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Research Article 

AR-based Algorithms for Short Term Load Forecast 
 

Zuhairi Baharudin, Mohd. Azman Zakariya, Mohd. HarisMdKhir,  
Perumal Nallagownden and Muhammad Qamar Raza 

Electrical and Electronics Department, Universiti Teknologi PETRONAS,  
31750 Tronoh, Perak, Malaysia 

 

Abstract: Short-term load forecast plays an important role in planning and operation of power systems. The 
accuracy of the forecast value is necessary for economically efficient operation and effective control of the plant. 
This study describes the methods of Autoregressive (AR) Burg’s and Modified Covariance (MCOV) in solving the 
short term load forecast. Both algorithms are tested with power load data from Malaysian grid and New South 
Wales, Australia. The forecast accuracy is assessed in terms of their errors. For the comparison the algorithms are 
tested and benchmark with the previous successful proposed methods. 
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INTRODUCTION 

 
Short term prediction of future load demand is 

important for the economic and secure operation of 
power systems. Fundamental operation functions such 
as unit commitment, hydro-thermal coordination, 
interchange evaluation, scheduled maintenance and 
security assessment require a reliable Short Term Load 
Forecast (STLF). 

Throughout the study the term “short” is used to 
imply prediction times of the order of hours. The time 
boundaries are from the next hour, or possibly half-
hour, up to 168 h. The basic quantity of interest in 
STLF is the hourly integrated total system load. Owing 
to the importance of the STLF, research in this area in 
the past two decades has resulted in the development of 
numerous forecasting methods (Chakhchoukh et al., 
2011; De Felice and Xin, 2011; Del-Carpio Huayllas 
and Ramos, 2010; Hanmandlu and Chauhan, 2011; 
Amarawickrama and Hunt, 2008; Baharudin and 
Kamel, 2007). 

One of the STLF methods that received significant 
attention in literature for more than 20 years and a large 
number of estimation methods is Autoregressive 
Integrated Moving Average (ARIMA). The method is 
also known as Box-Jenkins has more degrees of 
freedom than the autoregressive, so greater latitude in 
its ability to generate diverse time-series shapes is 
therefore, expected of its estimators. Unfortunately, this 
is not always the case, because of the nonlinear nature 
required of algorithms that must simultaneously 
estimate the moving average and autoregressive 
parameters of the models. This phenomenon finally 

produces low accuracy in forecast of the model 
algorithm based from the assumption below: 
 

• Several methods may end up in a hard failure 
mode. 

• Maximum-likelihood methods that depend on 
search over the parameter space involve significant 
computations and are not guaranteed to converge, 
or they may converge to the wrong solution. 

• Finally, some methods may be inaccurate (e.g., 
significantly biased) in finite samples. 

 
Though the all pole models have less degree of 

freedom, they exhibit major advantages. First of all, all-

pole models have been found to provide a sufficiently 

accurate representation for many different types of 

signals in many different applications. Another reason 

for the popularity is the special structure which leads to 

fast and efficient algorithms for finding the all-pole 

parameters. 

In this study, we use Burg’s and the Modified 

Covariance (MCOV) as AR-based algorithms solution 

to STLF problem. The methods are introduced and their 

performance are tested and compared with Box-Jenkins 

ARIMA (Darbellay and Slama, 2000) and ANN 

(Baharudin and Kamel, 2008). 
 

ELECTRICAL LOAD DATA IN MALAYSIA 

GRID AND NEW SOUTH WALES, AUSTRALIA 
 

The features of load series in any particular region 
between  one  and  another  are  clearly  different. The  
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Fig. 1:  Historical data for the Malaysian grid from 01 March 

2005 to14 August 2005 

 

 
 
Fig. 2: Hourly load curve for the Malaysian grid for two 

weeks 

 

significant different can be observed from the aspects of 

their  daily,  weekly,  monthly and yearly pattern. There 

are many factors that affect the load series. Two main 

factors  that  have  been  discussed earlier (De la Torre 

et al., 2008; El-Telbany and El-Karmi, 2008; Hyndman 

and Shu, 2010; Lira et al., 2009; Maksimovich and 

Shiljkut, 2009; Qun et al., 2011) that would affect the 

pattern of load series are economic activities and 

meteorological variables. 

