
Research Journal of Applied Sciences, Engineering and Technology 7(6): 1149-1155, 2014 
DOI:10.19026/rjaset.7.373 
ISSN: 2040-7459; e-ISSN: 2040-7467 
© 2014 Maxwell Scientific Publication Corp. 
Submitted: February 27, 2013                        Accepted: March 27, 2013 Published: February 15, 2014 

 
Corresponding Author: A. Ndiaye, Laboratory of Renewable Energy, Polytechnic Higher School, University Cheikh Anta 

Diop, Dakar-Fann, Senegal 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

1149 

 

Research Article 
Design of a Neural Controller for Single Phase Inverter in Grid Connected 

 Photovoltaic System 
 

1A. Ndiaye, 1L. Thiaw, 1G. Sow, 1S.S. Fall, 1M. Thiam, 1M. Kassé and 2G. Sissoko 
1Laboratory of Renewable Energy, Polytechnic Higher School,  

University Cheikh Anta Diop, Dakar-Fann, Senegal 
2Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of  

Science and Technology, University Cheikh Anta Diop, Dakar, Senegal 
 
Abstract: This study shows a neural network based control strategy of the current injected into a single-phase grid 
via an inverter. The inverter is supplied by a Photovoltaic Generator (PVG). The optimal control of PVG is ensured 
by an MPPT algorithm of type P and O (Perturbation-Observation). The synchronization of the inverter with the 
electrical grid is ensured by a Phase-Locked Loop (PLL) device. The sizing and the modeling of the system 
components have been presented. A Neural Network Controller (NNC) and a Proportional Integral (PI) controller 
have been implemented and compared. Obtained results show that the NNC have faster response and lower THD 
without overshoots. 
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INTRODUCTION 

 
The main difficulties in the control strategy of real 

dynamic systems are the non-linearity and 
uncertainties. The control of the system requires in 
general the development of a mathematical model 
making it possible to establish the transfer function of 
the system that links the inputs and the outputs. This 
supposes good knowledge of the dynamic and 
properties of the system. In the non-linear system case, 
the conventional techniques have often shown their 
limits mainly when the system to be studied presents 
strong non-linearity. The lack of right knowledge 
necessary for the development of the mathematical 
models is somehow the origin of those limits 
(Mohammed et al., 2007). 

Recourse to the control methods based on artificial 
intelligence has become a necessity. These control 
methods follow a process of extraction of the 
knowledge of the system to be studied from collected 
empirical data, so as to be able to react in front of new 
situations: this strategy is known as intelligent control 
(Panos and Kevin, 1993). 

Artificial Neural Networks (ANN) are used in 
intelligent control due to the fact that they are 
parsimonious universal approximators (Panos and 
Kevin, 1993; Rivals et al., 1995) and that they have the 
capacity to adapt to a dynamic evolving through time. 
Moreover, as multi-input and multi-output systems, 

they can be used in the frame of the control of the 
multivariable systems. 

A feed-forward ANN makes one or more algebraic 
functions of its inputs, by the composition of the 
functions made by each one of its neurons (Dreyfus, 
2002). These are organized in layers and inter-
connected by well-balanced synaptic connections. The 
supervised training of a neural network consists in 
modifying the weights to have a given behavior 
minimizing a cost function often represented by the 
quadratic-error (Panos and Kevin, 1993; Cybenko, 
1989). 

Several authors have tried to exploit the advantages 
of neural networks to control a dynamic system, 
precisely, within the field of robotics (Rivals et al., 
1995; Yildirim, 1997) and for the control of asynchrony 
motors (Mohammed et al., 2007; Panos and Kevin, 
1993; Branštetter and Skotnica, 2000). More details on 
neural network controllers can be found in Panos and 
Kevin (1993), Wishart and Harley (1995) and Ronco 
and Gawthrop (1997). 

Tine et al. (2009) made a comparative study 
between PI controller, PID controller and a fuzzy logic 
based controller for an inverter control shows that the 
PI controller has better performances, though the fuzzy 
logic based controller is an intelligent one. 

This study presented, the capacities of Multi-Layer 
Perceptron (MLP) to learn the inverse model of non-
linear systems are used to work out the control of a 
single-phase inverter used as an interface between a 
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Photovoltaic Generator (PVG) and an electrical grid. 
The objective is to inject into the grid as much 
photovoltaic energy as available, with low Total 
Harmonic Distortion (THD) and good reference signal 
tracking characteristic. 

