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Hybrid Numerical Method for Heat Equation with Nonlocal Boundary  
Conditions in Parallel Computing Environment 

 

S.A. Mardan and M.A. Rehman
 

Department of Mathematics, University of Management and Technology,  
C-II, Johar Town, Lahore, Pakistan 

 

Abstract: A numerical method is developed for solving parabolic partial differential equations with integral 
boundary conditions. The method is moderately sixth-order accurate due to merging of sixth order finite difference 
scheme and fifth order Pade’s approximation. Simpson’s 1/3 rule is used to approximate integral conditions. The 
method does not involve the use of complex arithmetic and optimizes the results. It is observed that this numerical 
method can be easily coded on serial as well as parallel computers. 
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INTRODUCTION 
 

The need of both the scientific and the business 
communities’ for ever growing computing supremacy 
led to vivid up grading in computer structural design. 
Most of the attempts concentrated on attaining high 
performance on a single processor, but recently it has 
been observed that attempts are being made to wrap 
multiple processors. Multiprocessor systems consist of 
a number of connected processors each of which is 
capable of performing compound tasks autonomously. 
In a sequential algorithm all tasks are carried out by a 
single processor but in a parallel algorithm autonomous 
components of the program are performed by varied 
processors simultaneously which save a lot of time. 

In many developing countries, scientists and 
engineers are facing problems, when high computations 
and/or large memory storage is required. This is due to 
the lack of advance computing resources. In order to 
resolve such problems, the numerical method is 
proposed. Partial differential equations arise in many 
real life problems like thermo elasticity (Day, 1982), 
dynamics of ground water (Nakhushev, 1982) and 
pseudo-parabolic water transfer (Vodakhova, 1982). In 
the family of partial differential equations, one of the 
most important classes is parabolic partial differential 
equations with nonlocal boundary conditions. This class 
was studied by different authors (Wang and Liu, 1989; 
1990; Muravei and Philinovskii, 1982; Liu, 1999; Aug, 
2002; Deghan, 2003, 2005; Rehman and Taj, 2009) in 
different ways to solve such model problems 
numerically. This study aims at exploring one 

dimensional non-homogeneous heat equation with 
integral boundary conditions. The idea of mixed order 
numerical method presented here was firstly introduced 
by Rehman et al. (2012) and now it is proposed to be 
the best candidate for numerical solution of nonlocal 
problems. 

Actual concept behind the use of finite-difference 
methods for obtaining the approximate solution of a 
given PDE is to approximate the derivatives appearing 
in the equation by a set of values of the function at a 
selected number of points. 
Consider one dimensional heat equation: 
 ���� = ������ + �(
, �) , 0 < 
 < �, � > 0               (1) 

 

Subject to the given initial condition: 

 �(
, 0) = �(
), 0 ≤ x ≤ 1                (2) 

 

and the non-local boundary conditions: 

 �(0, �) = � �(
, �)�(
, �)�
 + ��(�)�� ,   � ≥ � > 0                    (3) 

 �(1, �) = �  (
, �)�(
, �)�
 + �!(�)�� ,   � ≥ � > 0                              (4) 

 

where, �, ��, �!,  , � and � are known functions and 

are assumed to be sufficiently smooth to produce a 

smooth solution of �.  � is given positive constant. 
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DISCRETIZATION AND HANDLING OF 
NONLOCAL CONDITIONS 

 
Selecting a positive odd integer # ≥ 9 and 

dividing the interval [0, 1] into # + 1 subintervals each 
of width ℎ, so that (# + 1) ℎ = � and the time variable � into time steps each of length ( gives a rectangular 
mesh of points with co-ordinates (
), �*) =(+ℎ, ,() (+ = 0, 1, 2, … , #, # + 1) and (, =0, 1, 2, … ) covering the region / = [0 < 
 < �] × [� >0] and its boundary 1/ consisting of the lines 
 =0, 
 = 1 and � = 0. 