Covering for the Peninsular Malaysia, the 

Malaysian grid system is operated by Tenaga Nasional 

Berhad (TNB), supplies the load demand to 

approximately 20 million people. The lowest demand 

recorded in 2005 is around 7000 MW. Maximum 

demand can be reached up to 12500 MW. The average 

weekday load demand is from 10000 to 10500 MW and 

for the weekend it is slightly lower. Higher load 

demand consumption is recorded in the area of Klang 

Valley (central region), Penang (north region) and   

Johor Bahru (south region). Figure 1 depicts the hourly 

consumption for six month from 1 March 2005 to 14 

August 2005. 

 
 
Fig. 3: Historical data for the NSW grid between 01 January 

2005 and 31 December 2005 

 

 
 
Fig. 4: Hourly load curve for NSW grid for two weeks 

 
The load series shows a relatively steady behavior 

over the days of the year. This is mainly because of the 
absence of seasonal climate changes. The obvious 
components can be seen such as the weekly seasonal 
cycle and the influence of public holiday. During this 
recorded period of load demand, the influence of the 
meteorological variables is somewhat less. The climate 
is considered consistent with an average temperature of 
30°C and the rain fall during this period is considered 
normal.  

Figure 2 depicts the power load of Malaysian grid 
over a span of 2 weeks. It focuses on intraday pattern. 
The figure shows clearly three different load patterns; 
weekdays (Monday through Friday), Saturdays and 
Sundays. It also manifests that Saturday load is 
approximately two-third of the average weekdays load 
and Sunday is nearly half the average weekdays’ load. 
The reason for the difference in the weekend pattern is 
that in year of 2005, based on the Malaysian 
Government regulations, Saturdays were half day work 
and Sundays were full days off. The maximum and 
minimum demand normally occurs at 2 P.M. and 5 
A.M. respectively.  
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Figure 3 shows power load variation in New South 

Wales grid over approximately one year of data record. 

In the contrary to the Malaysian grid where seasonal 

effects are marginal, the variation in power load due to 

seasonal effect is quite clear in NSW.  

To observe closely the weekly pattern of NSW 

grid, the hourly load curve of 2 weeks is depicted in 

Fig. 4. The figure clearly shows that the weekly power 

load can be decomposed into two patterns; weekdays 

(Monday through Friday) and weekends (Saturday 

through Sunday).  

 

THE AUTOREGRESSIVE (AR) MODELS 

 

A wide-sense stationary autoregressive process of 

order p is a special case of an ARMA (p, q) process in 

which q = 0. An AR (p) process may be generated by 

filtering unit variance white noise, u (n) with an all-pole 

filter of the form: 

 

1

(0)
( )

1 ( )

q

p
k

p

k
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a k z−

=

=
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                                     (1) 

 

The autocorrelation sequence of an AR process 

satisfies the Yule-Walker equations: 

 

2

1
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p
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where rx (k) is the autocorrelation sequence of the 

random process x (n). Writing these equations in matrix 

form for k = 1, 2, …, p, using the conjugate symmetry 

of rxx (k), we have: 
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Therefore, given the autocorrelation rx (k) for k = 0, 

1, .., p we may solve (3) for the AR coefficients. These 

equations may be solved recursively using Levinson-

Durbin Recursion (Amarawickrama and Hunt, 2008) 

which led to a number of important discoveries 

including the lattice filter structure. A close relationship 

exists between a linear prediction filter and an AR 

process. If the random process x (n) is generated as an 

AR (p)  process  and  the  order  of the linear predictor 

m = p, then the predictor coefficients will be identical to 

the AR parameters. This relationship is exploited by 

several algorithms in finding the AR coefficients 

through linear prediction. Consider the forward linear 

prediction estimate: 

 

1

ˆ ( ) ( ) ( )
p

f f

p

k

x n a k x n k
=

= − −∑                                   (4) 

 

of the sample x (n), where a
f
p (k) is the forward linear 

prediction coefficients at time index k. The hat ^ is used 

to denote an estimate and the superscript f is used to 

denote that this is a forward estimate. The prediction is 

forward in the sense that the estimate at time index n is 

based on p samples indexed earlier in time. The 

complex forward linear prediction error is: 

 

ˆ( ) ( ) ( )f f

p pe n x n x n= −                                      (5) 

 

has a real variance: 

 

{ }2

E ( )
f f

pe nρ =                        (6) 

 

where, E {.} denotes the expected value. 

