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Abstract: A versatile finite element method is applied to analyze the dynamic responses of railway track and 
bridges under moving railway vehicles. The whole system is divided into two subsystems. The vehicle and railway 
track are regarded as an integrated subsystem while the railway track and bridge are regarded as the other 
subsystem. The equations of motion for the two elements are directly derived by means of Hamilton principle. After 
by assembling the stiffness, damping, mass matrices and the vectors of nodal loads of all elements, the global 
equations of motion are obtained and solved by Newmark-β method. Numerical examples demonstrate that the 
method is versatile and correct while dealing with the dynamic responses of vehicle-track-bridge coupled system. 
These examples also demonstrate that the influence of the track irregularities on the intergraded system is very 
significant and that the case of several different track irregularities existing at the same time plays more significant 
on the dynamics responses than the case of one track irregularity. 
 
Keywords: Finite element, Hamilton principle, track irregularities 

 
INTRODUCTION 

 
The dynamic responses of track and bridge 

structures subjected to moving vehicles have long been 
an interesting topic in the field of railway engineering. 
Two kinds of numerical methods, i.e., modal 
superposition method and finite element method, are 
widely used to tackle the problem.  

For the interaction system between moving 
vehicles and bridges or beams, the modal superposition 
has been used in Reference (Frýba, 1999; Hutton and 
Cheung, 1979; Cheung et al., 1999; Yang and Fonder, 
1996; Lei, 2002; Lou, 2005a; Zhai, 1998). One 
separation modal method has been used when the above 
researchers established the system equations. The 
method divided the whole system into two subsystems 
at the interface of the bridge and vehicles while these 
two subsystems are solved in continuous iteration by 
wheel-rail force separately. The reponses of the whole 
system can be obtained but the computational 
efficiency and convergence of this method are not very 
good. Then assuming the rigid connection between the 
wheel and rail when (Lou, 2005c) established the whole 
system that ignored the normal contact between the 
wheel and rail and it would cause a lager deviation. 
Zhai (1998) proposed a new simple explicit integration 
method when he established a whole system 
considering the separation between the wheel and rail. 
This method has been widely used later but there is a 
little trouble assembling the whole matrixes.  

Another numerical method, that is, the finite 
element method is also very versatile by many 
researchers (Lin and Trethewey, 1990; Yang et al., 
1999; Yang and Wu, 2001; Cheng et al., 2001; Lou and 
Zeng, 2005b; Lou, 2007). Cheng et al. (2001) used a 
typical bridge-track-vehicle finite element to investigate 
the interactions among vehicle and track structure and 
bridge structure. The two types of equations of motion 
of finite element form for the entire system are derived 
by means of the principle of a stationary value of total 
potential energy of dynamic system in Lou and Zeng 
(2005b). Lou (2007) also studied the interaction 
between several vehicles and guide-way systems by the 
finite element method. The above researchers 
established the whole system equations by the finite 
element methods but there is a little trouble assembling 
the whole matrixes as same as Zhai (1998). 

In this study, the dynamic responses of railway 
track and bridge under a moving railway vehicle are 
investigated by means of finite element method. The 
whole system is divided into two subsystems. The 
vehicle and railway track are regarded as an integrated 
subsystem while the railway track and bridge are 
regarded as the other subsystem. The equations of 
motion for the two elements are directly derived by 
means of Hamilton principle. After by assembling the 
stiffness, damping, mass matrices and the vectors of 
nodal loads of all elements, the global equations of 
motion are obtained and solved by Newmark (1959) -β 
method. The whole matrixes can be easily assembled 
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by this method and the results can be calculated in less 
time. This study also studied the effects of several 
different track irregularities on the dynamic responses 
of vehicle-track-bridge coupled system. What’s more, 
the paper considered the case of several different types 
of track irregularity existing at the same time while 
analyzing the integrated system. 

 

HAMILTON’S PRINCIPLE 
 

It is well-known that Hamilton’s principle can be 
expressed in the form: 
 

2 2

1 1

( ) 0
t t

nc
t t

T V dt W dtδ δ− + =∫ ∫                              (1) 

 

where, T denotes the kinetic energy for an entire 
dynamic system, V denotes the potential energy for an 
entire dynamic system, ���� 

denotes the virtual work 
done by the nonconservative forces for an entire 
dynamic system and δ is the variation symbol. Equation 
(1) shows that the sum of the time-variations of the 
difference in kinetic and potential energies and the 
work done by the non-conservative forces over any 
time interval ti-t2 

equals zero. The application of this 
principle leads directly to the equations of motion for 
any given system. 

