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Abstract: The study derives the kinetics equation of the system and analyzes vibration performance considering the 
nonlinear factors like time-varying mesh stiffness, gear back lash, mesh error. With the time-varying mesh stiffness 
of the gear increasing, the vibration of the gear system is more intense. The gear backlash has little effect on the 
aperiodic behaviour. However, with the clearance increasing, the system response quickly converts to chaos 
response from single frequency response with the increase of gap and the mesh impact is more serious. The 
excitation frequency is close to the resonance frequency of system, the system appears chaotic response and the 
vibration amplitude increases. When the frequency is far from the natural frequency, the response of the system 
tends to be steady. So it is easy to predict the dynamic performance in the design and make the system avoid the 
resonance frequency. In the following profile modification of gear, it also provides the data sources. 
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INTRODUCTION 

 
The analysis of tooth mesh stiffness is based on the 

classic material mechanics early, which includes 
Equivalent toothed law, Cantilever method (Li and Jun, 
1997). And then the elastic mechanics method is used 
to study the deformation of gear meshing, but this kind 
of method are very different compared with actual 
working condition in shape, load, boundary conditions, 
etc. With the development of computer technology, 
people begin using the finite element method to 
calculate the elastic deformation of the gear teeth and 
tooth root stress (Wang and Liu, 2003). However, the 
contact force (engaging force) is a distributed force 
rather than concentrated force. To solve this problem, 
the introduction of a numerical contact method is 
chosen. 

There are two kinds of nonlinear dynamics model 
of gear system which are rigid impact model (Shaw, 
1985) and elastic impact model. The first model 
hypothesizes that impact object is rigid and uses a 
compensation coefficient to describe the energy loss 
(Smith and Liu, 1992). Although this method can not be 
directly used for the analysis of the gear system, but 
some of the viewpoints and conclusions for the gear 
system is of great value. The elastic impact model 
(Dubowsky and Freudenstein, 1971; Veluswami and 
Crossley, 1975) can reveal some important 
characteristics of nonlinear clearance vibration. Two 
kinds of damping are considered in the model: viscous 

damping and impact damping (Dubowsky and 
Freudenstein, 1971). The analysis is based on the elastic 
impact model in study. 

 
THE KINETICS MODEL OF GEAR 

 
Nonlinear dynamic model: Assuming that the system 
is composed with the only having elastic spring and the 
only having inertial quality block, this study uses the 
lumped  mass  method (Li and Jun, 1997; Tamminana 
et al., 2006) to build the nonlinear dynamic model, 
ignoring the elastic deformation of the transmission 
shaft and support system and considering about the 
nonlinear factors of the time-varying stiffness k(t), 
mesh error e(t), gear back lash 2b. The model is showed 
as Fig. 1. 

According to the Newton Law and the nonlinear 
dynamic model of the gear, the motion differential Eq. 
(1) is established as follow: 
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where, 

t  = Time 
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Fig. 1: The nonlinear dynamic model of the gear 
 

c  =  The meshing damping 

bir  =  The radius of base circle of the gear i (i = 1, 2) 

iθ  =  The torsional displacement of the gear i (i = 1, 

2) 

iI  =  The moment of inertia of gear i (i = 1, 2)  

iT  =  The torque of the gear i (i = 1, 2) 

)(tk  =  The time-varying stiffness 

)(te  =  The general error of mesh gears measured 

along the base circle tangent direction 

 

The dynamic transmission error of gear: 

 

2211 θθ bb rrx −=                               (2)  

 

Deduce by the Eq. (1) and the Eq. (2): 
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where, 

em  =  The equivalent mass 

mF  =  The total normal force, without considering 

the fluctuation of the prime mover and the load  

)(xf
 
= The nonlinear function of the backlash 

 

The defined transmission error is the difference 

between dynamic transmission error and the static 

transmission error: )()()( tetxtq −= . 

So the Eq. (3) can be transformed into as follows: 

 

)())(()()()( temFtqftktqctqm eme
&&&&&& −=++        (6) 

 

where, 

Fm  =  The external excitation 

)(teme
&&−   =  The gear's internal excitation (the error 

stimulation) 

 

Equation parameters: 

 

• Gear mesh stiffness )(tk : Using the finite element 

contact method, the mesh stiffness curve is 

obtained as shown in Fig. 2. Time-varying stiffness 

changes periodically, so the gear mesh stiffness can 

be developed into Eq. (7) in form of the Fourier 

series (Wang and Howard, 2005): 
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where,  

mk  =  The average meshing stiffness 

,
i i

n z  =  Gear rotational speed and tooth number (i = 1, 

2)  

eω  =  Meshing frequency 

jφ  =  Phase angle 

jk  =  Amplitude of the j-th harmonic 

 

