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INTRODUCTION 

 
In Computer Science and Mathematics, a graph is 

defined as a mathematical structure that is normally 
used to model a pairwise relation between elements 
from some collection. But, in the most common sense 
of the word, a graph can be defined as an ordered pair 
G = (V, E) where the set V consists of the vertices or 
nodes while the set E is made up of the edges or lines 
which connect the nodes (Balakrishnan and 
Ranganathan, 2000). There are various types of graphs 
such as bipartite graphs, hyper-graphs, directed graphs 
(digraphs), multiline graphs, networks, line graphs, 
planar graphs, undirected graphs, vertex-transitive 
graphs, etc (Balakrishnan and Ranganathan, 2000; Chen 
and Hwang, 2000; Diestel, 2006; Li et al., 2011; Mandl, 
1979; Schrijver, 2009; Strayer, 1992; Xu, 2003, 2001); 
and it is clear that their construction resulted from 
everyday life problems and hence the need to research 
about them. 

Graphs are normally represented in two forms 
namely; Adjacency matrix form and Incidence matrix 
form and it is in either of these two forms that graphs 
are commonly stored in computers (Xu, 2003). 
Therefore, all other types of matrices namely: Toeplitz 
matrices, Circulant matrices, Null matrices, Triangular 
matrices, Diagonal matrices, etc (Agaian, 1985; Bhatia, 
2007; Brauer and Gentry, 1968; 
Fiedler, 1971) are either adjacency matrices or 
incidence matrices in origin depending on the 
constraints subjected to the graph in question. 

In this study, we  would  represent a  graph as G = 
﴾( V ,  A, µ )  ﴿ ,  ( E ,  β,  v ^ where V  is the vertex set of 

G, A is the sigma-algebra of V and µ is a measure 
defined on A while E is the edge set of G, β is the 
sigma-algebra of E and v  is a measure defined on β. 

The goal of this study is to show that the product 
measure spaces (V×E, A⊗β, µ×v) and V×V, A⊗A, µ× 
µ)  represent the incidence and adjacency matrices 
respectively and that they are measurable (Berberian, 
1999; Friedman, 1982; Hewitt and Stromberg, 1965; 
Lieb and Loss, 2001). 

This study presents a new method of graph 
representation. It also proposes a new approach of 
constructing both incidence and adjacency matrices 
based on the principles of product measures; and 
demonstrate that both the proposed graph representation 
and the proposed construction algorithm possess the 
characteristic or feature of measurability, which is a 
major advantage of both methods. Finally, some areas 
where the research can be found applicable are 
discussed. 
 
Crucial definitions and theorems: In this section, we 
will define the important terms and prove the theorems 
that would be used in the construction of the said 
matrices from the theory of product measures. We start 
by fixing some notations. Let (V, A, µ) and (E, β, v) be 
measurable spaces. A subset Ψ⊆ V×E is called a 
measurable rectangle if Ψ = Ω ×ɸ for some Ω ϵ A and ɸ 
∈β. We let R to denote the class of all measurable 
rectangles with the fact in mind that, it is not a σ-
algebra but a semi-algebra of the subsets of V×E. The 
sigma-algebra of the subsets of V×E generated by the 
semialgebra R is called the product sigma-algebra and 
is denoted by A⊗B. 
 

Definition 1: Let ( X ,  A1 µ1 be a measure space and let 
a mapping ϕ exists such that: 
 

 0: X → R* 
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where, R* denotes the set of extended real numbers. 

Then the mapping ϕ is said to be measurable if f ϕ-1 (I) 

ϵA1 for all intervals I ⊆A1 or if ϕ-1 ([c,+∞)﴿ ϵ A1 for all 

c ϵ e R. 
 
Definition 2: Given a set a power set Ψ a power of Ψ 
(A) and µ a measure defined on A; the triple (Ψ, A, µ) is 
called a measure space. If µ (Ψ) <∞ then (Ψ, A, µ) is 
called a finite measure space otherwise it is a non-finite 
measure space. 
 

