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Abstract: Data mining consists to extracting or “mining” information from large quantity of data. Clustering is one 
of the most significant research areas in the domain of data mining. Clustering signifies making groups of objects 
founded on their features where the objects of the same groups are similar and those belonging in different groups 
are not similar. This study reviews two Clustering Algorithms of the representative clustering techniques: K-modes 
and K-medoids algorithms. The two algorithms are experimented and evaluated on partitioning Y-STR data. All 
these algorithms are compared according to the following factors: certain number times of run, precision and recall. 
The global results show that K-mode clustering is better than the k-medoid in clustering Y-STR data. 
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INTRODUCTION 

 
Clustering can be regarded as the most significant 

unsupervised learning issue; so, as every other problem 
of this kind, it consists to find a structure in a set of 
unlabeled data (Jain and Dubes, 1988; Jain et al., 1999). 
The K-means algorithm is irritable to outliers because 
of an object with a high value may greatly damage the 
distribution of data. How the algorithm can be modified 
to decrease this sensitivity? In place of taking the mean 
value of the instances in a cluster as a reference point, a 
Medoid can be utilized, that‘s the most centrally located 
instance in a cluster. Therefeore the partitioning method 
can be executed based on the principle of minimizing 
the sum of the dissimilarities between each instance and 
its corresponding reference point; this constitutes the 
idea of the K-Medoids method. The main strategy of K-
Mediods algorithms is to determine K clusters in n 
objects by randomly finding a representative object (the 
Medoids) for all the clusters, each object is clustered 
with the Medoid to which it is the most closer. K-
Medoids method utilizes representative observations as 
reference points in place of taking the mean value of the 
observations in each cluster. The algorithm assumes the 
input parameter K, the number of clusters that will 
contain n objects. 

Clustering categorical data is a substantial research 
item in data mining. The K-modes algorithm (Huang, 
1998) expands the K-means model to cluster categorical 
data. Since the K-modes algorithm applies the same 
clustering process as K-means, it conserves the 
effectiveness of the K-means algorithm. Presently, 
some K-modes based on clustering algorithms have 
been suggested (He et al., 2005; Gan et al., 2005). 

Although the K-modes algorithm is remarkably 
efficacious technique, it shows two famous lacks as K-
means algorithm: 

 

• The solutions are just locally optimal.  

• Their accuracies are sensitive to the initial 
conditions. 
 
To surmount locally optimal in K-modes 

clustering, some algorithms such as tabu search (Ng 
and Wong, 2002) and genetic algorithm (Gan et al., 
2005) have been proposed to determine the globally 
optimal solution. But, they are not able to afford 
approximation guarantees. Therefore, efficient 
approximation techniques would be elaborated for K-
modes clustering. For our best knowledge, such kinds 
of approximation techniques are still not disposable 
nowadays. 

Partitioning algorithms deals with K-means 

(Hartigan and Wong, 1979) and K-medoids (Kaufman 

and Rousseeuw, 2005). A description of these and other 

clustering techniques are studied in Jain et al. (1999). 

The K-means algorithm is the most famous among 

these algorithms due to its effectiveness and simplicity. 

The K-medoids algorithms have been proved to be 

more robust because they are less sensitive to the 

outliers and don’t show limitations on attribute types 

while K-means are limited to multi-dimensional 

continuous datasets; and also, the clustering found is 

independent of the input order of the dataset. 

Furthermore, they remain invariant to orthogonal 

transformations and translations of the observations 

(Kaufman and Rousseeuw, 2005) 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(5): 963-969, 2014 

 

964 

The drawback of the K-medoids based algorithms 
is the time consuming thereby, they cannot be applied 
to large datasets. This encouraged the research of many 
approaches aiming to reduce the computational effort 
required to run these algorithms (Ester et al., 1995; Chu 
et al., 2002; Zhang and Couloigner, 2005). 

A general strategy is to sample and apply the 
clustering algorithm to the resulting subset of objects. 
The accuracy of the resulting clusters is generally 
dependent on the selection of a relevant subset of 
objects. 