In similar way to forward prediction a backward 

linear prediction error estimate: 
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p

b b
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may also be formed, in which a
b

p (k) is the backward 

linear prediction coefficient at time index k. A 

superscript b is used to tag elements associated with the 

backward linear prediction estimate. The prediction is 

backward in the sense that the estimate at time index n 

is based on m samples indexed later in time. The 

backward linear prediction error is: 

 

ˆ( ) ( ) ( )b b

p pe n x n m x n m= − − −                                   (8) 

 

and has real variance: 
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( )E
b b

pe nρ =
                

(9) 

 

If the Levinson-Durbin recursion is substituted for 

a
f
p (k) or a

b
p (k) = a

f*
p (k) in definitions (4) and (7) for 

the forward and backward linear prediction errors, then 

it is simple to see that: 
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Since the lattice filter provides an alternative 

parameterization of the all-pole filter, i.e., in terms of 
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its reflection coefficients, we may also consider 

formulating the all-pole signal modeling problem as 

one of finding the reflection coefficients that minimize 

some error. In the following section we look at two 

such lattice methods for signal modeling including 

Burg’s method and the modified covariance method.  

 

Burg’s method: The method determines the reflection 

coefficients and can be computed sequentially by 

minimizing the mean-square of the forward and 

backward prediction error (Hanmandlu and Chauhan, 

2011; Hyndman and Shu, 2010):  

 

2 2
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Now, we may find the value of the reflection 

coefficients Γ�
��

 
that minimizes ε

fb
j by setting the 

derivates of ε
fb

j with respect to (Γ�
��)

*
 equal to zero as 

follows: 
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Substituting the error update equations for e
f
j (n) 

and [e
b

j (n)]
*
 which are similar to those given for e

f
j+1 (n) 

and [e
b

j+1 (n)]
*

 
in (21) and solving for Γ�

�� we find that 

the value of Γ�
�� that minimizes ε

fb
j is: 
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The modified covariance method: In the previous 

section we described Burg recursion, which finds the 

reflection coefficients for an AR model by sequentially 

minimizing the mean of the squared forward and 

backward prediction errors. In this section we look at 

the modified covariance method or forward-backward 

algorithm for AR signal modeling. As with Burg 

algorithm, the modified covariance method minimizes 

the mean of the squares of the forward and backward 

prediction errors: 

 
fb f b

p p pε ε ε= +                       (14) 

 
The difference, however, between the two 

approaches is that, in the modified covariance method, 

the minimization is not performed sequentially. In other 

words, for a p
th

-order model, the modified covariance 

method finds the set of reflection coefficients or, 

equivalently, the set of transversal filter coefficients ap 
(k), that minimize ε

fb
p. 

To find the filter coefficients that minimizes ε
fb

p we 

set the derivates of ε
fb

p with respect to a
*

p (l) equal to 

zero for l = 1, 2, …, p. Since: 
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Then: 
 

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) 0

E

          E

ffb b
pp pf b

p p

p p p

f b

p p

e n e n
e n e n

a l a l a l

e n x n l e n x n p l

ε
∗

∗

∗ ∗ ∗

∗∗

  ∂∂ ∂   = +   ∂ ∂ ∂
 

  = − + − + =      

(17) 

 
Substituting Eq. (15) and (16) into (17) and 

simplifying we find that the normal equations for the 
modified covariance method are given by: 
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For the modified covariance error we may use the 

orthogonality condition in (17) to express ε
fb

p as 

follows: 
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Substituting the expression given in Eq. (15) and 

(16) for e
f
p (n)

 
and e

b
p (n)

 
and simplifying, we have: 
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APPLICATIONS AND RESULTS 
 

Since, the intention is to test the capability of the 
proposed AR models in modeling power load series,  no 
 
Table 1: The duration for the usage data and validation (forecast 

period) 

Grid Recorder period Forecast period 

Malaysian 07 March 05-12 June 05 13-19 June 05 
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Table 2: Load comparison and error during the maximum demand of the day 

 

Actual  

load 

ARIMA 

--------------------------------- 

ANN 

----------------------------------- 

Burg 

------------------------------------- 

MCOV 

--------------------------- 

 

Forecast 

load (MW)   Error (%) 