Theorem 1: Given two measure spaces (X, A1,  µ 1 )  
and (Y ,  A2 ,  µ 2 ) together with projection maps of the 
form: 
 

ϕX: X ×Y  → X 
ϕy: X ×Y  → Y 

 
then the following statements hold: 

 

• ϕx is a A1 ⊗ A2 measurable map 
• ϕY is a A1 ⊗ A2 measurable map 
 

Proof (i): Let the projection maps 
ϕX: X ×Y→ X (ϕY: X ×Y )  be defined as: 
 

ϕX ( x , y ) =  x   and ( ϕY ( x ,  y )  =  y  

 

∀x < ∈E X  and ∀y∈Y. We consider the map ϕX 
and make the following analysis: 
 

X×Y→ X  

A1 ⊗ A2→A1 

ϕX:  X × Y →X  

ϕX:   ( x ,  y )  =  x  

 
∀ (x, y) ∈ X ×Y. We now claim that ϕX is A1 ⊗ A2 

measurable and hence ∀A∈A1 we would 
show that the inverse projection map ϕX

-1(A) is also in 
A1 ⊗ A2 as follows: 

 

ϕX
-1(A) = {(x, y ∈ X×Y|x∈A} = A ×Y ∈ R⊆A1⊗A2 

We have seen from above that for any 
set A  ∈ A1 the inverse projection map 
ϕX

-1(A) ∈ A1⊗A2 which implies that the map 
ϕX is a A1 ⊗ A2 measurable map.  

 

• Here we also claim that ϕy is A1⊗A2 measurable 
and consider the projection map: 

 

ϕy: X×Y —► Y 
 
which is defined as: 
 

ϕy (x, y) = y 

∀ (x, y) ∈ X ×Y. Now we would show that ∀
 ∈A2 the 
inverse projection map ϕy

-1(M) is also in sigma-algebra 

A1⊗A2 we would proceed as follows. Given any set M 
which is any element of the sigma-algebra A2 then the 
inverse map ϕy

-1(M) becomes: 
 

ϕy
-1(M) = {(x, y∈X×Y|y∈M} = X ×M∈R⊆A1⊗A2 

 
Therefore, since ∀M ∈A2, ϕy

-1(M) ∈ A1 g⊗A2 the 
fact that the mapping ϕy is A1∈A2 measurable is 
established.  
 
Theorem 2: Let (X, A1,  µ 1 )  and (Y, A2,  µ 2 )  be two 
measurable spaces such that theorem holds. Then the σ-
algebra A1∈A2 is a member of the a-algebra of the 
subsets of X×Y. 
 
Proof: Let Z  be any σ-algebra of the sub-sets of X ×Y 
such that ϕx and ϕy are both Z-measurable (Theorem 
1). Our goal is to show that Z⊇A1⊗ �2  and we 

proceed by supposing that the set A∈A1 and the set 
B ∈A2, then from theorem 1 it is clear enough that the 
following equations: 
 

A×Y = ϕX
-1(A)∈ Z 

X ×B = ϕy
-1 (B) ∈ Z 

 
are true. Since A×B∈R, we can without fear evaluate the 
product A×B as follows: 

 
A×B = (A×Y) ∩ (X×B) = ϕX

-1 (A) ∩ ϕy
-1 (B) ∈ Z 

 
which implies that R⊆Z and hence the following result:          
   

A1⊗ A2 = Z (1)⊆Z                       (1)   
 

For more clarity of Eq. (1) we let X and Y to be 
non-empty sets and supposed C and   D to be families 
of subsets of X and Y respectively. Thus we can analyze 
as follows: 

 
X                                 Y                          X×Y 
C                                 D                         C×D 
Z (C)                        Z (D)             Z (C×V) 

 
and hence Eq. (1) becomes: 
 

A1⊗A2 = Z (C×D) ⊆ Z (C)⊗Z (D).  
 
Construction from product measures: In this section, 
we would describe the construction of both incidence 
and adjacency matrices using the concepts of product 
measures. 

We let (V, A1, µ1) and (E, A2, µ2) to be spaces 
where V and E are sets, A1 and A2 are the sigma-
algebras of the sets V and E respectively and µ1 and µ2 
are measures defined on A1 and A

2 respectively. We 
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want to show that the spaces (V×E, A1⊗A2, µ1×µ2) and 
(V×V, A1⊗A2, µ1×µ2) represent both incidence and 
adjacency matrices and they are measurable. For the 
construction to be meaningful, we only need to show 
that there exists measure Q such that: 

 
Ω: A1⊗A

2 → [0, +∞] 
 
such that: 

 
Ω: (A×B) =  µ1 (A) µ2 (B) 
 

for every A∈A1, B∈A2. It is a clear fact that: 
 

A1⊗A2 = S(R) 

(Theorem 2) where S  is any sigma-algebra of the 
subsets of V×E and R denotes the semi-algebra of the 
subsets of V×E and hence the following equation is 
true: 
 

R = {A×B|A ∈A1, B  ∈ A2} 
 
where, 
 

µ1: A1 → [0, +∞]  
µ2: A2 → [0, +∞] 

 

Step I: We let: 
 
Ω: R→ [0, +∞] 

 
defined by: 
 

Ω (A×B) = µ1 (A) µ2 (B) 
 
For every A∈V and for every B∈E and show that Ω 

is a measure on R. We proceed as follows. It is obvious 
that Q satisfies the null-empty set property, i.e: 
 