The problem of clustering in general consists to 
partition a dataset consisting of n points (in m-
dimensional space) into K distinct clusters in such way 
that the data objects in the same cluster are more close 
to each other than to objects in other clusters. The three 
questions (Ahmad and Dey, 2007) related to the 
clustering process are: 

 

• Determining a similarity (or distance) between 
different data objects 

• Executing an efficacious algorithm to find the 
clusters of most similar objects in an unsupervised 
way. 

• Deduce a description that can distinguish the objects 
of a cluster in a brief way. 

 

Classic clustering algorithms utilize Euclidean 

distance measure to estimate the similarity of two data 

objects (Haung et al., 2005; Krishna and Murty, 1999). 

That gives good results if the attributes of a dataset are 

simply numeric in nature. Nevertheless, Euclidean 

distance measure collapses to determine the similarity 

of data objects if the attributes are categorical or mixed. 

The data mining community is submerged with high 

collection of categorical data (Jain et al., 1999) such as 

these retrieved from health sectors, banks and 

biological data. The sector of Banking or the sector of 

health data are mainly combined data containing 

numeric attributes like salary, age, etc. and categorical 

attributes such as: sex, smoking or non-smoking, etc. 

Clustering combined datasets into significative groups 

is a challenging problem in which a good distance 

measure that can sufficiently determine data similarities 

(Chaturvedi et al., 2001). For handling mixed numeric 

and categorical data, some of the methods that were 

employed are as follows: 
 

• Other method has been to discretize numeric 
attributes and apply categorical clustering 
algorithm. However, the discretization process 
conducts to loss information. 

• The numeric distance can be used for calculating 
similarity between object pairs after transformation 
of nominal and categorical attribute values to 
numeric integer values. Nevertheless, it is very 
hard to give correct numeric values to categorical 
values. 

The computational complexity of the PAM 

(Partitioning around Medoids) algorithm encouraged 

the development of CLARA (Clustering LARge 

Applications), a K-medoid algorithm based on 

sampling. CLARA utilizes many samples of the dataset 

and uses PAM on each one. Therefore, it chooses the 

clusters obtained from the execution, which gave the 

lowest objective function value and assigns each object 

of the entire data to the corresponding medoids. 

Kaufman and Rousseeuw (2005) shows that five 

samples of size 40+2K give satisfactory results. O (p
2
/ 

K + K(p- K)) (Where p>K is the size of the sample) is 

the computational complexity of each iteration of 

CLARA to process each sample, thus it is faster than 

PAM. CLARANS was designed to enhance CLARA. It 

applies a randomized search strategy in order to 

enhance both Partitioning Around Medoids and 

Clustering LARge Applications algorithms in terms of 

efficiency (computation complexity/time) and 

effectiveness (average distortion over the distances) 

respectively. 

The first element chosen is the object that has the 

minimum sum of dissimilarities (distances) to every 

other element (the objective function), so, the first 

element chosen is the dataset medoid. The other (K-1) 

medoids are chosen, one at a time, considering the 

elements that most reduce the objective function. When 

looking for new good medoids, CLARANS at random 

selects elements from the rest (n-K) elements, searching 

for the medoids of each group as its group center. The 

number of elements attempted in this step is limited by 

a user-provided parameter (maxNeighbor). 

Despite the success of Sun et al. (2002), the 

following observations encourage us to continue other 

alternative initialization methods: 

 

• The clustering resulting of iterative initial-points 

refinement algorithm seen in He et al. (2005) is 

random in nature. Then, different executions of the 

algorithm lead to different clustering results. To 

find clear clustering output, the end-user still must 

execute the algorithm repeatedly. 

• He et al. (2005) shows (in experimental results) 

that very poor clustering results can occur in some 

cases. Therefore, non-randomized initialization 

algorithm is needed in real applications. 

• Simple and easy to implement should be the new 

initialization method. It is expected that such 

initialization method merits good scalability. 

• It would be very advantageous if the new 

initialization algorithm can furnish performance 

guarantee to certain degree. 

