate the solution of the one-dimensional parabolic 

equation. This method is based on El-Gendi pseudo-spectral method. Also the Finite Difference Method (FDM) is 

used as a minor method. The present numerical results are in satisfactory agreement with exact solution. 
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INTRODUCTION 

 
Clenshaw and Curtis (1960) presented a new 

numerical method for integration of a function based on 
the Chebyshev polynomials. El-Gendi (1969) 
developed a new numerical scheme based on the 
Clenshaw and Curtis quadrature scheme which 
described a new method for the numerical solution of 
linear integral equations of Fredholm type and of 
Voltera type. This method has been extended to the 
linear integro-differential equations and ordinary 
differential equations. This method is presented an 
operation matrix for integration. 

Delves and Mohamed (1985) used the El-Gendi 

method to solving the integral equations. They have 

shown that the El-Gendi (1975) method represented a 

modification of the Nystrom scheme when applied to 

solving second kind of Fredholm integral equations. 

Also, in Jeffreys and Jeffreys (1956) suggested a new 

method to solving the differential equations based on 

the successive integration of the Chebyshev expansions. 

This method is accomplished by starting with 

Chebyshev approximations for the highest order 

derivative and generating approximations to the lower 

order derivatives through successive integration of the 

highest order derivative. Hatziavramidis and Ku (1985) 

have been presented a Chebyshev expansion method for 

the solution of boundary-value problems of O.D.E type 

by using the pseudo-spectral successive integration 

method. The method is easier to implement than 

spectral methods employing the Galerkin and Tau 

approximations and yields results of comparable 

accuracy to these methods, with reduce computing 

requirement. Also Nasr et al. (1990) and Nasr and El-

Hawary (1991) respectively, used the El-Gendi method 

and successive integration method to solving the 

Falkner-skan equation which uses a boundary value 

technique and the Orr-sommerfeld equation for both 

plane poiseulle flow and the Blasius velocity profile. 
The authors of El-Gendi et al. (1992) presentedan 

operation matrix for the successive integration. In fact, 
this matrix is generalization of the El-Gendi matrix. 
Elbarbary (2007) presented a modification of the El-
Gendi successive integration matrix in (El-Gendi et al., 
1992) which yields more accurate results than those 
computed by El-Gendi matrix in solving problems. 
Finally, Elgindy (2009) developed a new explicit 
expression of the higher order pseudo-spectral 
integration matrices. Applications to initial value 
problems, boundary value problems and linear integral 
and integro-differential equations are presented. 

The purpose of this study is to apply the Pseudo-
spectral successive integration method to solving the 
one-dimensional parabolic equation. The Pseudo-
spectral successive integration method in based on El-
Gendi (1969) Also; the finite difference method is used.  

 
El-Gendi’s method: Clenshaw and Curtis (1960) 
presented the numerical integration of a ‘well-behaved’ 
function ����in −1 ≤ � ≤ 1, by Chebyshev expansion 
of ����as follows: 
 ���� = ∑′′
��
 �
�
���,                                      (1) 

 
where: 
 �
 = �
 ∑′′���
 ����� �
����                                    (2) 

 

and, 

 �� = − cos ��
 , � = 0,1, … , �                                (3) 
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and integrating this series term by term. A summation 
symbol with double prims denotes a sum with first and 
last terms halved. The operation matrix B to 

approximate the indefiniteintegral � ���� !" #�, 

presented by El-Gendi (1969) as follows: 
 � ���� !" #� = $ �
 � ����� !" #�


��� =∑ %
 �
��� 
&"
��                                                 (4) 
 
where, 
 

'(
((
)
((
(* %� = ∑′′����+"


 �!"�,-. /,�0!" − "1 �",                
%2 = /34.!/3-.�2 ,     5 = 1,2, … , � − 2      

%
!" = /740!.0/7��
!"� ,                          
%
 = /74.�
 ,                                %
&" = /71�
&"�

,8         (5) 

 
Then, after certain re-rearrangement we define the 

matrix B as follows: 
 9� ���� !" #�: = ;<�=,                         (6) 

 
where, B is a square matrix of order N+1 and <�= =<�����, ���"�, … , ���
�=> where �� are Gauss-Lobatto 

points (3). 
Finally, in El-Gendi et al. (1992) to approximate 

the successive integration of function ���� we have: 
 <?@���= =A� � � … � � �����>.!">0!">B40!">B4.!" !" #��#�" … #�@!�#�@!"C =;�@�<�=                                                          (7) 
 
where, 
 ;�@� = 9DE,��@�:,                                   (8) 

 DE,��@� = � F! ,�B4.
�@!"�! DE,�,H, � = 0�1��              (9) 

 
This study is organized as follows: In section 2, the 

pseudo-spectral integration method which is based on 

the El-Gendi (1975) method is presented. In section 3, 

the main problem is solved by using the present 

pseudo-spectral integration method and finite difference 

method. In section 4 for a given example with 

analytical solution, employed presented method and 

numerical results are presented. A brief conclusion is in 

section 5. 
 
