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Research Article 
Second Order Effect in Unbraced Steel Frames at Ultimate State 
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Department of Civil Engineering University of Jordan, Amman 11942, Jordan, Tel.: 0799476699 
 

Abstract: Second order effect is evaluated for unbraced frames at ultimate state. As a case study, an unbraced one 
bay frame is evaluated using first order elastic, second order elastic, first order plastic and second order plastic 
analyses. Second order plastic analysis is based on proposed procedures using magnification factor as its basis. 
These procedures take the effect of formation of plastic hinges and in turn, the softening of the frame on the critical 
load (buckling load) of the frame into consideration. It has been found by second order plastic analysis that frame 
strength dramatically deteriorates after formation of the second plastic hinge. While first order plastic analysis puts 
the strength on the ascending branch, second order analysis puts the strength on the descending branch of load-
deformation curve regardless of the level of axial load in the system. It has also been found that while full 
mechanism failure develops under low levels of axial load, it cannot develop under moderate and high levels of axial 
loads. Furthermore, it has been found that the strength deteriorate rapidly after formation of the second plastic hinge 
leads to early collapse before the development of full failure mechanism. The codes are challenged to produce 
practical procedures for second order effect to account for structure behavior at ultimate state. 
 
Keywords: Frame buckling, plastic hinge, plastification sequence, plastic magnification factor 

 
INTRODUCTION 

 
Plastic analysis and design is permitted by design 

codes as a mean of more realistic behavior leading to 
more savings by utilizing the member capacity to its 
fullest extent. However, design codes do not explicitly 
address detailed rules on methods of design, especially, 
the consideration of second order effect associated with 
plastic analysis and design. Trends in current and future 
methods in the analysis and design of steel frames are 
summarized by Trahair (2012). Classical plastic 
analysis may be found in Beedle (1958), while modern 
techniques in plasticity and plastic analysis are found in 
Chen and Sohal (1995), Chen and Han (1988) and 
Wong (2009). Various developments in methods of 
second order plastic analysis are given by Alvarenga 
and Silveira, (2009a, b), Mesic (2007), Chan and Zhou 
(2004) and Bi et al. (2004). 

As it is known, second order analysis results in 
amplification of forces and moments which may be 
evaluated by explicit second order analysis (P-D effect), 
or by means of the well recognized magnification 
factors applied to the first order forces and moments as 
obtained from first order analysis. These magnification 
factors are recognized in steel codes such as AISC 
(American Institute of Steel Construction) (2010) and 
ACI (American Concrete Institute) (2011). 

The magnification factors given in design codes are 
calculated as function of Euler buckling loads assuming 
structures to remain elastic, therefore, they are elastic 
buckling loads. 

Evaluation of second order effect in plastic analysis 
is not addressed in the design codes, i.e., it is not clear 
how to evaluate the magnification factors in association 
with plastic analysis. In plastic analysis and design, 
structures are considered safe and functional up the 
level of mechanism formation. If second order effect 
has to be considered in this case, formation of plastic 
hinges has to be taken into consideration.  

As plastic hinges form, they reduce redundancy of 
structures and at the same time, soften them. This 
action, definitely, reduces the buckling capacity of 
structures and consequently, increases the 
magnification factors of the first order forces and 
moments. This reduction in buckling capacity and 
increase in magnification factors could adversely affect 
the behavior and economics of design using plastic 
methods. 

In view of the above discussion, this study explores 
the effect of plastic hinge formation in the structure on 
the magnification of the first order plastic analysis 
using a one bay steel frame as a case study. The effect 
of axial load is also included as a varying parameter in 
the columns as shown later. 

 

CASE STUDY 
 

In order to explore the effect of plastification of 
structures on second order effect (magnification of first 
order analysis), a one bay steel frame is considered as a 
case study for this purpose. The frame is subjected to 
two  main  forces  that  cause  mechanisms  to  develop,  
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Fig. 1: Frame layout 

 

 
 
Fig. 2: Cross section 

 

namely, lateral force, Q and vertical force, Q, as shown 

in Fig. 1. In addition, the frame is subjected to an axial 

force, P, in each vertical member of the frame, as also 

shown in Fig. 1, to serve as a varying parameter for the 

intended parametric study. For reference purposes, the 

different locations of potential plastic hinge locations in 

the frame are designated from node 1 to node 5 as also 

shown in Fig. 1. 
A constant cross section is selected for the frame 

from AISC manual (AISC, 2010). This section is W-
shape (W10×17 inch × lb/ft) which is equivalent to (W 
250×25 mm×kg/m) in SI units. The dimensions of this 
section are shown in Fig. 2, which will be used for 
calculations of all section properties. A common steel 
yield stress is selected for the material, Fy = 350 MPa. 

