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Research Article 
Numerical Solution of Seventh Order Boundary Value Problems Using the  

Reproducing Kernel Space 
 

Ghazala Akram and Hamood Ur Rehman 
Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan 

 

Abstract: The aim of study of this article is to determine the solution of seventh order boundary value problem. The 
behavior of the induction motor is simulated by fifth order differential equation model and induction machine with 
two rotor circuits is represented by the seventh order differential equations. In this study, a Reproducing Kernel 
Method (RKM) for a class of seventh-order nonlinear boundary value problems is investigated. The argument is 
based on the reproducing kernel space W

8
2 [0, 1]. The proposed method gives better results when compared with the 

method available in literature (Siddiqi et al., 2012a). Two numerical examples are given to illustrate the 
implementation and efficiency of the method. 
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INTRODUCTION 

 
Commonly, 5

th
 order differential equation model 

simulated the behavior of the induction motor which 
includes two stator state variables, two rotor state 
variables, and shaft speed. Two more variables must be 
added to account for the effects of a second rotor circuit 
representing deep bars, a starting cage, or rotor 
distributed parameters. Generally, the induction 
machine with two rotor circuits is represented by the 
seventh order differential equations of flux linkages and 
speed (Richards and Sarma, 1994). Siddiqi and Akram 
(2006, 2007) presented non-polynomial spline method 
and sextic spline method for the numerical solution of 
the fifth-order linear special case boundary value 
problems. Siddiqi et al. (2007) developed quintic spline 
method for the numerical solutions of linear special 
case sixth-order boundary  value  problems. In Siddiqi 
et al. (2012a, b) and Siddiqi and Iftikhar (2013a) 
solutions of seventh order boundary value problems are 
discussed. Siddiqi and Iftikhar (2013b) presented the 
solution of higher order boundary value problems using 
the homotopy analysis method. 

A reproducing kernel Hilbert space is a useful 
framework for constructing approximate solutions of 
differential equations (Akram and Rehman, 2011, 
2013a, b, c, d; Geng and Cui, 2007; Li and Wu, 2013). 
In this study, a reproducing kernel method is used for 
the solution of linear and nonlinear seventh order BVP. 

Consider the following seventh order two-point 
boundary value problem: 
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where, �����, � = 0, 1, 2 and f (x, u (x)) are continuous 
functions on [0, 1]. Let L be the differential operator 
and homogenization of the boundary conditions of 
system (1) can be transformed into the following form: 
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Thus, the solution of system (2) provides the 

solution of the system (1). 

 

REPRODUCING KERNEL SPACES 

 

The reproducing kernel space W
8

2 [0, 1] is defined 

by 7...,2,1,0),(/)({]01[
)(8

2 == ixuxuW
i

 are absolutely 

continuous real valued functions in [0, 1], 

]}1,0[)(
2)8(

Lxu ∈ . The inner product and norm in W
8

2 

[0, 1] are given by:          
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Theorem 1: The space W
8

2 [0, 1] is a reproducing 

kernel Hilbert space. That is, ]1,0[)(
8

2Wyu ∈∀  

and each fixed ]1,0[, ∈yx , there exists 

]1,0[)(
8

2WyxR ∈  such that )()(),( xuyxRyu >=<  and 
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)( yxR is called the reproducing kernel function of 

space  W
8

2 [0, 1].     

The reproducing kernel function Rx (y) is given by: 
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THE EXACT AND APPROXIMATE 

SOLUTIONS 

 

In the problem (2), the linear operator L: W
8

2 [0, 1] 

→ W
1

2 [0, 1] is bounded. Using the adjoint operator L* 

of L and choose a countable dense subset 

]1,0[,...},...,,{ 21 ⊂= nxxxT  and let: 
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then ),()( * xLx ii ϕψ =  where ].1,0[)(
8

2Wxi ∈ψ   

 

Lemma 1: 
∞
=1)}({ ii xψ is a complete system of W

8
2 [0, 

1] and 
i

xyxyi yRLx == |)()(ψ . 

 

Proof: For each fixed u (x) ∈ W
8

2 [0, 1], let 

,...2,1,0)(),( =>=< ixxu iψ  which implies: 

 

 
 

Since ����� ��
∞  is dense in [0, 1], (Lu) (x) = 0, which 

implies u = 0 from the existence of L
-1

. 

Using reproducing property, it can be written as:  
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To orthonormalize the sequence 
∞
=1)}({ ii xψ  in the 

reproducing kernel space W
8

2 [0, 1] Gram-Schmidt 

process can be used, as: 
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Theorem 2: For all ],1,0[)(
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On the other hand, if u (x) is the exact solution 

of the system (5) then: 
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Proof: Since ]1,0[)(
8

2Wxu ∈  and can be expanded in 

the form of Fourier series about normal orthogonal 
system as: 
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Since the space W

8
2 [0, 1] is Hilbert space so the 

series )()(),(
1
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 From Eq. (7) and (8), it can be written 

as: 
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If u (x) is the exact solution of Eq. (2) and Lu = f 

(x, u (x)), then: 
 

)())(,()(
1 1

xxuxfxu
i

i

k

ikkik∑∑
∞

= =

= ψβ
 

 
The approximate solution obtained by the n-term 

intercept of the exact solution u (x), given by: 
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The problem (2) is nonlinear, then approximate 

solution of the problem (2) can be obtained using the 
following iteration equation: 
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Theorem 3: Let the following conditions are satisfied: 

 

i. ||u (x)||  is bounded and 

ii. 
∞
=0}{ iix is dense in [0, 1]                                                                                               

iii. ]1,0[)(]1,0[
8

2

1

2))(,( WxuandWxuxf ∈∈  then 

un (x) in Eq. (10) converges to the exact solution u 

(x) of  the  problem  (2),  where  Ai are given by 

Eq. (11) and: 
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Proof (i): First, we will prove the convergence of un (x). 