By combining with the finite element method and 
applying Eq. (1) to an element, the equations of motion 
for an element can also be established.  

 

Equations of motion for the system of vehicle and 
bridge considering track structure: 
Model of vehicle-track-bridge integrated system: 
Figure 1 shows a train consisting of a series of identical 
four-wheel set vehicles moving on a track structure 
resting on a series of multi-span continuous beams to 
model railway bridges and the two approach 
embankments.  

The train comprises Nv 
identical vehicles from left 

to right and proceeds with speed v and acceleration a at 
time t along the longitudinal direction. It is assumed 
that each wheel set of all vehicles always maintains 
contact with the rails. Each vehicle in the train is 
modeled as a mass-spring-damper system consisting of 
a car body, two bogies, four wheel sets and two-stage 
suspensions. It is assumed that the downward vertical 

displacements and clockwise direction rotation of 
vehicle are taken as positive and that they are measured 
with reference to their respective static equilibrium 
positions before coming onto the track concerned. 

The rail is modeled as a linear elastic Bernoulli-
Euler beam supported by discrete viscoelastic supports, 
the slab is modeled as a linear elastic Bernoulli-Euler 
beam supported by continuously viscoelastic supports, 
the bridge are modeled as a series of multi-span 
continuous Bernoulli-Euler beams, the left and right 
embankments are modeled as rigid in bridge part. 

In the analysis, the whole system is divided into 
two subsystems. The vehicle and railway track are 
regarded as an integrated subsystem while the railway 
track and bridge are regarded as the other subsystem. 
 
Model and equations of track-bridge integrated 
element: As shown in Fig. 2, the model of track-bridge 
interaction element consists of rail element, slab 
element and bridge element. The rail element and the 
slab element are connected by some discrete 
viscoelastic supports while the slab element and the 
bridge element are connected by continuously 
viscoelastic supports. According to Hamilton’s 
principle, here generate the corresponding kinetic 
energy T

e
1, potential energy V

e
1 and virtual work 

�����
� . Then integration for the variation of the kinetic 

energy, the potential energy and the virtual work over 
any time interval t1 

to t2 is: 
 

2 2 2 2

1 1 1 1

1

t t t t
e e e e

r s b
t t t t

T dt T dt T dt T dtδ δ δ δ= + +∫ ∫ ∫ ∫     (2) 
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1 , , ,

e e e e

nc nc rs nc sb nc b
W W W Wδ δ δ δ= + +                   (4) 

 
where,  
T

e
r, T

e
s 

& T
e
b 
: The kinetic energy of the i

th
 rail beam 

element, the j
th

 slab beam element and 
the k

th
 bridge beam element respectively  

 

 
 
Fig. 1: Model of vehicle-track-bridge integrated system 
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Fig. 2: Model of track-bridge interaction element 
 

 
 
Fig. 3: Model of vehicle-track interaction element 

 
U

e
r, U

e
s 

& U
e
b : The flexural strain energy of the i

th
 rail 

beam element, the j
th

 slab beam element 
and the k

th
 bridge beam element 

respectively  
U

e
rs 

: The spring strain energy of discrete springs 
between the i

th
 rail beam element and the j

th
 

slab beam element 
U

e
sb : The spring strain energy of continuous 

springs between the j
th

 slab beam element 
and the k

th
 bridge beam element  

��	
��,��  : The internal virtual work performed by no 

conservative forces between i
th

 rail beam 
element and j

th
 slab beam element  

��	
��,��  : The internal virtual work performed by no 

conservative forces between j
th

 slab beam 
element and k

th
 bridge beam element  

��	
���  : The internal virtual work performed by no 

conservative forces for the k
th

 bridge beam 
element 

 
Since all variations are arbitrary, one can obtain the 

vertical equations of motion of a track-bridge 
interaction element. The equations can be written in 
partitioned form as: 

 

   

 