Let � (
, �) is minimum nine times continuously 
differentiable with respect to space variable 
 and 
further these derivatives are uniformly bounded, the 
space derivative in (1) may be approximated to the 
sixth-order accuracy at some general point (
, �) of the 
mesh by the expression: 
 ���(�,�)��� = ��2� 3� {2u(x − 3h, t) − 27u(x − 2h, t) +270u(x − h, t) − 490u(x, t) + 270u(x + h, t)  −27u(x + 2h, t) + 2 u(x + 3h, t)} − 3=>?� �@�(�,�)��@ + O(hB)                                              (5) 

 
However, Eq. (5) is valid only for (x, t) = (
), �*) 

with + = 3, 4, … , # − 2 and = 0, 1, 2, 3, … . To get the 
accuracy at the same points at (
�, �*), (
!, �*),(
*C�, �*) and (
* , �*) special formulas must be 
developed which approximate 1!� (
, �)/1
! not only 
to sixth-order but also with dominant error term – (ℎ? 560)(⁄ 12�(
, �) 1
2⁄ ). It can be clearly shown 
that the desired approximations to 1!�(
, �)/1
!are: 
 ���(�,�)��� = ��2� 3� {117u(x − h, t) + 2u(x, t) −738u(x + h, t)  + 1359u(x + 2h, t) −1300 u(x + 3h, t) + 828 u(x + 4h, t) −342 u(x + 5h, t)   +83 u(x + 6h, t) − 9u(x + 7h, t)} − 3=>?� �@�(�,�)��@ + O(hB)                  (6) 
 ���(�,�)��� = ��2� 3� {−9u(x − 2h, t) + 198u(x −h,t−322 u(x, t) + 18�(
 + ℎ, �) + 225�(
 + 2ℎ, �) −166u(x + 3h, t) + 72u(x + 4h, t) − 18u(x +5h,t  +2u(x + 6h, t)} − 3=>?� �@�(�,�)��@ +  O(hB)              (7) 

 ���(�,�)��� = ��2� 3� {−9u(x + 2h, t) + 198u(x +h,t−322 ux,t+18 ux−h,t+225ux−2h,t−166 u(x − 3h, t) + 72 u(x − 4h, t) − 18 u(x − 5h, t)  

+2u(x − 6h, t)} − 3=>?� �@�(�,�)��@ +  O(hB)              (8) 

 ���(�,�)��� = ��2� 3� {117u(x + h, t) + 2 u(x, t) −738 u(x − h, t) + 1359u(x − 2h, t) −

1300 u(x − 3h, t) + 828 u(x − 4h, t) −342 u(x − 5h, t)  +83u(x − 6h, t) − 9u(x − 7h, t)}  − 3=>?� �@�(�,�)��@ + O(hB)                                             (9) 

 

at the mesh points (
�, �*), (
*C!, �*), (
*C�, �*) and (
*, �*) respectively (Rehman et al., 2012). Appling (1) 

with (5)-(9) to the mesh points of the grid at time level � = �* produces asystem of ordinary differential 

equations of # equations and # + 2 unknowns J�, J�, J!, … , JKL�. The integral term in (3) and (4) are 

approximated by using Simpson’s 1 3⁄  rule as: 

 �(0, �) = 3M { �(0, �)�(0, �) + 4 ∑ �O(2P −QRS�TU�1ℎ, ��2P−1ℎ, �  +2 ∑ �O(2P)ℎ, �V�O(2P)ℎ, �VQRS� C�TU� +�O(# + 1)ℎ, �V�O(# + 1)ℎ, �V } + ��(�)         (10) 

 �(1, �) = 3M {  (0, �)�(0, �) + 4 ∑  O(2P −QRS�TU�1ℎ, ��2P−1ℎ, �  +2 ∑  O(2P)ℎ, �V�O(2P)ℎ, �VQRS� C�TU� +  O(# +1ℎ, ��#+1ℎ, � }+�2(�)            (11) 

 

Solving Eq. (10) and (11) for J� and JKL� and 

substituting these values in the above system of # 

linear ordinary differential equations which can be 

written in vector matrix form as: 

 WX(�)W� = YJ(�) + Z(�), � > 0             (12) 

 

With initial distribution:  

 J(0) = �                                                           (13) 

 

In which J(�) = [J�(�), J!(�), … , JK(�)][, � =[�(
�), �(
!), … , �(
K)][, � denotes transpose and 

matrix Y of order , × , is given by: 

 

 

 
 

where, 
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λ� = 117 m� + 2, λ! = 117 m! − 738,λM =117 mM + 1359, λ] = 117 m] − 1300,  

λ> = 117 m> + 828, λ? = 117 m? − 342, 

λB = 117 mB + 83, λ2 = 117 m2 − 9 and 

λ^ ≥ 117m^_`a i ≥ 9 

η� = −9 m� + 198, λ! = −9 m! − 322, ηM =−9 mM + 18, η] = −9 m] + 225, η> = −9 m> −166, 