• General teeth errors )(te : In the gear 

transmission process, the mesh error takes the gear 

meshing frequency 
eω (Munro, 1992; Raclot and 

Velex, 1999)
 
as the basic frequency. Assuming all 

the engaging position occurring on the theoretical 

meshing line, the mesh error is converted into the 

form of the Fourier series based on the gear mesh 

frequency, as displayed in Eq. (8): 
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Fig. 2: Gear mesh stiffness curve 

 

 
 
Fig. 3: The gear mesh error curve 

 
Table 1: The values of mesh error 

Order j  

Static transfer  error/( m ) 
-----------------------------------------------------------------

Amplitude ej (10-6 ) Phase angle θj (rad ) 

0 20  
1 3.45 0 

2 0.26 π 

3 0.45 0 

 
where, 

me  =  The average amplitude of gear error 

Aje , Bje , je  =  Each harmonic component amplitude 

of error 

jθ  =  The harmonic phase angle of error  

 
Every harmonic component amplitude of error is 

defined as the Munro experimental values (Munro, 
1992) in analysis the affection meshing error on gear 
vibration, which are shown in Table 1 and Fig. 3. 
  

• Meshing damping: The equation (Li and Jun, 
1997) of meshing damping is as follows:  
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where, ς
 
is the damping ratio 

  

• Nonlinear function of gear back lash: The 

backlash (Wang and Liu, 2003; Theodossiades and 

Natsiavas, 2000)
 
is circumferential wobbles of one 

gear calculated on the pitch circle when another 

tooth is fixed for the assembled gear pair. Backlash 

referred in this study is the measured value in the 

engagement line. Defining the gear backlash as 2b, 

the nonlinear function of the gear backlash is 

obtained Eq. (10) assuming the backlash is 

symmetric: 
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DIMENSIONLESS ON THE DIFFERENTIAL 

EQUATION OF GEAR SYSTEM 

 

In the study, the differential equation of gear is 

converted   into   non-dimensional  form  (Tamminana 

et al., 2006; Raclot and Velex, 1999; Theodossiades 

and Natsiavas, 2000). This dimensionless equation 

doesn't depend on the physical quantity any longer, so 

that it can avoid excessive difference of magnitude 

between parameters in the numerical analysis and it can 

offer facilities for controlling error and defining step.  

From the Eq. (6), the natural frequency ω0 of 

SDOF gear system:  

 

em mk /0 =ω  

 

where, 

km  =  The mean of mesh stiffness 

me  =  Equivalent mass 

 

Defining dimensionless time t0ωτ = , )()( tlutq = , 

(l is the characteristic length, taking unit length as 10e-

6) )(tq& and )(tq&& can be deduced to Eq. (11) and Eq. (12): 
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Taking the meshing stiffness Eq. (7) and 

transmission error Eq. (8) into the Eq. (6), the analysis 

model of dimensionless is obtained as follows: 
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))(( τuf is the dimensionless nonlinear function of 

clearance. 
 

NUMERICAL CALCULATION AND 
RESULTS ANALYSIS

 
Numerical calculation: This study uses the variable 
step size fourth order Runge-Kutta to solve the 
nonlinear differential equation. First, the second order 
differential Eq. (13) is turned into two first
differential equations (He et al., 2008)
the equation directly by the fourth order Runge
In order to obtain two first-order differential equations 
from Eq. (13), it is necessary to define a new variable 
  

}',{}',{ 21 uuvvv &==          

  

So the Eq. (13) can be deduced into the form of 
state space (Eq. 16): 

Table 2: The parameters of the gear system 

Gear Tooth number z Modulus

1 62 2.5

2 42 2.5

 
Fig. 4a: Time-domain chart and spectrogram of the system with σ = 0

 

 

Res. J. Appl. Sci. Eng. Technol., 7(6): 1125-1132, 2014 

 

1128 

( )( )

cos( ))

u u k n f uτ ς τ τ τ
      (13) 

−

<

>

lb

lb

lb

/

/)

/

       (14) 

,
2

0ωlm

F

e

m  ,
l

e
e

j

bj =
 

is the dimensionless nonlinear function of 

NUMERICAL CALCULATION AND  
RESULTS ANALYSIS 

This study uses the variable 
Kutta to solve the 

nonlinear differential equation. First, the second order 
is turned into two first-order 

., 2008) and then solve 
the equation directly by the fourth order Runge-Kutta. 

order differential equations 
13), it is necessary to define a new variable u: 

                         (15) 

deduced into the form of 
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The static deformation solved by tooth stiffness is 

considered as initial values. Successive iterating won’t 

stop until results are close to the desired solution. 