From Eq. (12), it can be written as: 
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Considering the completeness of W
8

2 [0, 1], there 

exists ],1,0[)(
8

2Wxu ∈ such that: 

 

∞→→ nxuxun ),()(  

 

(ii) Using (i) of Theorem 3, un (x) converge uniformly 

to u (x). On taking limits in Eq. (10), it follows that: 
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Moreover, 
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If n = 1, then: 
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If n = 2, then: 
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It is clear that: 
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Furthermore, it is easy to see by induction that: 
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Since, 
∞
=1}{ ix is dense on interval [0, 1], for any y ∈ 

[0, 1], there exists subsequence {xnj} such that: 

 

∞→→ yyxnj ,  

 

Let ∞→y in Eq. (12) and by the convergence of 

un (x), gives: 

 

Lu (x) = f (x, u (x))              (13) 

 

That is, u (x) is the solution of the problem (2) and: 
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where, Ai are given by Eq. (11). To illustrate the 
applicability and effectiveness of our method, two 
numerical examples are constructed. 
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Table 1: The comparisons of the errors in absolute values between the methods developed in this study and that of Siddiqi et al. (2012a) 

x Siddiqi et al. (2012a) Present method n = 30 Present method n = 50 

0.0 0.0000 0.0000 0.0000 
0.1 3.0198 E-14 3.3085 E-14 2.7755 E-15 
0.2 3.6903 E-13 2.0450 E-13 1.6875 E-14 
0.3 1.3749 E-12 4.7584 E-13 3.9079 E-14 
0.4 3.0308 E-12 7.2009 E-13 5.8397 E-14 
0.5 4.7868 E-12 8.2056 E-13 6.6169 E-14 
0.6 5.7388 E-12 7.2953 E-13 5.8287 E-14 
0.7 5.1207 E-12 4.9066 E-13 5.8286 E-14 
0.8 2.9893 E-12 2.1832 E-13 1.7930 E-14 
0.9 6.9944 E-13 3.5860 E-14 1.1102 E-16 
1.0 1.1102 E-16 4.4408 E-16 4.4409 E-16 

 
Table 2: Error in absolute values obtained by the present method 

x Present method n = 30 Present method n = 50 

0.000 6.4278 E-11 6.4113 E-11 
0.125 4.7378 E-10 1.4645 E-10 
0.250 5.2047 E-09 1.9111 E-09 
0.375 1.5281 E-08 5.6158 E-09 
0.500 2.4509 E-08 8.8518 E-09 
0.625 2.5265 E-08 9.1373 E-09 
0.750 1.5563 E-08 5.6666 E-09 
0.875 3.2941 E-09 1.0112 E-09 
1.000 5.6254 E-11 5.6239 E-11 

 

 
 
Fig. 1: Absolute error between exact and approximate 

solution (n = 30) 
 

 
 
Fig. 2: Absolute error between exact and approximate 

solution (n = 50) 

 

NUMERICAL EXAMPLES 

 

All the numerical computations performed using 

Mathematica version 5.2. 
 

Example 1: Consider the following nonlinear seventh 

order boundary value problem Siddiqi et al. (2012a): 
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Fig. 3: Absolute error between exact and approximate 

solution (n = 30) 
 

 
 
Fig. 4: Absolute error between exact and approximate 

solution (n = 50) 

 
The exact solution of the Example 1 is u (x) =  !". 

Numerical results are given in Table 1 and Fig. 1 and 2. 
 
Example 2: Consider the following nonlinear seventh 
order boundary value problem: 
 













+=

=

−+

 1sin2-2ecos1= (1)u(0),u -2=   (0)u

ecos1,- =   (1)u , u(1)0 = (0)u 1,=   u(0)

 x)sinx),+8(5-cosx 1))-(x

 e+x)+((-4(-3 e= u(x) e (x)u (x)u

(2)(3)2)(

 (1)(1)

1)cosx)-(x (-exu(x)(4)(7) x

e

(16)

 

 
The exact solution is u (x) =  "�1 − ��$%&�. The 

comparisons of the errors in absolute solution obtained 
from the present method and exact solution is shown in 
Table 2 and Fig. 3 and 4. 
 

CONCLUSION 
 

An iterative method is used to find the approximate 
solution of the nonlinear seventh order boundary value 
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problem in the reproducing kernel space. In this 
method, an iterative sequence is obtained which is 
proved to converge to the exact solution uniformly. 
Numerical results show that the method used in the 
paper is valid. Compared with other method, the results 
of numerical example demonstrate that the present 
method is more accurate than existing method 
developed by Siddiqi et al. (2012a). It is worthy to note 
that the present method can be used as a very accurate 
algorithm for solving nonlinear seventh order boundary 
value problems. 
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