 (5) 

where, all matrixes are 4×4 matrixes:  

 

the vector
 ( 1) ( 1)
{ } [ ]

e

ri ri ri r i r i
q y y

τθ θ
+ +

=   

 

the vector
 ( 1) ( 1)
{ } [ ]

e

si si si s i s i
q y y

τθ θ
+ +

=   

 

the vector
 ( 1) ( 1)
{ } [ ]

e

bi bi bi b i b i
q y y

τθ θ
+ +

=  

 

Model of vehicle-track integrated element: As shown 

in Fig. 3, the model of vehicle-track interaction element 

consists of vehicle and four rail elements under four 

wheel-sets. Vehicle also consist a car body, two bogies, 

four wheel-sets and two-stage suspensions. Each wheel-

set of vehicle is assumed to be always in contact with 

the upper rail. According to Hamilton’s principle, here 

generate the corresponding kinetic energy T
e
2, potential 

energy V
e
2 and virtual work ���

��2. Then integration 

for the variation of the kinetic energy, the potential 

energy and the virtual work over any time interval t1 
to 

t2 is: 

 

2 2 2

1 1 1

2 2

1 1

2

t t t
e

c t
t t t

t t
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T dt T dt T dt

T dt T dt

δ δ δ

δ δ

= +

+ +

∫ ∫ ∫

∫ ∫
                         (6) 
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2
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t t
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V dt U dt
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                         (8) 

 

where,  

Tc 
: The kinetic energy of the translation of the center 

of the car body and the rotation about its center 

Tt : The kinetic energy of the translation of the center 

of the two bogies and the rotation about their 

centers 

Tw 
: The kinetic energy of the four axles due to 

translation of the center considered separately  

T
e
r 

: The kinetic energy of the four rail beam elements 

under the four wheels respectively  

Uct 
: The spring strain energy of the vehicle and two 

bogies  

Utw 
: The spring strain energy of the bogies and wheels  

U
e
r 

: The flexural strain energy of the all rail beam 

elements under the four wheels  

����,�� 
: The internal virtual work performed by no 

conservative force between the vehicle and two 

bogies  
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����,�� 
: The internal virtual work performed by no 

conservative force between the bogie and 
wheels 

Vc, Vt 
& Vw 

: The potential energy of the gravity of the 
car body, the gravity of the two bogies 
and the gravity of the four wheels  

 
Since all variations are arbitrary, one can obtain the 

vertical equations of motion of a vehicle-track 
interaction element. The equations can be written in 
partitioned form as: 
 

 
 

  (9) 

 
where, [M]w, [C]w, [K]w 

are 6×6 matrixes, [C]vr, [K]vr 
are  6×16  matrixes, [C]vr, [K]rv 

are 6×16 matrixes, 
[M]rr, [C]rr, [K]rr 

are 6×16 matrixes, the vector 

1 1 2 2
{ } [ ]

e

v cj cj t j t j t j t j
q y y y

τθ θ θ= . 

 
The equations of motion of vehicle-track-bridge 
integrated system: The conventional assembly process 
can be employed to form the global equation of motion 
for the entire vehicle-track-bridge system, which will 
appear as: 
 

[ ]{ } [ ]{ } [ ]{ } { }M q M q M q P+ + =&& &                    (10) 

 
where, the matrices [M], [C] and [K] are the global 
mass, damping and stiffness matrices of the entire 
system respectively, the vector {P}

 
is the global vector 

of the entire system, the vectors {q}, {��}
 

and {��} 
denote the displacement, velocity and acceleration 
vectors of the entire system. Equation can be solved by 
step by step integration method such as the Newmark-β 
method or Wilson-θ method to obtain simultaneously 
the dynamic responses of vehicle, track or bridge. 