Ω (ϕ) = 0 
 
Next, we would show that Ω is countable additive i.e: 
 

Ω (A×B) = � Ω�
���  (At×Bt) 

 
where, A1, At e  A1,  B1, Bt ∈ A2 and (At×Bt)⋂ (Ar×Br) = 
ϕ for t≠r. We begin by letting 
A and B to be two pair-wise disjoint sets which means 
that: 
 

A×B = � (A� × B�)�
���   

We now fix x∈A, vary y∈B and maintain the 
condition (x, y) ∈A×B. The above operation implies 
that there exists a t such that (x, y) ∈ At×Bt which in-

turn means that x∈At and such that y∈Bt. Thus y∈B 

implies that y∈Bt where x∈At and we have:   
 
� ���∈� (�)                                                   (2) 

 
where, 

 

F(x) = {t∈N| x∈At} 
 
Equation (2) can be further written in the form 
 

µ2 (B) = � μ �∈�(�) (��)                                   (3) 

 
If x ∉A, then z  ∉At ∀t and we can write X At ( x )  

=  0  where χAt (x ) is the character is- tic function of At 
with respect to x . Also, if x  ∈A then x  ∈ At for all t in 
F(x ) and hence χAt (x ) = 1. Thus Eq. (3) can be 
modified as follow: 
Therefore, 
 

µ2(B)χA(x ) = � "#�
�
��� ($)μ (��)                    (4) 

 
Applying the monotone convergence theorem (MCT) 
on (V, A1, µ1) Eq. (4) becomes: 
 

% μ (&) χ#(x ) d μ�(x ) = � % "#�
�
��� ($)μ (��)dμ�(x )  

μ (��) % "# dμ�(x ) = � μ 
�
��� (��) μ�(x )  

μ (B) μ�(() = � μ 
�
��� (��) μ�(At) 

Ω (A×B) = � Ω�
��� (At×Bt) 

 
Hence Ω is countable additive. Therefore, 

 
Ω: A1 × A2 → [0, +∞] 

 
Such that: 
 

Ω(A×B) = μ�(A) μ (B) 
 
Is a measure on the semi-algebra A1× A2 
 
Step II: We use the general extension theory to extend 

Ω to a unique measure Ω+ on the sigma- algebra 
generated by R and claim that μ� and μ  are σ-
finite i.e., given: 

 
Ω+: A1 ⊗ A2 ⟶ [0, +∞] 
 

such that: 
 

Ω+(A× B) = Ω (A×B) 
 

then Ω+ is a measure. We proceed as follows. 
For our claim above to be meaningful the equations 
below must be true: 
 

V = � V., V. ∈ A� 
�
.��                                             (5) 
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and μ�(Vi)<+∞ for all i: 
 
V×E� E., E1 ∈ A  

�
1��                                            (6) 

and μ (Ej)<+∞ for all j .Thus: 
 
V×E = (� V.

�
.�� )×( � E.)

�
1��  =� i = 1 

 � j = 1 (Vi×Ej) 
 

is a partition of V×E by elements of R such that: 
 

6(Vi×Ej) = µ1(Vi) µ2 (Ej)<+∞. 
 
Therefore, 6 isσ-finite. 
The above described construction goes for 

incidence matrices while that of adjacency matrices 
follows the same procedures as above. 
 

DISCUSSION 
 

The concept of measurability is very important in 
various disciplines such as, analysis, statistics, 
economics, computer science, etc. 

In statistics related areas the presence of the power 
set in this representation, which is equivalent to the 
universal set makes it possible for the probabilities to 
be calculated and hence represented in a matrix form 
given rise to matrices like, doubly stochastic matrices, 
right stochastic matrices, left stochastic matrices, etc. 

In the computer science disciplines, a knowledge 
of the sigma algebra backed by measurability makes 
computation of any matrix represented in this form to 
be faster than other matrices of different representation 
as the algorithm is knowledgeable about the power set. 

In Graph Theory, the power set (sigma algebra) of 
this representation can be used to store all perfect 
matchings of a graph (bipartite graph) and hence 
doubly stochastic matrices can be generated since 
perfect matchings are associated with the graphs of 
doubly stochastic matrices. At the same time 
permutation matrices can be obtain because of the fact 
that any convex combination of permutation matrices 
gives rise to a doubly stochastic matrix (Ando, 1989; 
Bhatia, 1997; Borwein and Lewis, 2000). 
 

CONCLUSION 
 

We have presented a new approach of graph 
representation and at the same time a new method of 
constructing measurable incidence and adjacency 
matrices. The advantage of this noble work is simply 
measurability as both the representation and the 
construction are measurable. 
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