The frame capacity is calculated according to four 
various procedures, namely: 
 

• First order elastic analysis procedures 

• Second order elastic analysis procedures 

• First order plastic analysis procedures 

• Second order plastic analysis procedures, as 
suggest by this study. The second order plastic 
analysis procedures are based on consideration of 
the sequence of formation of plastic hinges on the 
stability of the frame (Frame Buckling Load). 

 
In addition, an incremental analysis is performed to 

track the resistance of the frame as each of the plastic 
hinges form up to failure. This sequence of 
plastification analysis is performed including the axial 
load as a varying parameter given as percentage of the 
axial  yield  load  of  the  column,  Py.  Accordingly, the  

 
 
Fig. 3: Plastic section modulus and plastic moment 

 
Table 1: Section dimensions and properties 

h tw bf tf A Py Zx Mp 

mm mm mm mm mm2 kN mm3 kN.m 

260 6 100 8 3064 1072 290904 101.816 

 
parameter variation includes four analysis methods and 
six levels of axial loads in the column, namely, 10, 20, 
30, 40, 60 and 75% respectively. Note that the 
parameter variation includes 20% as the border of 
interaction equations given by AISC for elastic capacity 
of frame-columns; and the 75% which is the limit of 
axial load level allowed by AISC for columns to be 
included in frames under plastic design criterion. 

It should be pointed out that the steel section 
selected is compact. In addition, the frame is assumed 
to be fully braced and, therefore, the full capacities of 
the sections are utilized. 
 
Section properties and capacities: The section 
properties are calculated based on the dimensions given 
in Fig. 2. In this study, the plastic moment and section 
modulus are denoted Mp and Zx respectively. The 
plastic moment capacity and section modulus in 
presence of axial load is considered and denoted Mpa 
and Zxa, respectively. For clarity, the section modulus 
and plastic moment calculations are based on the strain 
and stress distributions shown in Fig. 3. 

The calculated section properties are shown in 
Table 1 and 2. 
 
First order elastic frame capacity: To find the 
factored internal forces and moment, structural analysis 
is performed for the frame under external loads, Q = 10 
kN. The resulting reactions and internal moments are 
shown in Fig. 4. Note that the maximum moment in the 
frame takes place at right reaction (node 5) which is 

related to the external loads Q by the factor, αQ, such 

that: 
 

Q = αQ Mmax  
 

αQ = 10 / 14.767 = 0.6772  
 

The first order elastic capacity of the frame is 
considered in this study for comparison purposes. This 
capacity is based on AISC interaction equations for 
frame-columns which take the form: 
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Table 2: Plastic moment and section modulus in presence of axial load 

Pu /Py Ratio 0 0.05 0.1 0.2 0.3 0.4 0.6 0.75 

Zxa mm3 290904 289926 286992 275257 255698 228316 155573 98113 

Mpa kN.m 101.816 101.474 100.447 96.340 89.494 79.910 54.450 34.339 

Mpa /Mp Ratio 1 0.997 0.987 0.946 0.879 0.785 0.535 0.337 

 

Table 3: First order elastic frame load capacity at various axial load intensities 

Pu /Py Ratio 0.1 0.2 0.3 0.4 0.6 0.75 

Mu kN.m 86.544 80.180 68.726 57.272 34.363 17.182 

Qu kN 57.742 53.496 45.854 38.212 22.927 11.464 

 

 
 
Fig. 4: Bending moment diagram 

 

For Pu/ϕc<0.2→ 1
2

u u

c n b n

P M
 +   

P Mφ φ
 

≤ 
 

 

 

where �c and �b are the strength reduction factors for 

compression and flexure respectively. Pn and Mn are the 

nominal section capacities which are taken for compact 

fully braced sections as Pn = Fy A = Py and Mn = Fy Zx. 