 
INVERTER CONTROL BY USING 

A PI CONTROLLER 
 

The PI controller is the most used controller in 
industrial systems. It is easy to implement and is cost 
efficient. 

The control scheme of a grid connected 
photovoltaic system used in this work is given in Fig. 1. 

A loop control is elaborated in order to ensure the 
injection of the maximum available photovoltaic energy 
into the grid. This loop enables current control given a 
current reference determined by the maximum power 
point tracking system (Fig. 1 and 2). In oder to 
determine the controller parameters, the whole system 
model has been established. The inverter transfer 
function links inverter output current to the duty cycle. 
The PI controller parameters can be determined from 
this transfer function. The input voltage of the inverter 
is supposed to be constant (ripple are neglected). From 
Fig. 1, Eq. (1) can be established: 
 

L��
���

��
= dV�� − v
                              (1) 

 
where, 
L  = Inductor value of the filter 
�� = Current injected into the grid 
α  = Duty cycle 
V�� = Inverter input voltage 
��  = Grid voltage 
 
Using small signals models, it is possible to write: 
 

ααα ~+=  
 

where, 
�� = The average value of the duty cycle  
�� = The duty cycle ripple 

d = D + d�   
 
�� = ��� + ��� 
 

where, 
� �� = The average value of the current  
��� = The current ripple 
 

Considering that the grid average voltage is null 
and neglecting its ripples, Eq. (2) can be obtained: 
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~
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id
dcg =                               (2) 

 
Applying Laplace transform to Eq. (2) and 

considering the control loop represented in Fig. 2, we 
get the open loop transfer function expressed by Eq. (3) 
linking the injected current to the duty cycle: 
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where,  
���   = The magnitude of the carrier 
���  = Gain loop (gain of the current sensor) 
 

Exploiting this transfer function allows the PI 
coefficients to be determined Eq. (4) and (5): 
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Fig. 1: Control loop of a grid connected photovoltaic system 
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Fig. 2: Control loop of the inverter current 
 
where, 
� !  = Cut-off frequency 
phm = Phase margin 
 

The PI controller input consists of the error 
between the current provided by the inverter and its 
reference. The objective of this control is to correct the 
current injected into the grid (��) so that it follows the 
reference value (��"#$). 

This type of controllers is simple but it gives 
limited performances if the system integrates strongly 
nonlinear elements such as static inverters. In fact, the 
determination of the controller parameters can be done 
through different methods but generally depends on the 
knowledge of the system to be controlled and 
mathematical model of the system is not always 
available. Equation (5) and (4) show that the parameters 
of the PI controller (kp and ki) depend on Vcd which is 
related to meteorological conditions (solar irradiation 
and temperature). So it is worth adapting this 
coefficient any time the meteorological conditions 
change, which seems to be impossible. Therefore an 
adaptive control has to be set up. This fact has led to 
carrying out a comparative study of a PI corrector and 
neural network controller. 
 

NEURAL NETWORK CONTROLLER  
FOR SINGLE PHASE INVERTER 

 
Principles of artificial neural networks: The ANN 
network is based on models that try to explain human 
brain functioning. They are adapted to the treatment in 
parallel of complex problems such as speech and face 
recognition, or simulation of nonlinear functions. So 
they offer a new means of information treatment. In 
Fig. 3, the main elements of an artificial neural are 
depicted: the input, processing unit and an output. 
A formal neuron is characterized by Eq. (6) and (7): 
 

%� = �('�)                                             (6) 
 

'� = ) *�+%�
,-
+./ + 0�                                             (7) 

 
where, 
%+ = State of a neuron 1 connected to neuron i 
'� = Activity of neuron i 
*�+   = Weight of the connexion between the neurons j, i 
bi    = Bias 

 
 
Fig. 3: Representation of a formal neuron 
 

Input nodes 
Hidden layer 

Output node 

 
 
Fig. 4: Architecture of an MLP network 
 

The MLP network (Fig. 4) is a feed forward 
network that is composed of several layers, each neuron 
of a layer being totally connected to the neurons of the 
next layer. The resulting network is able to approximate 
any nonlinear function. 