Numerical solution of Eq. (15) is finished by matlab 

software. In addition, considering the impact of the 

initial value, it is necessary to delete the response of 

hundreds of cycle at the beginning, so that the ideal 

phase diagram is gained. 

 

Analysis of results: In analysis, the parameters of the 

gear is shown in Table 2 (Al-Shyyab and Kahraman

2005; Ambarisha and Parker, 2007;

2005). 

 

• The effect of time varying mesh stiffness for 

gear vibration: The above convert the mesh 

stiffness into the form of the Fourier series

the high-order harmonic has the greater impact at 

low frequencies because the 

produces resonance only inΩ
mesh stiffness is converted into the form of 

harmonic function, as shown in

(18), so as to study the effect of time

stiffness on system vibration: 

 

)cos(1)( φστ +Ω+= tk   

 

Modulus m (mm) Addendum coefficient Tooth width 

2.5 1 85 

2.5 1 85 

 

domain chart and spectrogram of the system with σ = 0 

( ) 2 ( ) (1 cos( ) ( ( )))

cos( )

v v k n f uτ ς τ τ τ+ + + Ω

         (16) 

The static deformation solved by tooth stiffness is 

considered as initial values. Successive iterating won’t 

stop until results are close to the desired solution. 

is finished by matlab 

software. In addition, considering the impact of the 

initial value, it is necessary to delete the response of 

hundreds of cycle at the beginning, so that the ideal 

In analysis, the parameters of the 

Shyyab and Kahraman, 

 Wang and Howard, 

The effect of time varying mesh stiffness for 

The above convert the mesh 

the form of the Fourier series Eq. (7), 

order harmonic has the greater impact at 

low frequencies because the n-th harmonic 

n/1=Ω  near. The 

mesh stiffness is converted into the form of 

as shown in Eq. (17) and Eq. 

18), so as to study the effect of time-varying 

                         (17) 

Moment of inertia 

37257 

82103 

 



Res. J. Appl. Sci. Eng. Technol.,

 
Fig. 4b: Time-domain chart and spectrogram

 

 
Fig. 4c: Spectrogram and phase plane portrait of the system with σ = 0.6

 

mk

k1=σ      

 

where,  

k1 =  The alternating component of the mesh stiffness

km  =  The average component of the mesh stiffness

σ  =  The fluctuation coefficient of the mesh stiffness

 

which shows the fluctuation degree of mesh stiffness. It 

means that the greater σ is, the more intensely the mesh 

stiffness fluctuates. 

Vibration responses are calculated as defining σ = 

0, σ = 0.4, σ = 0.6 and the results are shown in 

to c, observing the vibration situation with the stiffness 

amplitude.  

When σ is equal to zero, as shown in 

mesh stiffness is a constant and the time history of the 

system is harmonic steady response. When σ = 0.4, as 

shown in Fig. 4b, the mesh stiffness is quasi

response. 
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domain chart and spectrogram of the system with σ = 0.4 

 

pectrogram and phase plane portrait of the system with σ = 0.6 

            (18) 

The alternating component of the mesh stiffness 

The average component of the mesh stiffness 

fluctuation coefficient of the mesh stiffness 

which shows the fluctuation degree of mesh stiffness. It 

means that the greater σ is, the more intensely the mesh 

Vibration responses are calculated as defining σ = 

0, σ = 0.4, σ = 0.6 and the results are shown in Fig. 4a 

c, observing the vibration situation with the stiffness 

When σ is equal to zero, as shown in Fig. 4a, the 

mesh stiffness is a constant and the time history of the 

system is harmonic steady response. When σ = 0.4, as 

4b, the mesh stiffness is quasi-periodic 

When σ = 0.6, as shown in F

produces a chaotic response. Evidently, with σ

increasing which is the fluctuation coefficient of the 

time-varying mesh stiffness, the vibration 

experienced harmonic response

response and chaotic response. In addition, we can also 

see that the vibration amplitude increases accordingly 

with the ascent of the fluctuation coefficient σ from the 

spectrogram Тτ.  