Forecast 

load (MW) Error (%) 

Forecast load 

(MW) Error (%) 

Forecast load 

(MW) 

Error 

(%) 

Mon 11956 12180  1.87 12250 2.46 12063 0.90 12079 1.03 

Tue 11988 12155  1.39 11780 -1.74 12040 0.43 12040 0.44 

Wed 11767 11890  1.05 11910 1.22 11824 0.49 11807 0.34 

Thu 12027 11900 -1.06 11850 -1.47 12066 0.33 12056 0.24 

Fri 11867 11900  1.04 12100 1.96 11958 0.77 11962 0.80 

Sat 10133 9850 -2.79 9720 -4.08 10230 0.96 10220 0.86 

Sun 8915 9300  4.32 9390 5.33 9050 1.51 9045 1.46 

 

attempt has been initially made to reduce its degree of 

fluctuation through grouping it into different patterns. 

With the Malaysian grid, 14 weeks of historical data are 

applied in building the model and one week data are 

referred to validate the forecast performance. The 

duration for the usage data and validation period are 

depicted shown in Table 1. 

In the first experiment we obtained the forecasts of 

AR’s models, ARIMA and ANN of the power load of 

the maximum demand over all days of the considered 

week  (forecast  period).  The results are shown in 

Table 2. The error is calculated from the difference 

between the actual and forecast and it given by: 

 

i

ii

x

xx
ERROR

−
=

ˆ                         (22) 

 

where,  

xi = The actual data 

��� = The forecasted value 

 

Table 2 reports the comparison of the load and 

error with the actual during the time of maximum 

demand of the day. The simulations are carried out for 

lead times of one day ahead. For the weekdays the 

maximum demand occurs at 3 P.M. Mean while for 

Saturday and Sunday normally occurs at 4 P.M. and 11 

P.M. respectively. For all models the errors are 

satisfactory during the weekdays except on Monday. 

This is due to the load demand on Monday is normally 

inconsistent. Thus, the models somehow find it difficult 

to adapt to get a good accurate forecast. The forecast 

value for Saturday and Sunday are slightly higher in 

comparison to the weekdays. Especially on Sunday all 

models perform in the same manner. For all days during 

the time when the maximum demand occurs, AR’s 

model (Burg’s and MCOV) show the errors that below 

2% compared to ARIMA and ANN. 

To show the performances of the different 

techniques in statistical from, the MAPE values over 

the days of the considered week of forecasts, are 

calculated and shown in Table 3. The Mean Absolute 

Percentage Errors (MAPE), calculated from 24 

forecasted values, is used as a performance indicator. 

The MAPE is given by: 

Table 3: Mean Absolute Percentage Errors (MAPE) of daily forecast 

 

MAPE 

----------------------------------------------------------------- 
 ARIMA ANN Burg MCOV 

Mon 2.10 2.58 1.21 1.23 

Tue 1.82 2.21 1.17 1.16 

Wed 1.67 1.98 1.06 1.01 
Thu 1.12 1.78 0.59 0.56 

Fri 1.51 1.85 0.88 0.93 

Sat 2.86 3.12 1.22 1.24 
Sun 3.21 3.79 1.31 1.31 

Average 2.04 2.47 1.06 1.06 

 
Table 4: Record and forecast period 

Grid Recorder period Forecast period 

NSW 01 Jan 05-03 April 05 04 April 05-10 April 05

 

∑
=

−
=

24

1

ˆ

24

1

i i

ii

x

xx
MAPE                         (23) 

 

where, 

xi  =  The actual data 

���  =  The forecasted value 

 

The forecast results for Burg’s and MCOV models 

clearly outperformed ARIMA (Hanmandlu and 

Chauhan, 2011) and ANN (Amarawickrama and Hunt, 

2008). For the day comparison, the highest error 

recorded for all models occur on Sunday. Whereas the 

lowest recorded is on Thursday. Average MAPE is 

considered sufficient for the Malaysian Grid operator 

(TNB) for all models. However, Burg’s and MCOV 

models prove that an AR’s model is capable to conduct 

such load forecast with better accuracy. 