Accordingly: 

 

Pn = Fy A = 350 (3064) = 1072400 N (1072 kN) 

Mn = Fy Zx = 350 (290904) = 101816400 N.m 

(101.816 kN.m) 

�c = �b = 0.9 

 

For each ratio of Pu/Py, the above equations yield 

the ultimate moment capacity which can, in turn, yield 

the ultimate load capacity, Qu, using the above 

mentioned factor, αQ. For example, if a ratio of (Pu/Py = 

0.2) is used, these procedures yield: 
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 → Mu = 80.180 kN.m 

 

Hence,  

 

Qu = αQ Mu = 0.6772 (80.180) = 53.496 kN 

 

Similar procedures yield the load capacity for the 

various ratios of Pu/Py as shown in Table 3. 

Second order elastic frame capacity: The second 

order elastic frame capacity is based on AISC 

interaction equations for beam-columns taking into 

consideration the magnification factor for sway 

members (unbraced), B2. If B2 is taken into 

consideration, the interaction equations for beam-

column may be put in the following form: 

 

For  0.2u
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where, B2, is the magnification factor for unbraced 

frames and is given in the following form: 

 

B2 = 
1

1
 

1 - 
 

u

e

   
P

P

≥
Σ
Σ

 

 

where, 

Σ Pu =  Summation of all vertical loads in the frame 

 =  Summation of Q and 2P in our case 

Σ Pe  = Summation of all critical loads of all frame 

columns 

 

which is found by frame stability analysis in this study 

The exact critical load of the frame may be found 

by the second order slope deflection method (stability 

function procedure). However, this method may be very 

closely approximated by utilization of the geometric 
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Table 4: Second order elastic frame load capacity at various axial load intensities 

Pu /Py Ratio 0.1 0.2 0.3 0.4 0.6 0.75 

Mu kN.m 83.250 74.078 60.880 48.554 26.517 12.278 

Qu kN 55.545 49.425 40.619 32.395 17.692 8.192 

 

  
 

(a) Frame discretization   (b) Frame buckling load  and                  

                                                     buckling shape 

 
Fig. 5: Elastic buckling load of frame by geometric stiffness 

method 

 
stiffness matrix in conjunction with the stiffness matrix. 
In this study, the critical load is found by this approach 
of geometric stiffness method which, in fact, is form of 
Finite Element Analysis (Chen and Lui, 1987). 

If the right hand rule sign convention for forces and 
moments is used, the element stiffness matrix, [km] and 
the geometric stiffness matrix, [kGm], take the following 
form 
 

2 2

m 3

2 2

12 6L -12 6L

6L 4L -6L 2LEI
[k ]=

-12 -6L 12 -6LL

6L 2L -6L 4L

 
 
 
 
 
 

, 2 2

Gm

2 2

36 3L -36 3L

3L 4L -3L -LP
[k ]=  

-36 -3L 36 -3L30L

3L -L -3L 4L

 
 
 
 
 
 

 

 
Assembly of the global stiffness and geometric 

stiffness matrices; and standard solution of eigenvalue 
problem leads to obtaining the buckling loads and their 
buckling shapes of the system. 

Figure 5 shows the modeling of the frame utilized 
in this study which is descetized into 13 nodes and 12 
elements. Very short elements are introduced at the 
location of the potential plastic hinges in order to take 
the formation of plastic hinges into consideration for 
later analysis as shown in Fig. 5a. The resulting first 
buckling load of the frame and its buckling shape is 
shown in Fig. 5b. As can be seen, the critical load of 
one column, Pcr = 2818 kN. 

Accordingly, the magnification factor, B2, may 
now be calculated. If the load ratio of Pu/Py = 0.2 is 
considered for example, B2 is calculated as follows: 
 

Pu = 0.2 Py = 0.2 (1072) = 214.4 kN 
 

B2 = 1

 
1 - 

 

Σ
Σ

u

e

 
P

P

 = 1

214.4
1 - 

2818

 = 1.082 > 1 ok.  

 
The ultimate load capacity may now be calculated 

using the interaction equation as follows: 
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→ Mu = 74.107 kN.m 

 

Hence, Qu = αQ Mu = 0.6772 (74.107) = 49.425 kN 

Similar procedures yield the load capacity for the 

various ratios of Pu/Py as shown in Table 4. 