The error made on the kth output neuron for a 
sample p is expressed by Eq. (8): 
 

δ2, 4 = 56,7 − %6,7                              (8) 
 
where, 
06,7 = Desired output of the neuron k for the sample p 
%6,7 = Output of the neuron k for the sample p 

 
As a result, the total error (for all output neurons) is 

estimated by: 
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where,  
? = A number of neurons on the output node 
 

The synaptic weights are then adjusted so as to 
reduce the output error for the whole samples of the 
data base: 
 

∑
=

=
N

p
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1

                             (9) 

 
where, N designates the size of the database. 

The process of the network parameters estimation 
is called training. The set of parameters that are to be 
estimated   includes   all   the  weights  and  biases.  An

Ai Xi
Xi = f (Ai)

X1

X2

Xn

- - -



 

 

Res. J. Appl. Sci. Eng. Technol., 7(6): 1149-1155, 2014 

 

1152 

 
 
Fig. 5: Grid connected photovoltaic system with single phase inverter and neural controller  
 
algorithm called back propagation is mainly used for 
the network training. See Ahmed et al. (2008) for more 
details on neural networks. 
 
Proposed design method of the neural controller: 
Within the framework of this study, the system to 
control is a single-phase inverter serving as an interface 
between a photovoltaic generator and an electrical grid. 
The structure of the neural controller for photovoltaic 
energy injection into the grid is represented in Fig. 5. 

The inputs of the neural controller are the current 
injected into the grid, the grid voltage and the error 
between the actual and the reference values of the 
inverter output current.  

Database for the neural controller training is 
obtainend from the system simulation with several PI 
controllers, each of witch being determined for a given 
system operating point, defined by the inverter input 
DC voltage. 
 

RESULTS AND DISCUSSION 
 

The inverter is designed so that its switches are 
able to support the maximum current ��<@A and the 
maximum open circuit voltage (Vco) of the photovoltaic 
generator. Table 1 gives the inverter parameters and 
those of the photovoltaic generator.  
The filter inductor value is determined by Eq. (10): 
 

s

dc

fI

V
L

max16 ∆
=

                                    

 (10) 

 
where, 
Vcd = The inverter input voltage 
fs = The switching frequency  
Imax = Is the maximum value of the output current 

ripple 

Table 1: Inverter and photovoltaic generator parameters 
Parameter Value 
DC bus voltage (Vdc = Vopt at 1 kW/m² and 25°C) 800 V 
Opened circuit voltage of the PV generator 1000 V 
Short circuit current of the PV generator 6.8 A 
Filter inductor value (L) 5 mH 
ESR value of the inductor 0.2 Ω 
Maximum power of the PV generator 4 kW 
Grid RMS voltage value (Vgeff) 220 V 
Grid frequency (fo) 50 Hz 
Inverter switching frequency (fs) 20 kHz 
 
Table 2: PI controller parameters 
Coefficients kp ki 
Values 5.23 6.33 104 

 

 
 
Fig. 6: Inverter output current and its reference value when a 

PI controller is used 
 

The system is first simulated with the PI controller 
(Table 2). The injected current and its reference value 
are presented in Fig. 6, whereas Fig. 7 shows grid 
voltage and injected current for unity power factor. A 
disturbance consisting of a 40% reduction of reference 
current magnitude is introduced at t = 36 ms. The PI 
controller presents a relatively fast reference current 
tracking but an important overshoot can be noticed. The 
main drawbacks of this controller is due to the fact that 
it has to be designed for a given meteorological 
conditions. 
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Fig. 7: Grid voltage and inverter output current when a PI 

controller is used 
 

 
 
Fig. 8: Inverter output current and its reference value when a 

neural controller is used 
 

 
 
Fig. 9: Grid voltage and inverter output current when a neural 

controller is used 

The design of the neural network controller 
consists of designing several PI controllers for various 
meteorological conditions. Following values are used 
for the solar irradiation and the temperature: (0.25 
kW/m², 25°C), (0.25 kW/m², 40°C), (0.6 kW/m², 
25°C), (0.6 kW/m², 40°C), (1 kW/m², 25°C) and (1 
kW/m², 40°C). 