Pseudo spectral integration matrix: We assume that �I
����� is Nth order Chebyshev interpolating 

polynomial of the function ���� in the points ��2 , ���2�� where, 

 �I
����� = J �� K����
���                                (10) 

 
with: 
 K���� = �L,
 J M
 �
��� �
����

��                   (11) 

 
where,  K���� = δ�,2 (δ�,2 is Kronecker delta) and M� = M
 = "�, M� = 1 for � = 1�1�� − 1. Since �I
����� is a unique Nth interpolating polynomial, it 
can be expressed in terms of a series expansion of the 
classical Chebyshev polynomials, hence we have: 
 �I
����� = ∑ �
 �
���,

��                               (12) 
 
where, 
 �
 = �LN
 J M�  ����� �
����,
���                  (13) 

 
The successive integration of ���� at the points �2 

can be estimated by successive integration of �I
�����. 
Thus we have: 
 ?@��� =$ �
 � � � … � �  �
����>.!">0!">B40!">B4.!" !" #��#�" … #�@!�#�@!" ,



��                

                                                                                  (14) 
Theorem 1: Khalifa et al. (2003) the exact relation 

between Chebyshev functions and its derivatives is 

expressed as: 

 �
��� = $ �!"�O� BO��BPO �
&@!�Q�@� ���,      R > T @
Q��   

 

where, 

 UQ = ∏ �R + T − X − �� @ ����+@!Q   

 

Proof (Khalifa et al., 2003). 

 

Theorem 2: Elbarbary (2007) The successive 

integration of Chebyshev polynomials is expressed in 

terms of Chebyshev polynomials as follows: 

 � � � … � �  �
����>.!">0!">B40!">B4.!" !" #��#�" … #�@!�#�@!" =$ Y
 �!"�O� BO��BPO Z@,Q,
��� @![N
Q��   

 

where,  

 Z@,Q,
��� =  �
&@!�Q��� − $ \E�
&@!�Q�E� �−1�,@!"
E��   

 \E = $  ,
�E!��!�!  ,E

��� UQ = ∏ �R + T − X − ��,@ ����+@!Q   
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YE = ]2 H = 01 i > 08  , _E = ` T             H = 0T − H + 1 1 ≤ H ≤ T0             H > T 8.  
 
Proof (Elbarbary, 2007). 
Thus, from Theorem 2 and (13), (14) we have: 
 ?@��� =

b c�L,
 J M
  �
����

�� $ Y
 �!"�O� BO��BPO Z@,Q,
���@![N
Q�� d ����� 


���   

 
The matrix form of the successive integration of 

the function ���� at the Gauss-Lobatto points �2 is as 
follows: 
 <?@���= =
eb c�L,
 J M
 �
����

�� $ Y
 �!"�O� BO��BPO Z@,Q,
���@![N

Q�� d �����

��� f =

Θ
�@�<�=                                                                                           (15) 

 

The elements of the matrix Θ�@� are: 
  g2,��@� = �L,
 J M
 �
����

�� $ Y
 �!"�O� BO��BPO Z@,Q,
��2�@![N

Q�� ,  (16) 

 

The matrix Θ�@� which presented by ELbarbary 
(2007) is the pseudo-spectral integration matrix.  
 
ONE-DIMENSIONAL PARABOLIC EQUATION 
  

We consider the one-dimensional parabolic 
equation (Dehghan and Tatari, 2006) of the form: 

 hih> = h0ih 0 + j���k��, �� + l��, ��, 0 ≤ � ≤ 1, 0 ≤ � ≤ �     (17) 

 
With initial condition: 
 k��, 0� = ����, 0 ≤ � ≤ 1 
 
And boundary conditions: 
 k�0, �� = m����, k�1, �� = m"���, 0 ≤ � ≤ �, 
 

With the over-specification at a point in the special 
domain: 
 k���, t� = o���, 0 ≤ � ≤ � 
 
where, m�, m", l and o are known functions and the 
functions k and j are unknowns. In this study, we apply 
both the pseudo spectral integration method and Finite 
Difference Method (FDM) (Strikverda, 2004) to 
solving this equation. (In this study, we suppose that the 
function j is obtained by analytical method) 