 

First order plastic frame capacity (mechanism 

method): The first order plastic analysis can be 

performed using lower bound or upper bound theorem 

(Beedle, 1958; Chen and Sohal, 1995; Wong, 2009). In 

this study, the upper bound theorem is used to find the 

ultimate load (mechanism load). The frame used in this 

analysis is three times statically indeterminate; and 

hence has a number of redundant forces, R = 3. It also 

has a number of potential locations for plastic hinges, N 

= 5. The number of independent mechanism, m, can be 

found accordingly as: 

 

m = N–R = 5–3 = 2 

 

The total number of mechanisms that can occur in 

this frame are 3 mechanisms, two independent, namely, 

beam mechanism and sway mechanisms. If these two 

mechanisms are combined, they result in a third 

combined mechanism. These three mechanisms are 

shown graphically in Fig. 6 which will be investigated 

to yield the true mechanism that produces the correct 

ultimate load as the smallest of the three. 

It is assumed that the reader is familiar with 

mechanism analysis, therefore, the analysis will be 

performed accordingly. Notice that in presence of the 

axial load, the moment capacity of the beam becomes 

Mpa as explained previously. In hindsight, it can be 

observed from Fig. 4b that the loads produced by Q are 

fraction of Q and hence are considered negligible in 

comparison with the high loads added to the columns, 

P, for parametric study. Therefore, only the column 

section capacity will be affected by the added axial 

loads, P and will be assigned the values of the 

parameter variation as a total in the section, i.e., 0.1, 

0.2, 0.3, 0.4, 0.6 and 0.75 of Py.  

If the power produced by external forces is 

denoted, P  and the internal dissipation is denoted, D, 

ultimate load capacity, Qm, for each mechanism is 

calculated. For illustration purpose, consider the case of 

Pu/Py, = 0.2 which yields the following: 
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                                (a) Beam mechanism                    (b) Sway mechanism                   (c) Combined mechanism 

 

Fig. 6: Types of possible failure mechanisms in frame 

 
Table 5: First order frame true ultimate load capacity at various axial load intensities 

Pu /Py Ratio 0.1 0.2 0.3 0.4 0.6 0.75 

Mpa kN.m 100.447 96.340 89.494 79.910 54.450 34.339 

Qm kN 86.49 84.142 80.230 74.754 54.450 34.340 

Qu kN 77.840 75.728 72.207 67.278 49.006 30.906 
Controlling  Mechanism  Combined  mechanism Sway mechanism 

 

• Beam mechanism: Refer to Fig. 6a for notation 

and recall that Mpa = 0.946 Mp (Table 2), hence  

 

P ≥ D  
Qm.∆ = Mp2 (θ) + Mp3 (2 θ) + Mp4 (θ) 

Qm.(3 θ) = Mpa (θ) + Mp (2θ) + Mpa (θ) = Mpa 

(4.114 θ)  or, Qm = 1.371 Mpa 

 

• Sway mechanism: Refer to Fig. 6b for notation 

and recall that Mpa = 0.946 Mp (Table 2), hence:  

 

P≥ D  

Qm.∆ = Mp1 (θ) + Mp2 (θ) + Mp4 (θ) + Mp5 (θ) 

Qm.(4θ) = Mpa (θ) + Mpa (θ) + Mpa (θ) + Mpa (θ)  

or, Qm = 1.0 Mpa 

 

• Combined mechanism: Refer to Fig. 6c for 

notation and recall that Mpa = 0.946 Mp (Table 2), 

hence:  

 

P ≥ D  

Qm.∆1 + Qm.∆2 = Mp1 (θ) + Mp3 (2θ) + Mp4 (2θ) + 

Mp5 (θ) 

Qm.(4θ) + Qm.(3θ) = Mpa (θ) + Mp (2θ) + Mpa (2θ) 

+ Mpa (θ)  

or, Qm = 0.873 Mpa 

 

Therefore, the true ultimate load equals to Qm = 

0.873 Mpa and is controlled by the combined 

mechanism. Accordingly: 

 

Qm = 0.873 Mpa = 0.873 (96.34) = 84.143 kN 

Qu = � Qm = 0.9 (84.143) = 75.728 

 

Similar procedures yield the true ultimate load 

capacity for the various ratios of Pu/Py as shown in 

Table 5. 