Control signals from the PI controllers, grid 
voltage, inverter output current and its reference value 
are gathered to form a large database used for the neural 
controller training. 

Figure 8 shows inverter output current and its 
reference value when neural controller is used for the 
following meteorological conditions: a solar irradiation 
of 1 kW/m² and a temperature of 25°C. A disturbance 
consisting of a 40% reduction of reference current 
magnitude is introduced at t = 36 ms. Obtained results 
prove fast tracking capability of the neural controller 
without overshoots. 

Grid voltage and injected current for unity power 
factor are shown in Fig. 9. 

A comparison study of the two controllers is 
performed throughout simulation of three cases. 

In the first case, the simulation is made for the 
following meteorological conditions: solar irradiation 
of 1 kW/m2 and temperature of 50°C. The PI controller 
parameters for these meteorological conditions has 
resulted in kp = 1.16 and ki = 7.07 103 rad/s. 

The Total Harmonic Distortion (THD) of both 
controllers have been calculated and compared. 
Obtained results are presented on Fig. 10 and 11. They 
show that the neuronal controller has a THD slightly 
weaker than the PI controller. 

In the second simulation case, the same 
meteorological conditions were used but a disturbance 

 

 
 

Fig. 10: THD obtained with a PI controller for a solar irradiation of 1 kW/m2 and a temperature of 50°C 
 

 
 

Fig. 11: THD obtained with the neural controller for a solar irradiation of 1 kW/m 2 and a temperature of 50°C 
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(a) 
 

 
 

(b) 
 

Fig. 12: Performances of the neuronal controller, (a) and PI controller of (b) with disturbance, for an irradiation of 1 kW/m2 and a 
temperature of 50°C 

 

 
 

(a)                                                                                     (b) 
 

Fig. 13: Current injected for a solar irradiation of 0.172 kW/m2 and a temperature of 25°C: (a) neural controller, (b) IP controller 
 
Table 3: Comparison results of the PI and neural controller 
Performance Neural controller PI controller 
Time response (ms) 0.50 1 
Overshoot current (A) 0 5 
Total Harmonic Distortion (THD) 
(%) 

0.33 0.53 

Magnitude of the fundamental 
current (A) 

14.96 15 

Relative current error: 100* (ig - 
ig_ref) /Ig_refmax 

0.67 1.33 

 
consisting in a rapid variation of the reference current 
has been introduced. The simulation results are 
represented on Fig. 12 and in Table 3. These results 
show that the relative error between the injected current 

and its reference is weaker for the neural controller, be 
it the half of the one obtained by PI controller. 
Moreover, the PI controller has a response time twice 
greater than that of the neural controller. Unlike the PI 
controller, the neural controller responds to the 
disturbance without overshoot. These two controllers 
provide a fundamental magnitude of about 15 A. Yet, 
considering the nature of both signals, the neural 
controller gets closer to the reference, giving its weak 
THD (Fig. 10 and 11).  

In the third case of simulation the following values 
of  the  solar  irradiation  and  temperature  were used: 
G = 0.172 kW/m2 and T = 25°C; but the PI correct 
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calculated for a solar irradiation of 1 kW/m² and a 
temperature of 50°C is maintained. Figure 13 gives the 
simulation results. The latter show that when the 
meteorology conditions change meaningfully, the PI 
corrector performances decrease. On the other hand the 
neural controller adapts itself well to the variations of 
the meteorological conditions. 

In Sajedi et al. (2011), Hoseynpoor and Pirzadeh 
Ashraf (2011) controlled the current injected in network 
by the method "Adaptive Predictive Current Control 
(APCC)" presents a THD of 2.5% for an  irradiation of 
1 kW/m2. With the same irradiation, we have been able 
to get a THD of about 3.7 times smaller. 
 

CONCLUSION 
 

A neural controller and a PI controller were 
presented in this study in a purpose of a grid connected 
photovoltaic power system. The training and validation 
data of the used neural controller were obtained by 
simulation of the whole system with several PI 
controllers calculated for various meteorological 
conditions. The simulation results show that the neural 
controller gives better results than a PI controller. The 
advantage of neural network based controller is that it 
adapts to the changing of meteorological conditions 
unlike the IP controller whose performance decreases 
during a strong variation of the temperature and/or 
irradiation.  
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