η? = −9 m? − 18, ηB = −9 mB − 18, η2 =−9 m2 + 2 and η^ ≥ −9m^_`a i ≥ 9 

ε� = 2 m� − 27, ε! = 2 m! + 270, εM = 2 mM −490, ε] = 2 m] + 270, ε> = 2 m> − 27, 

ε? = 2 m? + 2 and ε^ ≥ 2m^_`a i ≥ 7 

κcC> = 2 ncC> + 2, κcC] = 2 ncC] − 27, 

κcCM = 2 ncCM + 270, κcC! = 2 ncC! − 490,  

κcC� = 2 ncC� − 270, 

κc = 2 nc − 27 and κ^ ≥ 2n^_`a1 ≤ P ≤ # − 6 

µcCB = −9 ncCB + 2, µcC? = −9 ncC? − 18, 

µcC> = −9 ncC> + 72, µcC] = −9 ncC] − 166, 

µcCM = −9 ncCM + 225, µcC! = −9 ncC! + 18, 

µcC� = −9 ncC� − 322, µc = −9 nc − 270 

and µ^ ≥ −9n^_`a1 ≤ P ≤ # − 8 

ξcCB = 117 ncCB − 9, ξcC? = 117 ncC? + 83, 

ξcC> = 117 ncC> − 342, ξcC] = 117 ncC] +828, 

ξcCM = 117 ncCM − 1300, ξcC! = 117 ncC! +1359, ξcC� = 117 ncC� − 738, ξc = 117 nc + 2 

and ξ^ ≥ 117n^_`a1 ≤ P ≤ # − 8  

 

in which:  

 

m^ =
eff
gf
fh4 ℎ3 (i]�T − i! T)i�i] − i!iM , _`aP = 1, 2, 3,… , #2 ℎ3 (i]�T − i! T)i�i] − i!iM , _`aP = 2,3, … , # − 1

j 
 

and  

 

n^ =
efg
fh4 ℎ3 (iM�T − i� T)i!iM − i�i] , _`aP = 1, 2, 3, … , #

2 ℎ3 (iM�T − i� T)i!iM − i�i] , _`aP = 1,2,3, … , # − 1
j 

 

Here i� = 1 − 3M ��, i! = − 3M �KL�, iM = − 3M  �, i] = 1 − 3M  KL� also �T = �(Pℎ, �) and  T =  (Pℎ, �).  

The column vector Z(�) contains the contribution 

of the functions �, �� and �! and is given as: 

Z(�) = [ ��B kS�2� 3� + ��, Cl kS�2� 3� + �!, ! kS�2� 3� +�M, �], … , �KCM, ! k��2� 3� + �KC!, Cl k��2� 3� +�KC�, ��B k��2� 3� + �K]                            (14) 

 

where, 

 (� = mnoS(�)Cm�o�(�)mSmnCm�mp  and (! = mSo�(�)CmpoS(�)mSmnCm�mp  

 

The solution of the system (12) subject to (13) is 

given by: 

 J(�) =exp((Y) _ + � expO(� − s)YVZ(s) �s; �� � ≥ 0  (15) 

 

which satisfies the recurrence relation: 

  J(� + () = exp((Y) J(�) + � expO(� + ( −�Lk�sYZs�s; �=0,(,2(             (16) 

 
To approximate the matrix exponential function in 

(16), fifth-order Pade’s approximation, for a real scalar u, given by: 
 v>(u) = �LwSxLw�x�LwpxpLwnxn�CySxLy�x�CypxpLynxnCyzxz                 (17) 

 

where, 

 {> = ∑ (−1)| y}(>C|)!]|U�              (18) 

 

and 

 �| = ∑ (−1)T y�(|CT)!  , � = 0, 1, 2, 3, 4|TU�             (19) 

 

For stability of method, {T  (P = 1, 2, 3, 4) should 

satisfy the following conditions: 

 {� > 12! 
 {! > {�2! − 13! 
 {M > {!2! − {�3! + 14! 
 {] > {M2! − {!3! − {�4! + 15! 