First order sequence of plastification and resistance: 

In order to evaluate the second order effect during 

plastification and in order to compare results with first 

order plastic analysis, it will be required to find the 

frame resistance at the formation of each plastic hinge 

in the frame up to the failure state, i.e., at mechanism. 

Therefore, the resistance of the frame at the formation 

of each plastic hinge is evaluated by incremental 

analysis as usually done in plastic analysis methods. 

As an example of calculations, the case of Pu/Py = 

0.2 is considered. The tracking of resistance of the 

frame at the formation of each plastic hinge is worked 

out in stages as follows: 

 

• First plastic hinge: Inspection of the bending 

moment diagram shown in Fig. 4 indicates that the 

maximum moment takes place in right support 

(node 5) and therefore, becomes the first plastic 

hinge to form. The load that is required to form the 

first plastic hinge, Q1, at the right support is 

obtained by proportionality of loading. The plastic 

moment at (Pu/Py = 0.2) is obtained from Table 2 

as, Mpa = 96.34 kN.m. By proportionality of 

loading, the bending moment diagram is obtained 

for the first plastic hinge as shown in Fig. 7a, 

hence: 

 

Q1 = 65.239 kN 

Q1u = � Q1 = 0.9 (65.240) = 58.715 kN 

 

• Second plastic hinge: To reach the second plastic 

hinge, an incremental loading is required. The 

incremental load shall be applied as additional 

increment, ∆Q1, to the structure after formation of 

the first plastic hinge. Since the plastic hinge 

cannot take any additional loading, the new 

structure becomes as shown in Fig. 7b. After 

drawing an initial bending moment diagram and by
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(a) First plastic hinge state  

 

 
 

(b) Incremental load ∆Q1, to develop second plastic hinge        

state 

 

 
 

(c) Incremental load ∆Q2, to develop third plastic hinge state 

 

 
 

(d) Incremental load ∆Q3, to develop fourth plastic hinge state 

 

Fig. 7:  Incremental bending moment diagrams (Tension side, 

Units in kN, m) 

 

inspection, the second plastic hinge is found to 

form at the right joint of the frame (joint 4). The 

incremental bending moment diagram to achieve 

this state is shown in Fig. 7b, hence: 

 

∆Q1, = 5.197 kN 

Q2 = Q1 + ∆Q1, = 65.239 + 5.197 = 70.436 kN 

Q2u = � Q2 = 0.9 (70.436) = 63.392 kN 

• Third plastic hinge: To reach the third plastic 

hinge, an incremental loading is required as done 

before. The incremental load shall be applied as 

additional increment, ∆Q2, to the structure after 

formation of the second plastic hinge. Since the 

plastic hinge cannot take any additional loading, 

the new structure becomes as shown in Fig. 7c. 

After drawing an initial bending moment diagram 

and by inspection, the third plastic hinge is found 

to form at the left support of the frame (joint 1). 

The incremental bending moment diagram to 

achieve this state is shown in Fig. 7c, hence: 

 

∆Q2, = 8.732 kN 

Q3 = Q2 + ∆Q2, = 70.436 + 8.732 = 79.168 kN 

Q3u = � Q3 = 0.9 (79.168) = 71.251 kN 

 

• Fourth plastic hinge: The fourth plastic hinge is 

the last plastic hinge. The load will be of course the 

true mechanism load. For procedure checking 

purposes, the incremental procedure is used to 

reach the fourth plastic hinge as done before. The 

incremental load shall be applied as additional 

increment, ∆Q3, to the structure after formation of 

the third plastic hinge. Since the plastic hinge 

cannot take any additional loading, the new 

structure becomes as shown in Fig. 7d. After 

drawing an initial bending moment diagram and by 

inspection, the fourth plastic hinge is found to form 

at the beam midspan (joint 3). The incremental 

bending moment diagram to achieve this state is 

shown in Fig. 7d. Noting that the plastic moment 

capacity of the beam is given as Mp = 101.816 as 

given in Table 1, the required load becomes 

 

∆Q3, = 4.975 kN 

Q4 = Q3 + ∆Q3, = 79.168 + 4.975 = 84.143 kN 

Q4u = � Q4 = 0.9 (84.143) = 75.729 kN 

 

Notice that the incremental load procedures yield 

an ultimate load, Q4u = 84.143, which coincides with 

the ultimate load, Qm = 84.143, obtained by mechanism 

method procedures used earlier. 