 
NUMERICAL EXAMPLES 

 
An example to verify the versatile method and to 
analysis the influence of track irregularity on 
system: A single-span simply supported railway bridge 
with the two approaches supported on embankments is 
considered, as shown in Fig. 1. It is assumed that the 
length of track structure on each approach embankment 
is equal. The following data are adopted for the vehicle: 
mass of car body mc = 4.175×10

4
 kg, mass moment of 

inertia of car body Jc = 2.08×10
6
 kg·m

2
, mass of one 

bogie mt = 3040 kg, mass moment of inertia of one 
bogie Jt = 3.93×10

3
 kg·m

2
, mass of one wheel set mw = 

1.78×10
3

 kg, spring stiffness of the second suspension 
system   kct = 5.3×10

5
 N/m, damping coefficient  of  the 

 
 

Fig. 4: Irregularity on track surface 
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Fig. 5: Vertical displacement of car body 

 

second suspension system 4
9.02 10 /

ct
c N s m= × ⋅ , spring 

stiffness of the primary suspension system 
6

1.18 10 /
tw

k N m= × , damping coefficient of the primary 

suspension system 
4

3.92 10 /
tw

c N s m= × ⋅ , half of 

horizontal distance between two bogies 8.75
c

L m= , half 

of horizontal distance between two axles 1.25
t

L m= , 

vehicle velocity 27.78 /v m s=  and 
2

0 /a m s= . The 

following data are adopted for the track structure: the 

total longitudinal length of track structure120m ,
11

2.06 10
r

E pa= × , 5 4
2 2.037 10

r
I m

−= × × 2 51.5 /
r

m kg m= × , 

10
2.1 10

s
E pa= × , 10 4

10
s

I m
−= , 10

10 /
s

m kg m
−= , stiffness of 

discrete springs between rail and slab 13
10 /

d
k N m= , 

coefficient of discrete dampers between rail and slab 

0 /
d

c N s m= ⋅ , stiffness of continuous springs between 

slab and bridge 7
2 6.58 10 /

c
k N m= × × , coefficient of 

discrete dampers between slab and bridge 
4

2 3.21 10 /
c

c N s m= × × ⋅ . The following data are adopted 

for the simply supported bridge: 30
b

L m= , 

10
2.943 10

b
E pa= × , 4

2.88
b

I m= , 
4

1.2 10 /
b

m kg m= ×  and 

damping ratio of bridge 0.02ζ = . During the analysis, 

the equations of motion for the integrated system are 

solved by the Newmark-β method with time step 

0.005t s∆ = . 
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Fig. 6: Vertical acceleration of car body 
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Fig. 7: Vertical displacement of midpoint of the rails 
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Fig. 8: Vertical acceleration of midpoint of the rails 

 

As shown in Fig. 4, one type of irregularity 

function for the vertical profile of the track is adopted: 

 

1
( ) (1 cos 2 / )

2
a

r x a x lπ= −                             (11) 

 

where, x is the along-track distance, �� is maximum 

depth of track irregularity and la 
is the length of track 

irregularity, 
3

1.0 10a m
−= ×  and 1

a
l m=  are  used  for  the 
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Fig. 9: Vertical displacement of midpoint of the bridge 
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Fig. 10: Vertical acceleration of midpoint of the bridge 
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Fig. 11: Contact force between front axle of front bogie and 

rails 

 

local track irregularity. It is assumed that the point of 

maximum depth of the track irregularity locates at the 

midpoint of the rails. Considering the track structure 

irregularity, the time-history response of the center of 

car body, of the midpoint of the rails, of the midpoint of 

bridge and two contact forces between wheel-sets and 

rails have been plotted in Fig. 5 to 12 along with those 

considering smooth track surface. 

As shown in Fig. 5 to 12, the dynamics responses 

without considering track irregularity are same as those
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Table 1: The maximum of dynamics responses by several types of track irregularity 

The max. of dynamics responses First type Second type Third type Fourth type 

Car body Dis. (mm) 2.2280 2.2280 2.6330 2.6330 

Acc. (m/s2) 0.0196 0.0249 0.0237 0.0237 
Midpoint of rail Dis. (mm) 2.4070 2.6860 3.4690 3.7800 

Acc. (m/s2) 7.3160 21.8800 8.0260 27.1800 

Midpoint of bridge Dis. (mm) 2.1170 2.1170 2.6770 2.6780 
Acc. (m/s2) 0.0447 0.3460 0.1058 0.4043 

Contact force between front axle of front bogie and rail (kN) 135.3000 138.3000 135.4000 139.6000 

Max.: Maximum 
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Fig. 12: Contact force between rear axle of rear bogie and 

rails 

 
in Lou (2005c). Therefore, the versatility and accuracy 
of this method have been proved.  