 

The integral term in (16) is approximated as: 

 � expO(� + ( − s)YVZ(s) �s =�Lk� ��Z(s�) +�!Z(s!) + �MZ(sM) + �]Z(s]) + �>Z (s>)    (20) 
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where, s� ≠ s! ≠ sM ≠ s] ≠ s> and �T(P = 1, 2, 3, 4, 5) 

are matrices. We have: 

 � expO(� + ( − s)YVs|C� �s =�Lk� ∑ s�|C��� =��U���, �=1, 2, 3, 4, 5                           (21) 

 

with 

 �| = YC�{�|C� exp((Y) − (� + ()|C�� +�−1��−1, �=1, 2, 3, 4, 5                          (22) 

 

Taking s� = �, s! = � + k] ,      sM = � + k! +,      s] = � + M k]  , s> = � + (. Using u = (Y in (17) and taking exp((Y) = �/C�, we have (11): 

 � = (� − {�(Y + {!(!Y! − {M(MYM + {](]Y] −{>(>Y>)C�                                                       (23) 

 

And 

 / = � + ��(Y + �!(!Y! + {M(MYM + {](]Y]     (24) 

 �� = kM?� {28� + (668 − 3100{� + 11520{! −30720{M + 46080{])(Y +   (−21 + 100{� − 260{! + 1920{])(!Y! +  (18 − 75{� + 240{! − 540{M + 720{])(MYM}�                                                     

                                                                            (25) 

 �! = !k]> {8� + (−154 + 760{� − 2880{! +7680{M)(Y +   (1 + 10{� − 100{! +  480{M − 1200{])(!Y! + ( −1 + 5{� − 20{! + 60{M − 120{])(MYM}�  (26) 

 �M = kM� {4� + ( 322 − 1540{� + 570{! −15360{M + 23040{])(Y +   (23 − 130{� + 580{! − 1920{M +3840{4(2Y2+  (3 − 15{� + 60{! − 180{M +360{])(MYM}�                                                     (27) 

 �] = !k]> {8� + (−158 + 760{� − 2880{! +7680{M − 11520{])(Y +   (−21 + 110{� − 460{! + 1440{M −2640{4(2Y2 +  (−3 + 15{� − 60{! + 180{M −360{])(MYM}P                                                          (28) 

 �> = kM?� {28� + (640 − 3100{� + 11520{! −30720{M + 46080{])(Y +   (125 − 640{� + 2620{! − 7680{M +13440{])(!Y! +  

(25 − 125{� + 500{! − 1500{M +2640{4(3Y3+   (3 − 15{� + 60{! − 180{M +360{])(]Y]}P                                                        (29) 

 

ALGORITHM 

 

Assuming that a�, a!, aM, a], a> (aT ≠ 0) are real 

distinct zeros of /(u), the denominator of v>(u), then: 

 �C� = ∏ (� − k��>TU� Y)                           (30) 

 exp((Y) = �� ∑ (� −>�U� k�� Y)C�             (31) 

 

where, 

 �� = �∏ (�C����z��S��� ) �1 + ��a�� + �!a�! + �Ma�M + �]a�]�  

� = 1, 2, 3, 4, 5  
 

And 

 ��L> = �∏ (�C����z��S��� ) × {28 + (668 − 3100{� +
11520{2−30720{3+46080{4a�+  (−21 + 100{� − 260{! + 1920{])a�! +(18 − 75{� + 240{! − 540{M + 720{])a�M}  

 ��L�� = �∏ (�C����z��S��� ) × {8 + (−154 + 760{� −
2880{2+7680{3−11520{4a�+  (1 + 10{� − 100{! + 480{M − 1200{])a�! +(−1 + 5{� − 20{! + 60{M − 120{])a�M}  

 ��L�> = �∏ (�C����z��S��� ) × {4 + (322 − 1540{� +
570{2−15360{3+23040{4a�+  (23 − 130{� + 580{! − 1920{M + 3840{])a�!  +(3 − 15{� + 60{! − 180{M + 360{])a�M}  

 ��L!� = �∏ (�C����z��S��� ) × {8 + (−158 + 760{� −
2880{2+7680{3−11520{4a�+  (−21 + 110{� − 460{! + 1440{M −2640{4a�2 +(−3 + 15{� − 60{! + 180{M − 360{])a�M}  

 ��L!> = �∏ (�C����z��S��� ) × {28 + (640 − 3100{� +
11520{! − 30720{M + 46080{])a� 
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+(125 − 640{� + 2620{! − 7680{M +13440{4a�2   +(25 − 125{� + 500{! − 1500{M + 2640{])a�M
 +(3 − 15{� + 60{! − 180{M + 360{])a�]} 

 

Hence Eq. (16) becomes: 

 J(� + () = ∑ YTC� ��TJ(�) + kM?��>TU�   

 ��TL>Z(�) + 16�TL��Z �� + k]� + 12�TL�>Z �� + k!�+16�TL!�Z �� + M k] � + �TL!>Z(� + () �  

 

where, 

 YT = � − (aT YT  , P = 1, 2, 3, 4, 5 

 