First, to translating 0 ≤ � ≤ 1 to −1 ≤ p ≤ 1 we 

used � = q&"� . Hence the Eq. (17) changed to the form: 

 hrh> = 4 h0rhq0 + j���t�p, �� + u�p, ��, −1 ≤ p ≤1,0 ≤ � ≤ �,                                         (18) 

 
With initial condition: 
 t�p, 0� = ��p�, −1 ≤ p ≤ 1  
And boundary conditions: 
 t�−1, �� = v����, t�1, �� = v"���, 0 ≤ � ≤ �, 
 

Also, with the over-specification at a point the 
special domain: 
 t�p�, t� = w���, 0 ≤ � ≤ �, 
 
Now, we apply pseudo-spectral successive method and 
FDM to solving the Eq. (18) with its conditions. 
We apply FDM on t-dimension, assume:  
 �� = �ℎ,      ℎ = y@  ,      � = 0�1�T  

 
Hence, we have: 
 hr�q,>�h> >�>z = "�{ <−3t�p, ��� + 4t�p, �"� − t�p, ���=       (19) 

 hr�q,>�h> >�>, = "�{ 9t�p, ��&"� − t�p, ��!"�:, � = 1�1�T − 1 (20) 

 hr�q,>�h> >�>B = "�{ <3t�p, �@� − 4t�p, �@!"� + t�p, �@!��=  (21) 

 
Substituting (19)-(21) into (18) gives: 
 −<3 + 2ℎ j����=t�p, ��� + 4t�p, �"� − t�p, ��� =8ℎ h0r�q,>z�hq0 + 2ℎ u�p, ���,              (22) 

 t�p, ��&"� − 2ℎ j����t�p, ��� − t�p, ��!"� =8ℎ h0r�q,>,�hq0 + 2ℎ u�p, ���,              (23) 

 <3 − 2ℎ j��@�=t�p, �@� − 4t�p, �@!"� +t�p, �@!�� = 8ℎ h0r�q,>B�hq0 + 2ℎ u�p, �@�           (24) 

 
From the pseudo-spectral successive integration at 

the Gauss-Lobatto points ��E = − cos E�
 � we have: 

 h0r�q,>,�hq0 q�qF = K�pE , ���,                          (25) 

 hr�q,>,�hq q�qF = ∑ ~E,2�"�
2��  K�p2 , ��� + %",                 (26) 

 t�pE , ��� = ∑ ~E,2���
2��  K�p2, ��� + %"�pE + 1� + %�                     

                                                                           (27) 

 

(��R H = 0�1��,   � = 0�1�T ). 

 

The constants %" and %� are obtained to satisfy the 

boundary conditions. Thus: 
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%" = − "� �∑ ~
,2���
2��  K�p2 , ��� − v"���� + v������, for � =0�1�T %� = v�����, for � = 0�1�T 

 

Substituting %" and %� into (27) gives us the 

approximation solution at point �pE , ��� as follows: 

 t�pE , ��� =∑ ~E,2���
2��  K�p2 , ��� − "� �pE + 1� �∑ ~
,2���
2��  K�p2 , ���� +"� �pE + 1�v"���� − "� �pE − 1�v�����                   (28)   

 

But, to complete our work, we need to find all the 

unknowns KE,�. Hence for this purpose we substitute 

(28) into (22)-(24) and solve the system of linear 

equations to present more details we define: 

 �E = 9~E,����, ~E,"���, … , ~E,@���: − "� �pE + 1�9~
,����, ~
,"���, … , ~
,@��� :   (29) 

 

Φ� = 9K�,�  , K",�  , … , K
,�:>
                              (30) 

 

ΥE,� = "� �pE + 1�v"���� − "� �pE − 1�v�����                    (31) 

 

Finally, if (29)-(31) substitute into (22)-(24), 

respectively then we have 3 systems of linear equations 

as: 

 

• For H = 0�1�� and � = 0 

 −�3 + 2ℎ j����� �EΦ� + 4 �EΦ" −  �EΦ� − 8ℎ KE,� −�3 + 2ℎ j����� ΥE,� + 4 ΥE," − ΥE,� − 2ℎ u�p, ��� = 0      (32) 

 