The incremental load procedures are performed for 

the other cases of Pu/Py ratios required in this 

parametric study. Table 6 shows the nominal load 

capacity at the formation of each plastic hinge, Qi, 

whereas, Table 7 shows the ultimate load capacity at 

the formation of each plastic hinge, �Qi. 

 

Second order plastic frame capacity: The second 

order plastic frame capacity is found by using the 

magnification factor, B2, as give by AISC. In this 

study, B2, will be based on the frame buckling load
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Table 6: Nominal load capacity at sequence of plastification at various axial load intensities, Qi 

Pu /Py Ratio 0.1 0.2 0.3 0.4 0.6 0.75 

Q1 kN 68.020 65.239 60.603 54.114 36.870 23.254 
Q2 kN 73.440 70.436 65.431 58.424 39.810 25.106 
Q3 kN 82.540 79.168 73.543 65.667 44.750 28.219 
Q4 = Qm kN 86.490 84.142 80.230 74.754 54.450 34.340 
Controlling  Mechanism  Combined mechanism Sway mechanism 

 
Table 7: Ultimate load capacity at sequence of plastification at various axial load intensities, Qiu = � Qi, � = 0.9 
Pu /Py Ratio 0.1 0.2 0.3 0.4 0.6 0.75 

Q1u kN 61.221 58.717 54.545 48.704 33.187 20.929 
Q2u kN 66.102 63.399 58.895 52.588 35.833 22.598 
Q3u kN 74.293 71.255 66.192 59.104 40.273 25.398 
Q4u = � Qm kN 77.840 75.728 72.207 67.278 49.006 30.906 
Controlling  Mechanism  Combined mechanism Sway mechanism 

 

 
 

                                                            (a) Frame layout         (b) Elastic buckling load and buckling shap 

 

 
 
              (c) 1st hinge buckling load and               (d) 2nd hinge buckling load and             (e) 3rd hinge buckling load  and  

                          buckling shape                                             buckling shape                                       buckling shape 

 

 
Fig. 8: Buckling load at formation of plastic hinges by geometric stiffness method 

 
taking plastic hinge formation into account. The frame 
capacity may be reached before the full development of 
true mechanism due to second order effect; therefore, it 
becomes necessary to evaluate the resistance load at the 
formation of each plastic hinge. 

In order to do so, it will be necessary to calculate 

the frame buckling load at the formation of each plastic 

hinge and evaluate the magnification factor, B2, 

accordingly. This magnification factor, calculated on 

the basis of plastic hinge formation, will be referred to 

in this study as the plastic magnification factor, B2. 

Therefore, the second order ultimate capacity will 
be calculated by multiplying the first order ultimate 
load capacity by the plastic magnification factor. 

The analysis performed to find the sequence of 

plastification outlined in the previous section indicates 

that in both controlling mechanisms, i.e., the sway 

mechanism and the combined mechanism, the sequence 

of plastification is the same for the first three plastic 

hinges, namely, at joint 5, then 4 and then 1. The final 

plastic    hinge    will   form  at  joint  2  for    the   sway  

mechanism and at joint 3 for the combined mechanism. 

Therefore, the buckling for the frame in each 

mechanism will be the same for the formation of the 

first three plastic hinges. The buckling load after the 

formation of the last plastic hinge will be zero since the 

frame has reached its mechanism with total stiffness of 

zero. 

Using the same model for buckling given in Fig. 5 

and introducing the plastic hinges in the model as they 

form, the frame buckling load and its mode shape is 

found as each plastic hinge forms as shown in Fig. 8. 

In the following sections, the plastic magnification 

factor will be calculated accordingly. For demonstration 

purpose, the load ratio of Pu/Py = 0.2 is considered as an 

example. In this case, the ultimate load, Pu is given as: 

 

Pu = 0.2 Py = 0.2 (1072) = 214.4 kN 

 

B2: Just before formation of first plastic hinge: The 

elastic buckling load is already found in previous 

sections for the evaluation of  the  elastic  magnification 
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Table 8: Plastic magnification factor, B2, at sequence of plastification at various axial load intensities  