 

Concerning the K-modes algorithm, a lot of 

research (Huang and Ng, 1999; Kim et al., 2004) have 

been led to enhance its performance. Huang and Ng 

present the Fuzzy K-modes algorithm (Huang and Ng, 
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1999) which assigns membership degrees to data 

objects in different clusters, the technique is applied in 

Ng et al. (2002) and genetic algorithm is used in  Gan 

et al. (2005) to enhance K-modes algorithm. Optionally, 

fuzzy k-modes algorithm is expanded by representing 

the clusters of categorical data with fuzzy centroids in 

place the hard-type centroids used in the classic 

algorithm (Kim et al., 2005; Kim et al., 2004), but, 

most of these methods are slower than the classic K-

modes algorithm in running time. Because of the K-

modes algorithm is sensitive to the initial conditions, 

another realizable way for enhancing its performance is 

to elaborate efficient initialization methods. Finally, an 

iterative initial-points improvement algorithm for K-

modes clustering is introduced in He et al. (2005). 

 

K-MEDOID CLUSTERING 

 

The K-Medoids algorithm was first introduced in 

Kaufmann and Rousseeuw (1990) and is not as 

sensitive to outliers as is the K-means. In this 

algorithm, each cluster is represented by the most 

centrally located object known as medoid. 

The general procedure for the algorithm is as follows: 

 

• Randomly choose K objects as the initial medoids. 

• Assign each one of the remaining objects to the 

cluster that has the closest medoid. 

• In a cluster, randomly select a nonmedoid object, 

which will be referred to as Ononmedoid  

• Compute the cost of replacing the medoid with 

Ononmedoid 
.this cost is the difference in the square 

error if the current medoid is replaced by Ononmedoid. 

If it is negative, then make Ononmedoid  the medoid of 

the cluster. The square error is again the summed 

error of all objects in the database: 

 

 2

( )

1 i

K

medoid i

i o C

E o O
= ∈

= −∑∑
 

 

where, Omedoid(i) is the medoid of the i
th

 cluster. 

 

• Repeat from (2) until there is no change. 

 

K-MODE CLUSTERING 

 

Most clustering algorithms focused on numerical 

dataset (Chaturvedi et al., 2001). However, much of the 

data existed in the databases is categorical, where 

attribute values cannot be naturally ordered as 

numerical values. 

Various clustering algorithms have been reported 

to cluster categorical data. He et al. (2005) proposed a 

cluster ensemble for clustering categorical data. 

Ralambondrainy (1995) presented an approach by using 

k-means algorithm to cluster categorical data. The 

approach is to convert multiple category attributes into 

binary attributes (using 0 and 1 to represent either a 

category absent or present) and treat the binary 

attributes as numeric in the k-means algorithm. Gowda 

and Diday (1991) used other dissimilarity measures 

based on “position”, “span” and “content” to process 

data with categorical attributes. Huang (1998) proposed 

K-modes clustering which extend the k-means 

algorithm to cluster categorical data by using a simple 

matching dissimilarity measure for categorical objects. 

Recently, (Chaturvedi et al., 2001) also presented K-

modes which used a nonparametric approach to derive 

clusters from categorical data using a new clustering 

procedure. Huang (2003) has demonstrated the 

equivalence of the two independently developed K-

modes algorithm given in two papers which done by 

Huang (1998) and Chaturvedi et al. (2001). Then, San 

et al. (2004) proposed an alternative extension of the K-

means algorithm for clustering categorical data which 

called K-representative clustering. 
In this study, we concern to adopt K-mode 

clustering algorithm which was proposed by Huang 
(1998). This method is based on K-means clustering but 
remove the numeric data limitation. The modification 
of K-means algorithm to k-modes algorithm as follows 
(Huang, 1998). 

 

• Using a simple matching dissimilarity measure for 
categorical objects 

• Replacing means of clusters by mode 

• Using a frequency based method to update the 
modes 

 
The simple matching dissimilarity measure can be 

defined as following. Let X and Yare two categorical 
objects described by m categorical attributes. The 
dissimilarity measure between X and Y can be defined 
by the total mismatches of the corresponding attribute 
categories of the two objects. The smaller the number 
of mismatches is, the more similar he two objects. 
Mathematically, it can be represented as follows 
(Gowda and Diday, 1991): 
 

 ( ) ( )
1

, ,
m

j j

j

d X Y x yδ
=

=∑                                           (1) 

 
where, 
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When (1) is used as the dissimilarity measure for 
categorical objects, the cost function becomes: 
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where, 
,i l

w W∈ and 
,1 ,2 ,, ,....,l l l l mQ q q q Q = ∈   

The k-modes algorithm minimizes the cost 
function defined in Eq. (3). The k modes algorithm 
consists of the following steps (Huang, 1998): 

 

• Select K initial modes, one for each cluster. 