 

• Gear backlash: The gear system

nonlinear vibration characteristics with the gear 

backlash. The effect of the gear back lash on the 

vibration of the gear system is various. It is easy to 

get the influence of gear backlash on vibration 

cycle from the phase diagram of the response. In 

order to highlight the clearance of nonlinear effect, 

assuming the meshing stiffness is a constant. Take 

the frequency ratio Ω = 0.85 and the response 

results are shown in Fig. 5 by changing the size of 

 

 

Fig. 4a, the system 

e. Evidently, with σ 

increasing which is the fluctuation coefficient of the 

varying mesh stiffness, the vibration state 

experienced harmonic response, quasi-periodic 

chaotic response. In addition, we can also 

ude increases accordingly 

with the ascent of the fluctuation coefficient σ from the 

The gear system shows a strong 

nonlinear vibration characteristics with the gear 

The effect of the gear back lash on the 

vibration of the gear system is various. It is easy to 

get the influence of gear backlash on vibration 

cycle from the phase diagram of the response. In 

order to highlight the clearance of nonlinear effect, 

he meshing stiffness is a constant. Take 

the frequency ratio Ω = 0.85 and the response 

5 by changing the size of 
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                                           (a) b = 9µm                                                        (b) b = 30µm 

 

 
 

(c) b = 120µm 

 

Fig. 5: The response of the system phase diagram with different running clearances 

 

the gear backlash with other parameters 

unchanged. 

 

As Fig. 5 shown, the gear clearance has slight 

influence on the aperiodic vibration in a certain range. 

But the system response quickly converts to chaos 

response from single frequency response with the 

increase of gap and the mesh impact is more serious. 

 

• Meshing error: From the differential Eq. (13), the 

external load of the gear is constant and meshing 

error is alternating incentive. If only change the 

size of the amplitude of the first step error in the 

Eq. (8) to study the effect of the error on the 

system response which is shown in Table 3. 

 

The Fig. 6 is frequency response curve of the gear 

system under the two different error amplitudes (e1 = 

3.45, e1 = 6.5), meanwhile, the frequency ratio Ω is 

equal to 0.85 and other parameters remain unchanged. 

Table 3: Error excitation 

 Error amplitude e1 of the first step 

1 3.45 

2 6.5 

 

 

 

Fig. 6: Frequency response curve under the two different 

error amplitudes 
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From the Fig. 6, it is obviously to see that the 

amplitude of the error excitation has significant impact 

on the dynamic response amplitude of the system. 

When the error amplitude increases, the vibration will 

be greatly enhanced. Thus it can be seen that, in the 

gear transmission process, the size of the alternating 

component of the internal incentive also directly affects 

the non-linear dynamic response in the meshing 

process.   Under   the  constant  average  component  of  

 

internal incentive, the greater alternating error 

motivation is, the more serious the nonlinear response 

of the system is and so the vibration is fiercer. 

 

• Exciting frequency: Changing the frequency to 

study the affect of the frequency on the nonlinear 

dynamical response with the other parameters 

unchanged. Obviously, it has practical significance 

to   study  the  vibration  response  in  the  near  the  

   
 

(a) Ω = 0.8                                                          (b) Ω = 1.15 

 

  
 

    (c) Ω = 1.85                                                          (d) Ω = 2.35 

 

  
 

                                                   (e) Ω = 3.0                                                                     (f) Ω = 3.5 

 
Fig. 7:  The phase diagram under the different frequency ratio 
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resonance frequency and high-speed working state, 
so let the variable Ω change between 0.8 and 3.5 
and other parameters remain unchanged. The 
results are as follows: 
 
As the Fig. 7 shown, when the frequency ratio Ω = 

0.8, the Fig. 7a is a periodic solution with the cycle T = 
2π/Ω, which is known as a single period attractor in the 
nonlinear vibration theory; when Ω = 1.15, the Fig. 7b 
is a neither repeated nor closed track filled with a part 
of the phase space and the system generates a chaotic 
response; When Ω = 1.85, the system is also harmonic 
response and its cycle is twice the original. While Ω is 
equal to 2.35, the system is a curve band with a certain 
width and it’s a quasi cycle response. When Ω = 3.0, 
the system occurred chaotic response; when Ω = 3.5, 
the response of the system is the harmonic response and 
this shows, when the frequency is far from the natural 
frequency, the response of the system tends to be steady 
again. It’s visible that the exciting frequency has a very 
significantly effect on the gear vibration system. 

 
CONCLUSION 

 
This chapter used lumper parameter approximation 

to establish the gear system dynamics model, consider 
the effection of the time-varying mesh's stiffness, error 
and gear back lash. Using variable space 4th-order 
Runge-kutta numerical method solves the gear system's 
nonlinear kinetics differential equations, to obtain the 
domain diagram, spectrogram and phase plane of the 
response of the system by the larger number of 
numerical calculation analyzed the impact of various 
parameters on the gear dynamic characteristics, thus to 
predict the dynamic performance at the design stage, 
make the system as much as possible to avoid the 
resonance frequency.  
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