Pu /Py 0.1 0.2 0.3 0.4 0.6 0.75 

Elastic 1.040 1.082 1.129 1.180 1.296 1.399 

1st plastic hinge 1.067 1.144 1.233 1.337 1.608 1.896 

2ndplastic hinge 1.101 1.225 1.381 1.581 2.229 3.218 

3rdplastic hinge 1.796 8.794 --- --- --- --- 

4thplastic hinge --- --- --- --- --- --- 

Controlling 

mechanism 

Combined mechanism Sway mechanism 

 

factor, B2, which is also shown in Fig. 8b and repeated 

here for completeness of presentation as: 

 

Pcr = 2818 kN 

B2 = 1.082 

 

B2: At formation of first plastic hinge: The buckling 

load just after the formation of the first plastic hinge is 

shown in Fig. 8c, which leads to the following: 

 

Pcr = 1702 kN 

B2 = 1

 
1 - 

 

Σ
Σ

u

e

 
P

P

 = 1

214.4
1 - 

1702

 = 1.144 > 1 ok 

   

B2: At formation of second plastic hinge: The 

buckling load just after the formation of the second 

plastic hinge is shown in Fig. 8d, which leads to the 

following: 

 

Pcr = 1167 kN 
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  .  

B2: At formation of third plastic hinge: The buckling 

load just after the formation of the third plastic hinge is 

shown in Fig. 8e, which leads to the following: 

 

Pcr = 242 kN 

B2 = 1
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B2: At formation of fourth plastic hinge: The 

buckling load just after the formation of the fourth 

plastic hinge is zero. This is the formation of 

mechanism which leads to collapse state. In this case, 

B2, becomes infinite as the structure cannot support any 

additional loads. 

The same procedures are repeated for the other 

load intensity cases. The resulting plastic magnification 

factor of all cases are shown in Table 8. Notice that if 

the external axial loads in the frame exceed the 

buckling load, B2, becomes negative indicating failure 

case. This state is shown in the table by dashed lines. 

RESULTS AND DISCUSSION 

 

The results of the previous analysis are compiled 

and analyzed in this section. Figure 9 shows 

comparison between the ultimate load resistance of the 

frame as each of the plastic hinges form from elastic 

stage to failure mechanism. Four mentioned methods of 

analysis, namely, first order elastic, second order 

elastic, first order plastic and second order plastic 

method are used to evaluate frame resistance. This 

comparison is made for axial load intensities Pu/Py = 0.1 

to 0.75. It should be pointed out that the elastic frame 

resistance stops just before the formation of the first 

plastic hinge. However, horizontal lines are drawn for 

the elastic cases for comparison purposes. 

Examination of frame Fig. 9 shows that the frame 

strength decreases, in general, as the ratio of the axial 

load increases from 0.1 to 0.75. It can also be observed 

that while the frame strength increases as plastic hinges 

form in first order plastic analysis, the frame strength 

decreases as plastic hinges form in second order plastic 

analysis. 

It can also be observed that, in all cases, the frame 

strength falls at or below the second order elastic 

strength at the formation of the first plastic hinge, 

which is something opposite to the notion that plastic 

design results in stronger structures and hence more 

economical ones. 

In addition, Fig. 9 indicates that in all cases, the 

frame strength severely deteriorates before achieving 

the mechanism failure obtained by first order plastic 

analysis. It can also be observed that first order 

mechanism is reached for low axial load ratios, (0.1 and 

0.2), while failure takes place before reaching this 

mechanism for moderate axial load ratios, (0.3 and 0.4) 

and for high axial load ratios, (0.6 to 0.75). 

Figure 9 also indicates that for moderate and high 

axial load ratios, the frame collapses at the formation of 

the third plastic hinge formation according to second 

order plastic analysis, i.e., the frame collapses at earlier 

stage before the formation of the failure mechanism 

assumed to take place in first order plastic analysis. 

It can also be observed in Fig. 9 that the frame 

strength in second order plastic analysis, which is a 

more realistic procedures, falls below its strength in 

second order elastic analysis. In fact, the second order 

plastic strength nearly matches the second order elastic 

strength and starts to deteriorate thereafter. 
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Fig. 9:  Frame resistance load at formation of plastic hinges for various axial load intensities 

 

Figure 10 and 11 further illustrate the relationship 

between first order plastic analysis, second order plastic 

analysis and the intensity of  axial  load in the structure. 