• ForH = 0�1�� and � = 1�1�T − 1 

 �EΦ�&" − �2ℎ j����� �EΦ� − �EΦ�!" − 8ℎ KE,� + ΥE,�&" −�2ℎ j����� ΥE,� − ΥE,�!" − 2ℎ u�pE , ��� = 0            (33) 

 

• For H = 0�1�� and � = T 

 �3 − 2ℎ j��@�� �EΦ@ − 4 �EΦ@!" +  �EΦ@!� − 8ℎ KE,@ +�3 − 2ℎ j��@�� ΥE,@ − 4 ΥE,@!" + ΥE,@!� − 2ℎ u�p, �@� = 0                                                                                                                (34) 

 

Solving the systems (32)-(34) leads to obtaining 

the all unknowns KE,�. Notice that if H = 0, � then �E = 0, thus we can obtained the first and last rows of 

the matrix Φ as follows: 

 

 K�,� = 18 ℎ ��3 + 2ℎ j����� Υ�,� − 4 Υ�," + Υ�,�+ 2ℎ u�p�, ���� K�,� = "� { �−Υ�,�&" + 2ℎj����Υ�,� + Υ�,�!" + 2ℎu�p�, ����  � = 1�1�T − 1 

 K�,@ = 18 ℎ �−�3 − 2ℎ j��@�� Υ�,@ + 4 Υ�,@!"− Υ�,@!� + 2ℎ u�p�, �@�� 

and:  
  K
,� = 18 ℎ ��3 + 2ℎ j����� Υ
,� − 4 Υ
," + Υ
,�+ 2ℎ u�p
, ���� 

 K
,� = 18 ℎ �−Υ
,�&" + 2ℎj����Υ
,� + Υ
,�!"+ 2ℎu�p
, ���� , � = 1�1�T − 1 

 K
,@ = 18 ℎ �−�3 − 2ℎj��@��Υ
,@ + 4 Υ
,@!" − Υ
,@!�+ 2ℎu�p
, �@��, 
 

Also, to computing another KE,� for H = 1�1�� − 1 

and � = 0�1�T we always have the system of form: 

 �Φ∗ − 8ℎKE,� = ;                     (35) 

 

where, A is 3-D matrix: 

 � =

��
��
��−�3 + 2ℎj������E 4�E −�E 0−�E −�2ℎj��"���E �E 0 ⋯⋯ 00⋮ ⋱ ⋮00 ⋯ 0 −�E −�2ℎj��@!"���E �E�E −4�E �3 − 2ℎj��@���E ��

��
��
 

                                                                     (36) 

and: 

 Φ∗ = <Φ� , Φ" , Φ�, … , Φ@=>                              (37) 

 

; =
��
��
��
� �3 + 2ℎj�����ΥE,� − 4ΥE," + ΥE,� + 2ℎu�pE , ���−ΥE,� + �2ℎj��"��ΥE," + ΥE,� + 2ℎu�pE , �"�−ΥE,� + �2ℎj�����ΥE,� + ΥE," + 2ℎu�pE , ���⋮−ΥE,@ + �2ℎj��@!"��ΥE,@!" + ΥE,@!� + 2ℎu�pE , �@�−�3 − 2ℎj��@��ΥE,@ + 4ΥE,@!" + ΥE,@!� + 2ℎu�pE , �@���

��
��
�
   (38) 

 

Finally, by solving (35), all unknowns KE,� to be 

determined. Hence we can approximate the solutions of 

the main problem at all points �pE , ��� by substituting KE,� into (28). 

 
Table 1: Absolute error for n = 4, N = 4 at points �pE , ��� 

X/ t p" p� p� �� 5.2×10!� 1.1×10!� 4.8×10!� �" 8.5×10!1 8.3×10!1 1.6×10!� �� 3.1×10!� 3.8×10!� 2.6×10!1 �� 9.4×10!1 8.0×10!1 4.8×10!1 �1 2.1×10!� 1.3×10!� 1.1×10!� 

The absolute error at all points �p�, ��� and �p1, ��� for any � = 0�1�4 

are equals to zero 
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Table 2: Absolute error for n = 8, N = 8 at points �pE , ��� 