• Allocate an object to the cluster whose mode is the 
nearest to it according to (1). 

• After all objects have been allocated to clusters, 
retest the dissimilarity of objects against the current 
modes. If an object is found such that its nearest 
mode belongs to another cluster rather than its 
current one, reallocate the object to that cluster and 
update the modes of both clusters. 

• Repeat 3 until no object has changed clusters after 
a full cycle test of the whole dataset. 

 

Y-STR DATA AND ITS APPLICATIONS 
 

Y-STR is defined as: Short Tandem Repeats on Y-
Chromosome, Y-STR data expresses the number of 
times an STR repeats, called allele value for each 
marker. This DNA method is nowadays very used in 
Anthropological Genetics as well as in Genetic 
Genealogy. Moreover, this method is a very hopefully 
method to sustain a traditional approach especially in 
studying human migration patterns and proving 
genealogical relationships. For further information, the 
Y-STR used in Anthropology can be found in a book 
called Anthropological Genetics: Theory, Methods and 
Applications (2007) and for Genetic Genealogy can be 
found in Fitzpatrick (2005) and Fitzpatrick and Yeiser 
(2005). The genetic distance for a person may differ 
from other by referring the allele values for each 
marker. If a person shares the same allele value for each 
marker is considered coming from the same ancestor 
from genealogical perspective. In a broader perspective, 
for instance in studying human migration patterns, it 
can be under the same haplogroups (In molecular 
evolution, a haplogroup is a group of similar haplotypes 
that share a common ancestor having the same Single 
Nucleotide Polymorphism (SNP) mutation in both 
haplotypes. Because a haplogroup consists of similar 
haplotypes, this is what makes it possible to predict a 
haplogroup from haplotypes) which includes different 
geographical X area throughout the world. The Y-STR 
data can be grouped into meaningful groups based on 
the distance for each STR marker. For genealogical 
data such as Y-Surname project, the distances are based 
on 0 or 1 or 2 or 3 mismatches, whereas the 
haplogroups are determined by a method known as 
Single Nucleotide Polymorphism (SNP) analysis. There 
are set of very broad haplogroups and all males in the 
world can be placed into a system of defining Y-DNA 
haplogroups by letters A through to T, with further 
subdivisions using numbers and lower case letters. See 
International Society of Genetic Genealogy 
(www.isogg.org). The haplogroups have been 

established by the Y Chromosome Consortium (YCC). 
For further details, see University of Arizona 
(http://ycc.biosci.arizona.edu/). 
 

NOTATIONS 

 

Let X = {X1, …, Xn}
 
be set of nY-STR data and 

XA = {A1, …, An}
 
 bet set of markers/attributes of Y-

STR. We define Aj
 

is the j-the attributes values as 
associated j-th marker with the actual STR allele value. 
We define X is a numerical data if it is treated only as 
numerical values as it is. Note that the Y-STR data are 
originally a numeric domain as associated with the 
allele values and it is discrete values. We define X is a 
categorical data if it is treated only as categorical 
values. Note that for each attribute Aj describes a 
domain values, denoted DOM (Aj). A domain DOM 
(Aj) is defined as categorical data if it is finite and 
unordered, e.g., for an a, b ∈ DOM (Aj) either a = b or 
a ≠ b. Consider the j-th attribute values are: Aj = {10, 
10, 11, 11, 12, 13, 14}, thus the Dom (Aj) = {10, 11, 12, 
13, 14}. We consider every individual has exactly 
attribute STR allele values. If the value of an attribute 
Aj is missing, then we denote the attribute value of Aj 
by a category ∈which means empty. Let Xi be 
individual, represented as [Xi,1, … ,Xi,m]. We define Xi 
= Xi,j if Xi = Xk, j  for 1 ≤ j ≤ m, where the relation Xi = 
Xk 

 does not mean that Xi 
and Xk are the same 

individual because there exists the two individuals have 
equal STR allele values in attributes A1, …. , Am. In Y-
STR, there exist a lot cases; individuals share the same 
STR allele values throughout markers but different 
individuals.  
 