Hence, 

 �(� + () = ∑ �T(�)>TU�   

 

where, �T  , P = 1, 2, 3, 4, 5 are the solutions of the 

systems: 

 �T�T = �T�(�) + (360 

��TL>�(�) + 16�TL��� �� + (4  + 12�TL�>� �� + (2 
+16�TL!�� �� + 3 (4   + �TL!>�(� + () ¡ 

 

NUMERICAL EXAMPLES 

 

Numerical method described in this study will be 

applied to four problems from the literature and results 

obtained will be compared with exact solutions as well 

as with the results existing in the literature. We select 

values of {T(P = 1, 2, 3, 4) such that stability conditions 

are satisfied (Rehman et al., 2012).  

 

Example 1: Consider the problem (1)-(4) with: 

�(
) = 
!, 0 < 
 < 1, �(
, �) = 
, 0 < 
 < 1,  (
, �) = 
, 0 < 
 < 1, ��(�) = −14(� + 1)! , 0 < � < 1, 
�!(�) = 34(� + 1)! , 0 < � < 1, 
�(
, �) = −2(
! + � + 1)(� + 1)M , 0 < 
 < 1, 0 < � ≤ 1 

 

which has the theoretical solution �(
, �) = � ��L��!
 

For the comparison purpose the problem is solved 

for h = 0.05, 0.025, 0.01, 0.005, 0.0025. The relative 

errors obtained by new scheme are given in Table 1 and 

are compared with Crandall method, FTCS scheme, 

Dufort-Frankel scheme (Deghan, 2003) and fourth 

order scheme (Rehman and Taj, 2009). 

 

Example 2: Consider the problem (1)-(4) with: 

 �(
) = exp(−
) , 0 < 
 < 1, �(
, �) = {
, 0 < 
 < 1,  (
, �) = �
 cos(
) , 0 < 
 < 1, ��(�) = 0, 0 < � < 1, �!(�) = 0, 0 < � < 1, �(
, �) = − exp[− exp(
 + sin �)] (1 +cos �), 0 < 
 < 1, 0 < � ≤ 1  

 

where, { = ¥¥C! and � = !¦^§(�)C¨©¦(�)L¥�ª(�) 
which has the theoretical solution �(
, �) =exp (−(
 + sin �)) 

For the comparison purpose the problem is solved 

for h = 0.05, 0.025, 0.01,0.005, 0.0025. The relative 

errors obtained by new scheme are given in Table 2 and 

are compared with Crandall method, FTCS scheme, 

Dufort-Frankel scheme (Deghan, 2003) and fourth 

order scheme (Rehman and Taj, 2009). 

 

Example 3: Consider the problem (1)-(4) with: 

 
Table 1: Comparison of relative error for � = 1 

Spatial length Crandall FTCS Dufort-frankel Fourth order method New scheme h = 0.0500 3.8 × 10C�M 7.5 × 10C�! 7.8 × 10C�! 2.6 × 10C�? 2.7 × 10C�2 h = 0.0250 2.1 × 10C�] 1.9 × 10C�! 1.9 × 10C�! 2.1 × 10C�B 1.1 × 10C�l h = 0.0100 1.2 × 10C�> 4.0 × 10C�M 3.9 × 10C�M 6.1 × 10C�l 7.1 × 10C�! h = 0.0050 7.1 × 10C�B 1.0 × 10C�M 1.0 × 10C�M 3.5 × 10C�� 4.4 × 10C�� h = 0.0025 4.3 × 10C�2 2.5 × 10C�] 2.4 × 10C�] 8.0 × 10C�� 2.4 × 10C�� 

 

Table 2: Comparison of relative error for � = 0.1 

Spatial length Crandall FTCS Dufort-frankel Fourth order method New scheme h = 0.0500 3.9 × 10C�M 6.4 × 10C�! 6.8 × 10C�! 3.0 × 10C�B 5.6 × 10C�l h = 0.0250 2.4 × 10C�] 1.6 × 10C�! 1.7 × 10C�! 1.9 × 10C�2 3.7 × 10C�l h = 0.0100 1.5 × 10C�> 4.1 × 10C�M 4.1 × 10C�M 5.0 × 10C�� 9.6 × 10C�� h = 0.0050 1.0 × 10C�? 1.0 × 10C�M 1.0 × 10C�M 7.9 × 10C�! 5.2 × 10C�! h = 0.0025 6.4 × 10C�2 2.5 × 10C�] 2.6 × 10C�] 7.0 × 10C�� 3.3 × 10C�! 
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Table 3: Comparison of absolute error for ℎ = ( = 0.01 