Figure 10a shows comparison between the strength of 

the frame in first order analysis at various axial load 

ratios, while Fig. 10b shows the frame strength in 

second order analysis at various load ratios. Figure 11 

shows also comparison between the frame strength  in  

first  order  plastic  analysis  and second order plastic  

analysis  referenced  to  the  frame  strength  just  before  

the formation of the first plastic hinge. 

It should be pointed out that, in first order plastic 

analysis, the frame strength, regardless of the axial load 

intensity, increases by the same ratio as plastic hinges 

form up to the formation of the plastic hinge before the 

last one, i.e., plastic hinge #3, as shown in Fig. 11a. 

Thereafter, the ratio of the mechanism strength starts to 

increase for higher axial load ratios. 

0

20

40

60

80

100

0 1 2 3 4

Plastic hinge formation 

U
lt

im
at

e 
lo

a
d
, 

Q
(k

N
)

u
 

P /P = 0.75u y 

First order elastic analysis 

Second order elastic analysis 

First order plastic analysis 

Second order plasticanalysis 

0

20

40

60

80

100

0 1 2 3 4

Plastic hinge formation 

U
lt

im
at

e
 l

o
a
d

, 
Q

(k
N

)
u

 

P /P = 0.1u y 

0

20

40

60

80

100

0 1 2 3 4

Plastic hinge formation 

U
lt

im
at

e 
lo

a
d

, 
Q

(k
N

)
u

 

P /P = 0.2u y 

0

20

40

60

80

100

0 1 2 3 4

Plastic hinge formation 

U
lt

im
a
te

 l
o
ad

, 
Q

(k
N

)
u
 

P /P = 0.3u y 

0

20

40

60

80

100

0 1 2 3 4

Plastic hinge formation 

U
lt

im
at

e 
lo

ad
, 

Q
(k

N
)

u
 

P /P = 0.4u y 

0

20

40

60

80

100

0 1 2 3 4

Plastic hinge formation 

U
lt

im
at

e 
lo

a
d
, 

Q
(k

N
)

u
 

P /P = 0.6u y 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(6): 1172-1182, 2014 

 

1181 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                      

(a) First order plastic analysis                                         (b) Second order plastic analysis 

 

Fig. 10: Frame resistance load at formation of plastic hinges for various axial load intensities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 11:  Ratio of frame resistance load to the load just before formation of first plastic hinge 

 

CONCLUSION 

 

It can be concluded that second order plastic 

analysis must be utilized for analyzing steel frames as it 

results in frame strength much lower than first order 

plastic analysis and even more, lower than second order 

elastic analysis. The first order plastic analysis highly 

overestimates the actual strength of frames as it does 

not take into consideration the reduction of strength due 

to second order effect, P-∆ effect. It does not also take 

into consideration the effect of softening (formation of 

plastic hinges) on the stability of the structure, which in 

turn, on the P-∆ effect and on the resulting 

magnification of internal forces and moments. 

It can also be concluded that the second order 

elastic analysis is more realistic than first order plastic 

analysis. In this study, it has been shown that the 

strength peak of the structure is reached just before the 

formation of the first plastic hinge where the strength 

starts to deteriorate thereafter. It is also shown that the 

structure reaches its failure limit state earlier before the 

development of the full failure mechanism, especially, 

for moderate and high axial loads in the structure. 

It is obvious that the magnification factor, B2, that 

is currently used in AISC code is not valid for plastic 

analysis as it is based on elastic state of the structure, 

which is a state that does not exist after the formation of 

the first plastic hinge and therefore, the critical load 

calculated accordingly is not correct. 

This study takes the opportunity to introduce 

simplified procedures to evaluate the second order 

effect based on plastic magnification factor, B2, taking 
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the inelastic buckling load into consideration by 

including the formation of plastic hinges in the process. 

These procedures definitely have the advantage over 

the lengthy and hectic finite element elasto-plastic 

procedures that proved to be overwhelming and 

unpopular in practical design environment. 

The AISC, as one of the major codes recognized 

internationally, points out the importance of second 

order effect in plastic analysis; however, it does not 

give any details or guidelines on how to implement 

such analysis. Therefore, it is recommended that codes 

seek research to generalize guidelines on the inclusion 

of second order effect in plastic design in practical 

manner and if possible, produce clear practical 

procedures for conducting second order plastic analysis 

similar to second elastic analysis procedure case.  
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