RESULTS 
 
Experimental assembly: The experiments are led on 
two datasets of Y-STR data that were obtained from a 
database, called worldfamilies.net (www. 
worldfamilies.net): 
 

• The first data set is Y-STR data for haplogroup 
applications.  

• The second data set is Y-STR data for Y-Surname 
applications.  

 
Both data sets are based on 25 markers (attributes). 

The data sets are as follows: 
  

• The first data set of Y-STR haplogroup consists of 
535 records. The original data were 3419 that 
consisted of 29 groups. See the complete data in 
Family Tree DNA (www.familytreedna.com). 
However, the data had been filtered to chose only 8 
groups, called haplogroups, which consist of B 
(47), D (32), E (12), F (162), H (63), I (123), J (35) 
and N(61) respectively. The values in the 
parenthesis indicate the number of records belong 
to the particular group.  
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• The second data set of Y-STR Surname consists of 

112 data that belong to Donald Surname. 

 

See the details in Donald Surname Project 

(http://dna-project.clan-donald-usa.org) However, the 

original of 896 data of Donald Surname had been 

filtered to obtain only 112 individual based on its modal 

haplotypes. The modal haplotype for this surname is: 

13, 25, 15, 11, 11, 14, 12, 12, 10, 14, 11, 31, 16, 8, 10, 

11, 11, 23, 14, 20, 31, 12, 15, 15, 16. Thus, there are 6 

classes based on the genetic distance described as 

mismatches 0-5. The mismatches are determined and 

compared between the individual and its modal 

haplotypes.  

For better results, each dataset and algorithm is 

runs about 100 times. For each run, the dataset is 

randomly reordered from the original order. For hard k-

Modes, the diverse method is used for initial k because 

the methods had been proved better than the distinct 

method (Huang, 1998). 

 

Performances: 

In general case: An external quality measure is the F 

measure (Aggarwal et al., 1999) a measure that 

combines the precision and recall ideas from 

information retrieval (Van Rijsbergen, 1989; Kowalski, 

1997). We treat each cluster as if it were the result of a 

query and each class as if it were the desired set of 

documents for a query. We then calculate the recall and 

precision of that cluster for each given class. More 

specifically, for cluster j  and class i: 

 

( )Re ,
ij

i

n
call i j

n
=                                                 (4) 

 

( )Pr ,
ij

j

n
ecision i j

n
=

                                             

  (5) 

where,  

nij  = The number of members of class i in cluster j 

nj  = The number of members of cluster j  

ni  = The number of members of class i 

 

The F-measure of cluster j and class i is given by: 

 

( )
( ) ( )( )
( ) ( )

2 Re , Pr ,
,

Pr , Re ,

call i j ecision i j
F i j

ecision i j call i j

∗ ∗
=

+
           (6) 

 

For an entire hierarchical clustering the F-measure 

of any class is the maximum value it attains at any node 

in the tree and an overall value for the F measure is 

computed by taking the weighted average of all values 

for the F measure as given by the following: 

 

( ){ }max ,i

i

n
F F i j

n
=∑                                         (7) 

where, the max is taken over all clusters at all levels 

and n is the number of documents 

 

In our particular case: In order to evaluate the 

clustering accuracy, the misclassification matrix 

proposed by Huang (1998) is used to analyze the 

correspondence between clusters and the haplogroups 

or surname of the instances. Clustering accuracy is 

defined by: 

 

1

k

i

i

a

clustering accuracy
n

==
∑

                              (8) 

 

where, 

k  = The number of clusters 

ai  = The number of instances occurring in both 

cluster i and its corresponding haplogroup or 

surname 

n  = The number of instances in the data sets 

 

For precision and recall, the calculation s based on 

the following equations: 

 

1
Pr

k
l

l l l

a

a b
ecision

n

=

 
 + =

∑
                                          (9) 

 

1
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l l l

a

a c
call

n

=

 
 + =

∑

                                        

     (10) 

 

aI = The number of correctly classified objects 

aI  = The number of incorrectly classified objects 

cI  = The number of objects in a given class but not in 

a class 

n = The number of classes/clusters 

 