t Exact u Crank-nicolson The implicit Fourth order method New scheme 0.1 1.2796 5.2 × 10C�> 4.3 × 10C�> 4.8 × 10C�? 2.0 × 10C�! 0.2 1.1578 6.2 × 10C�> 6.0 × 10C�> 4.7 × 10C�? 2.4 × 10C�! 0.3 1.0476 6.5 × 10C�> 6.4 × 10C�> 3.9 × 10C�? 2.5 × 10C�! 0.4 0.9479 6.4 × 10C�> 6.3 × 10C�> 4.8 × 10C�? 2.4 × 10C�! 0.5 0.8577 6.2 × 10C�> 5.9 × 10C�> 5.3 × 10C�? 2.2 × 10C�! 0.6 0.7761 5.6 × 10C�> 4.8 × 10C�> 3.7 × 10C�? 2.0 × 10C�! 0.7 0.7022 5.0 × 10C�> 4.9 × 10C�> 2.3 × 10C�? 1.8 × 10C�! 0.8 0.6354 1.6 × 10C�> 1.5 × 10C�> 1.6 × 10C�? 1.6 × 10C�! 0.9 0.5749 4.1 × 10C�> 3.3 × 10C�> 1.1 × 10C�? 1.5 × 10C�! 1.0 0.5202 5.0 × 10C�> 4.7 × 10C�> 1.0 × 10C�? 1.3 × 10C�! 

 
Table 4: Comparison of absolute error for ℎ = ( = 0.01 t Fourth order method New scheme 0.1 1.09 × 10C�! 5.34 × 10C�] 0.2 1.35 × 10C�! 6.58 × 10C�] 0.3 1.35 × 10C�! 6.71 × 10C�] 0.4 1.28 × 10C�! 6.16 × 10C�] 0.5 1.18 × 10C�! 5.72 × 10C�] 0.6 1.07 × 10C�! 5.25 × 10C�] 0.7 9.71 × 10C�M 4.85 × 10C�] 0.8 8.80 × 10C�M 4.41 × 10C�] 0.9 7.69 × 10C�M 3.88 × 10C�] 1.0 7.20 × 10C�M 3.59 × 10C�] 

 �(
) = sin(πx) + cos(πx) , 0 < 
 < 1, �(
, �) = 2 sin(πx) , 0 < 
 < 1,  (
, �) = −2 cos(¬
) , 0 < 
 < 1, ��(�) = 0, 0 < � < 1, �!(�) = 0, 0 < � < 1, �(
, �) = (¬! − 1) exp(−�) {sin(πx) +cosπx, 0<
<1, 0<�≤1  
 
which has the theoretical solution: 
 

 �(
, �) = exp(−�) {sin(πx) + cos(πx)} 
 

For the comparison purpose, in this problem is 

solved for ℎ = ( = 0.01 for different values of t. The 
errors obtained by new scheme are given in Table 3 and 
compared with fourth order scheme (Rehman and Taj, 
2009). 
 
Example 4: Consider the problem (1)-(4) with: 
 �(
) = x(x − 1) + D6(1 + D) , 0 < 
 < 1, �(
, �) = −D, 0 < 
 < 1,  (
, �) = −®, 0 < 
 < 1, ��(�) = 0, 0 < � < 1, �!(�) = 0, 0 < � < 1, �(
, �) = �x(x − 1) + ¯?(�L¯)� exp(−�) , ® =0.0144 0 < 
 < 1, 0 < � ≤ 1  
 
which has the theoretical solution: 
 �(
, �) =  [
(
 − 1) + ®/(6(1 + ®))]°
�(−�) 

 
For the comparison purpose the problem is solved 

for ℎ = ( = 0.01. The errors obtained by new scheme 

are given in Table 4 and compared with fourth order 
scheme (Rehman and Taj, 2009). 

 

CONCLUSION 

 

It is observed that the result obtained using hybrid 

scheme are highly precise in space and time. This 

technique can be coded easily on serial and parallel 

computers. The method involve only real domain and 

multiprocessor design, especially in nonlocal problems 

save significant computational time rather than the 

complex arithmetic based methods. This method is very 

flexible, user friendly and can be extended for 

multidimensional partial differential equations. 
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