In the third experiment, we obtained the forecasts 

for AR’s models, ARIMA and ANN for load demand of 

NSW. The hourly data over 14 weeks in early of the 

year are applied. Table 4 tabulates the recorded period 

and the predicted week of the study case. 
The experiments are conducted similar of the case 

for the Malaysia Grid. The first experiment is to obtain 
the forecast of the maximum demand of the day during 
the forecast period. Secondly, the 1 day ahead forecast 
is obtained. 

The results for maximum demand and one day 

ahead forecast are depicted in Table 5 and 6 

respectively. Table 5 depicts the comparison of the 

actual load and forecast with their error during the time
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Table 5: Load comparison and error during the maximum demand of the day for NSW 

 

Actual  load 

ARIMA 
---------------------------------- 

ANN 
-------------------------------- 

Burg 
-------------------------------- 

MCOV 
------------------------------ 

 
Forecast 
load (MW) Error (%) 

Forecast 
load (MW) Error (%) 

Forecast 
load (MW) Error (%) 

Forecast 
load (MW)  Error (%) 

Mon 9400 9589 2.01 9591 2.03 9320 -0.85 9327 -0.78 
Tue 9253 9075 -1.92 9450 2.13 9320 0.72 9322  0.75 
Wed 8539 8702 1.91 8750 2.47 8620 0.95 8618  0.93 
Thu 8638 8502 -1.57 8480 -1.83 8610 -0.32 8611 -0.31 
Fri 9771 9605 -1.70 9590 -1.85 9685 -0.88 9686 -0.87 
Sat 9842 10100 2.62 10180 3.43 9978 1.38 9974  1.34 
Sun 9845 9985 1.42 9689 -1.58 9794 -0.52 9796 -0.50 

 
Table 6: Mean Absolute Percentage Errors (MAPE) of daily forecast 

 
MAPE 
----------------------------------------------------------------- 

 ARIMA ANN Burg MCOV 

Mon 2.51 2.85 1.41 1.40 
Tue 2.24 2.57 1.25 1.25 
Wed 1.92 2.23 1.16 1.15 
Thu 1.25 2.03 0.84 0.85 
Fri 1.82 2.15 1.02 1.01 
Sat 2.96 3.42 1.59 1.58 
Sun 2.87 3.12 1.32 1.32 
Average 2.22 2.62 1.23 1.22 

 
of maximum demand of the day. The simulations are 
carried out for lead times of one day ahead similar to 
Malaysia Grid scenario. 

For the simplicity, Table 5 summarizes the 
maximum demand of the day for 1 week forecast. It can 
be observed that during the weekdays the maximum 
demand occurs at 3 P.M. Mean while for Saturday and 
Sunday it is normally occurs at 4 P.M. and 11 P.M. 
respectively. For all models the errors are satisfactory 
during the weekdays except on Monday and Saturday. 
This is due to the load demand on Monday and 
Saturday’s normally inconsistent. Especially on 
Saturday, many social and community events take 
place. Thus, the models somehow find it difficult to 
adapt to get a good accurate forecast. Unlike the 
Malaysia Grid the forecast value for Sunday is lower. 
This is due to the good consistency for the load demand 
on Sunday in NSW. The fact is true where it can be 
seen that normally on Sunday less social and 
community activities are conducted. For all days during 
the time when the maximum demand occurs, AR’s 
model (Burg’s and MCOV) show the errors below 2% 
compared to ARIMA and ANN. 

Once again, the forecast results for Burg’s and 
MCOV models clearly outperformed ARIMA and 
ANN. For the day comparison, the highest error 
recorded for all models occur on Sunday. Whereas the 
lowest recorded is on Thursday. Average MAPE is 
considered sufficient for the Malaysian Grid operator 
(TNB) for all models. However, similar to the Malaysia 
Grid, Burg’s and MCOV models prove that an AR’s 
model is capable to conduct such load forecast with 
better accuracy.  

 
CONCLUSION 

 

In this study, the performance of the univariate 

Autoregressive (AR) method in short term load forecast 

is presented. Two AR’s models, Burg and the Modified 

covariance are discussed and used for one-week ahead 

forecasting with three months power load data record 

from Malaysian and NSW grid. The performance of 

Burg and the Modified Covariance (MCOV) is 

compared with ARIMA and ANN in previous 

researchers’ finding. The comparison results indicate 

clearly the better performance of the AR-based 

techniques to the ARIMA and ANN. This could 

establish the all poles models as an alternative solution 

to STLF problem. 
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