Table 1 gives overview clustering results of the 

evaluated algorithms. The bold faced numbers refer to 

the best clustering result obtained by that particular 

algorithm. For Y-STR 535 dataset, the highest average 

clustering accuracy belongs to k-Modes algorithm. The 

algorithm obtained the average of clustering accuracy, 

80.38% as compared to the other algorithms: k-Medoids 

(78.19%). However, in contrast the k-Medoids 

algorithm produces a value that closes to zero for 

standard deviation. The algorithm also obtained the 

highest value of minimum accuracy of 100 runs, 

whereas the k-Modes algorithm recorded the highest 

value of 94.77% for maximum value of 100 runs.  

For Y-STR 112 data set, the average clustering 

accuracy obtained by all algorithms is in between 38%-

44% only. This is because all algorithms cannot work 

well with the objects having very strong similarity 

among the classes. In fact, some of  the  Y-STR  objects  
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Table 1: The summary result for 100 runs of four algorithms 

Data set 

Evaluation 

(accuracy) 

Clustering algorithms 

----------------------------------- 

k-Modes k-Medoids 

Average 0.8038 0.7819 

535 Y-STR Standard deviation 0.0922 0.0262 

Max 0.9477 0.8336 

Min 0.5925 0.7514 
 

 

112 Y-STR 

Average 0.4212 0.4363 

Standard deviation 0.0265 0.0149 

Max 0.4643 0.4554 
Min 0.3393 0.3482 

 
Table 2: The summary result for precision 

Data set 

Evaluation 
(accuracy) 

Clustering algorithms 
----------------------------------- 

k-Modes k-Medoids 

Average 0.7338 0.6982 

535 Y-STR 

 

Standard deviation 0.0890 0.0575 

Max 0.9000 0.7839 
Min 0.5387 0.5444 

 
 

112 Y-STR 

Average 0.3857 04196 
Standard deviation 0.1064 0.0351 

Max 0.6641 0.4889 

Min 0.1934 0.2010 

 
Table 3: The summary result for recall 

Data set 

Evaluation 

(accuracy) 

Clustering algorithms 

----------------------------------- 

k-Modes k-Medoids 
Average 0.7445 0.6949 

535 Y-STR 

Standard deviation 0.0905 0.0480 

Max 0.8825 0.8569 
Min 0.5202 0.9988 

 

 
112 Y-STR 

Average 0.3332 0.4826 

Standard deviation 0.0792 0.0484 
Max 0.4889 0.6032 

Min 0.2027 0.1764 

 

are absolutely similar throughout 25 attributes 
(markers). However, the representative object-based 
technique produced the highest value of 43.63% but for 
the maximum value. Overall results can be seen; the 
two clustering algorithms seem to be no significant 
difference as it merely differs about 2%-5% only. 

Table 2 and 3 give some insight values of precision 
and recall respectively for each algorithm. The 
precision and recall that are very close to 1 indicate the 
best matching. The K-004Dodes algorithm initially 
dominates precision values, whereas the K-Medoids 
algorithm dictates the recall values. 
 

CONCLUSION 
 

Overall results can be concluded that K-mode 
algorithm is better than K-medoid in partitioning Y-
STR data; In addition, K-medoid causes high time 
consuming and its average clustering accuracy is also 
less than the K-Modes algorithm. If the overall results 
of K-medoid showed that the average clustering 
accuracy was obviously better than the K-mode’s, it 
could be tested for the other extended K-Medoids 
algorithms such as CLARA and CLARANS. These two 
algorithms are used for large data set and improved the 
time efficiency.  

However, from the results, it shows the K-Modes 
algorithm should be chosen for further improvement. 
Furthermore, from the observation of Y-STR data, the 
patterns are made up of many occurrences, in which 
they can be treated as modes. In addition, the modal 
haplotypes that are used to measure the genetic distance 
is also based on the modes. However, the modal 
haplotypes are not necessarily modes for all cases in 
any given data set because the modal haplotypes are the 
established references by SNP methods for a group that 
shares a common ancestor.  

In conclusion, the ideal case if the modal 
haplotypes can be used as the centroids, then the k-
Modes algorithm could be improved in partitioning Y-
STR data.  
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