As shown in Fig. 5 and 9, the dynamics responses 

for considering local track irregularity are almost same 

as those for considering smooth surface of track. 

However, as shown in Fig. 6 to 8 and 10 to 12, the 

dynamic response, i.e., vertical acceleration of car 

body, vertical displacement and vertical acceleration of 

midpoint of the rails, vertical acceleration of midpoint 

of bridge and two contact forces between wheel-sets 

and rails, for considering track irregularity have 

significant variation while the vehicle arrives at the 

position of local track irregularity. Obviously, 

maintaining a smooth track surface in railway 

engineering is very important. 
 

The influence of track irregularity on vehicle-track-
bridge coupled system: There are several types of 
track irregularity to analysis the influence of track 
irregularity on vehicle-track-bridge coupled system as 
follows: 

 
The first type: It is assumed that there is smooth 
surface in rail. 
 
The second type: It is assumed that there is one type of 
track irregularity as same as this in example 1. 
 
The third type: It is assumed that there is a 20 cm 
length of subsidence under right of the midpoint of the 
rails. Now the stiffness of springs and coefficient of 
dampers between slab and bridge are all zeros. 

The forth type: It is assumed that there is above-

mentioned of the second and the third type of track 

irregularity at the same time. 
The dynamics responses of vehicle-track-bridge 

coupled system by the influence of the above-
mentioned track irregularity as shown in Table 1. 

As shown in Table 1, compared with the first type, 

the dynamics responses for considering the second type 

of track irregularity, i.e., vertical acceleration of car 

body, vertical displacement and acceleration of the 

midpoint of rail, vertical acceleration of the midpoint of 

bridge and contact force between front axle of front 

bogie and rail have significant variation while the other 

are same as those in the first type; Compared with the 

first type, the dynamic responses for considering the 

third type of track irregularity, i.e., vertical 

displacement and acceleration of car body, vertical 

displacement and acceleration of the midpoint of rail, 

vertical displacement and acceleration of the midpoint 

of bridge have significant variation while the other are 

same as those in the first type; Compared with the 

second type and third type, vertical displacement and 

acceleration of car body and vertical displacement of 

the midpoint of bridge for considering the fourth type 

of track irregularity are same as those in the third type 

while the other dynamic responses all increase 

relevantly. 

 

CONCLUSION 

 
In this study, the dynamic responses of railway 

track and bridge under a moving railway vehicle are 
investigated by means of finite element method. The 
whole system is divided into two subsystems. The 
vehicle and railway track are regarded as an integrated 
subsystem while the railway track and bridge are 
regarded as the other subsystem. The equations of 
motion for the two elements are directly derived by 
means of Hamilton principle. After by assembling the 
stiffness matrices, the damping matrices, the mass 
matrices and the vectors of nodal loads of all elements, 
the global equations of motion for the integrated system 
are obtained. These equations can be solved by step-by-
step integration method, to obtain simultaneously the 
dynamic responses of vehicle, track and bridge. The 
results show that the whole matrixes can be easily 
assembled by this method and the results can be 
calculated in less time. 
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From the numerical results obtained in above two 

examples, two conclusions can be reached: 

 

• The method used in this study can be widely 

applied in the analysis of vehicle-track-bridge 

coupled system. What’s more, the method has 

more versatility and correctness on some different 

objects. 

• The effects of track irregularity on the dynamics 

responses of system are significant. The above two 

examples demonstrate that vertical acceleration of 

car body, vertical displacement and acceleration of 

the midpoint of rail, vertical acceleration of the 

midpoint of bridge and contact force between front 

axle of front bogie and rail, considering local track 

irregularity, have significant variation. The second 

example demonstrate that vertical displacement 

and acceleration of car body, vertical displacement 

and acceleration of the midpoint of rail, vertical 

displacement and acceleration of the midpoint of 

bridge, considering local track subsidence, have 

also significant variation. What’s more, the 

dynamics responses considering above two cases 

existing at the same time increase relevantly. It 

shows that the case of several different track 

irregularities existing at the same time play more 

significant on the dynamics responses than the case 

of one track irregularity. So maintaining a good 

track structure in railway engineering is very 

important. 
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