 X/ t p" p� p� p1 p� p� p� �� 3.9×10!1 1.4×10!� 2.5×10!� 2.8×10!� 2.1×10!� 1.1×10!� 2.8×10!1 �" 8.7×10!� 3.4×10!1 6.9×10!1 8.8×10!1 7.7×10!1 4.4×10!1 1.2×10!1 �� 5.7×10!� 1.7×10!1 2.0×10!1 9.4×10!� 4.2×10!� 8.3×10!� 3.5×10!� �� 1.4×10!1 4.7×10!1 7.1×10!1 6.6×10!1 3.7×10!1 1.2×10!1 1.5×10!� �1 1.8×10!1 6.2×10!1 9.7×10!1 9.5×10!1 5.9×10!1 2.2×10!1 4.2×10!� �� 2.1×10!1 7.0×10!1 1.1×10!� 1.1×10!� 7.4×10!1 3.1×10!1 6.4×10!� �� 1.8×10!1 6.1×10!1 9.8×10!1 9.8×10!1 6.4×10!1 2.7×10!1 5.6×10!� �� 1.9×10!1 6.7×10!1 1.1×10!� 1.2×10!� 8.1×10!1 3.6×10!1 8.5×10!� �� 3.5×10!� 6.3×10!� 1.8×10!� 1.7×10!1 2.7×10!1 2.2×10!1 7.7×10!� 

The absolute error at all points �p�, ��� and �p�, ��� for any � = 0�1�8 are equals to zero. 

 

Table 3: Absolute error for n = 10, N = 10 at points �pE , ��� 

X/t p" p� p� p1 p� p� p� p� p� �� 1.6×10!1 6.2×10!1 1.3×10!� 1.7×10!� 1.9×10!� 1.6×10!� 1.0×10!� 4.8×10!1 1.2×10!1 �" 5.3×10!� 2.1×10!1 4.4×10!1 6.6×10!1 7.6×10!1 6.8×10!1 4.8×10!1 2.4×10!� 6.4×10!� �� 5.1×10!� 8.4×10!� 1.4×10!� 7.2×10!� 1.4×10!1 1.8×10!1 1.5×10!1 9.1×10!� 2.7×10!� �� 4.1×10!� 1.4×10!1 2.5×10!1 2.9×10!1 2.4×10!1 1.3×10!1 3.8×10!� 3.7×10!� 5.1×10!� �1 6.4×10!� 2.3×10!1 4.1×10!1 5.1×10!1 4.7×10!1 3.2×10!1 1.6×10!1 5.0×10!� 8.1×10!� �� 7.9×10!� 2.8×10!1 5.2×10!1 6.6×10!1 6.3×10!1 4.5×10!1 2.4×10!1 8.8×10!� 1.8×10!� �� 8.3×10!� 3.0×10!1 5.5×10!1 7.1×10!1 6.8×10!1 5.0×10!1 2.7×10!1 1.0×10!1 2.2×10!� �� 8.5×10!� 3.1×10!1 5.7×10!1 7.5×10!1 7.3×10!1 5.5×10!1 3.1×10!1 1.3×10!1 2.8×10!� �� 7.0×10!� 2.5×10!1 4.7×10!1 6.2×10!1 6.0×10!1 4.5×10!1 2.5×10!1 1.0×10!1 2.2×10!� �� 7.6×10!� 2.8×10!1 5.3×10!1 7.1×10!1 7.1×10!1 5.4×10!1 3.2×10!1 1.4×10!1 3.3×10!� �"� 5.7×10!� 3.2×10!� 3.8×10!� 1.2×10!1 1.9×10!1 2.3×10!1 2.0×10!1 1.2×10!1 3.5×10!� 

The absolute error at all points �p0, ��� and �p"�, ��� for any j = 0�1�10 are equals to zero 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: The maximum error for n = 4 and N = 4 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: The maximum error for n = 8 and N = 8 

 

NUMERICAL RESULTS 

 

Consider the Eq. (17) in (14) with below details: 

 ���� = cos���� + sin���� m���� = exp�−��� , m"��� = −exp�−��� 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

Fig. 3: The maximum error for n = 10 and N = 10 

 l��, �� = ��� − �� + 1����� j�−��� �cos����+ sin����� 

 o��� = √2 exp�−��� , �� = 0.25 

 

where, j��� = 1 + �� and the exact solution is: 

 k��, �� = exp�−��� �cos���� + sin����� 

 

By presented approach in section 3 we solved this 

problem. The present numerical results are in the above 

Table 1 to 3 and Fig. 1 to 3.  

 

CONCLUSION 

 

This study applies the pseudo-spectral successive 
integration method to approximate the solutions of the 
one-dimensional parabolic equation at the points �pE , ���. So far this method, don’t applied to solve the 
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partial differential equations. This study, demonstrate 
that the pseudo-spectral successive integration method 
can solve the partial differential equations. 
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