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Research Article 
An Image Denoising Framework with Multi-resolution Bilateral Filtering and Normal 

Shrink Approach 
 

Shivani Sharma and Gursharanjeet Singh Kalra 
Lovely Professional University, Punjab, India 

 

Abstract: In this study, an image denoising algorithm is presented, which takes into account wavelet thresholding 
and bilateral filtering in transform domain. The proposed algorithm gives an extension of the bilateral filter i.e., 
multiresolution bilateral filter, in which bilateral filtering is applied to the approximation sub bands and normal 
shrink is used for thresholding the wavelet coefficients of the detail sub bands of an image decomposed using a 
wavelet filter bank up to 2-level of decomposition. The algorithm is tested against ultrasound image of gall bladder 
corrupted by different types of noise namely, gaussian, speckle, poisson and impulse. The result shows that with 
increase in decomposition levels the proposed method is effective in eliminating noise but gives overly smoothed 
image. The algorithm outperforms with speckle and poisson noise at 2- level decomposition in terms of PSNR. 
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INTRODUCTION 

 
The applications like video broadcasting, satellite 

imaging, medical imaging or research in telescope 
imaging totally depend on the quality of the digital 
images for their success. There are different sources of 
noise that may contaminate any digital image and 
degrade the quality. The overall noise characteristics in 
an image depend on many factors like, pixel 
dimensions, temperature, exposure time and type of 
sensor (Ming and Bahadir, 2008). Among the noise 
sources, dark current noise is due to the thermally 
generated electron at the sensor sites. It is proportional 
to the exposure time and highly dependent on the 
sensor temperature. Shot noise has the characteristics of 
Poisson distribution and is generated due to the 
quantum uncertainty in the generation of photoelectron. 
Amplifier noise and quantization noise occur during the 
conversion of number of electrons to pixel intensities 
(Ming and Bahadir, 2008). Images are often corrupted 
by noise usually modelled as Gaussian type during 
acquisition and transmission. Additive noise removal 
from a given signal is an important problem in signal 
and image processing (Michael, 2002). In medical 
imaging applications especially considering ultrasound 
imaging suffer from speckle noise. Speckle is a random 
multiplicative noise which obscures the perception and 
extraction of fine details in ultrasound image and 
despeckling is necessary for better diagnosis of the 
images (Vanithamani and Umamaheswari, 2011). 
Impulse noise generates a pixel with gray value, which 
is not correlated with their local neighborhood. It 
appears as a sprinkle of both light and dark or only light 

or only dark spot in image by replacing a portion of 
image’s pixel value with random value in the dynamic 
range [0,255] while leaving the remainder unchanged 
(Kumar, 2010). Many imaging modalities such as PET, 
SPECT and fluorescent confocal microscopy imaging 
results in poisson noise, is a basic form of uncertainty 
associated with the measurement of light, inherent to 
the quantized nature of light and the independence of 
photon detections. Its expected magnitude is signal 
dependent and constitutes the dominant source of image 
noise except in low-light conditions Noise removal may 
help to improve the performances for many signal 
processing algorithms, such as compression, detection, 
enhancement, recognition and more. Noise is also color 
or channel dependent. Typically, green channel is the 
least noisy where as blue channel is the noisiest. Noise 
in a digital image has low frequency (coarse-grain) and 
high frequency (fine-grain) components. The high-
frequency components are typically easier to remove 
but it is difficult to distinguish between real signal and 
low- frequency noise (Ming and Bahadir, 2008). Most 
of the natural images are assumed to have additive 
random noise which is modelled as Gaussian type. This 
denoising is often an essential and the first step to be 
considered before the image data is analysed. The goal 
of denoising is to remove the noise while preserving the 
important image features as much as possible and to 
achieve this goal many denoising methods have been 
proposed over the years. Filtering is the most 
fundamental operation of image processing. In the 
broadest sense of the term “filtering”, the value of the 
filtered image at a given location is a function of the 
values of the input image in a small neighbourhood of 
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the same location. There are two types of filtering 
techniques namely linear filtering techniques and non- 
linear filtering techniques. Linear filtering techniques 
are optimal but result in problems like blurring sharp 
edges, destroying lines and other fine image details. 
Mean filtering and Gaussian filtering are the examples 
of linear filtering techniques. On the other hand, non-
linear filtering techniques avoid the limitations of linear 
filtering techniques and hence preserve edges and other 
fine details of the image. Median filtering, anisotropic 
filtering and bilateral filtering are the examples of non-
linear filtering (Ming and Bahadir, 2008). 

Among the various method of denoising, wavelet 
thresholding has been reported to be a highly successful 
method. In this wavelet thresholding technique, a signal 
is decomposed into approximation (low-frequency) and 
detail (high-frequency) subband and the coefficients of 
the detail subband are processed via hard or soft 
thresholding. The hard thresholding eliminates those 
coefficients that are smaller than the threshold value 
while the soft thresholding shrinks the coefficients that 
are larger than the threshold. The performance of 
denoising depends on the selected threshold so 
threshold selection is the most critical task of the 
wavelet thresholding process. For the threshold 
selection, there are various shrink functions developed 
(Rohit et al., 2011). Various threshold selection 
strategies have been proposed, such as VishuShrink, 
SUREShrink, NormalShrink and BayesShrink etc 
(Rohit et al., 2011). But the limitation of wavelet 
thresholding is that it results in smoothing of edges 
(Sudipta et al., 2012). The bilateral filter was proposed 
in Tomasi and Manduchi (1998) as an alternative to 
wavelet thresholding and is a very popular non-linear 
denoising method. Bilateral filter is a combination of 
two Gaussian filters; one works in spatial domain, the 
other filter works in intensity domain. The bilateral 
filter takes a weighted sum of the pixels in a local 
neighbourhood; the weights depend on both the spatial 
distance and the intensity distance. In this way, edges 
are preserved well while noise is averaged out. Noise 
may have low frequency and high frequency 
fluctuations. It is easier to remove high frequency but it 
is difficult to distinguish between real signal and low 
frequency noise. The limitation of bilateral filter is its 
single resolution nature. Although bilateral filter is 
effective in removing high frequency noise but fails to 
remove low frequency noise (Ming and Bahadir, 2008). 
This limitation of bilateral filter can be avoided by 
using bilateral filter in multiresolution framework. As it 
is seen that low frequency noise becomes high 
frequency noise as the image is decomposed into 
subbands further and possible to get rid of it at lower 
level (Ming and Bahadir, 2008). So in this proposed 
work, bilateral filter is used in multiresolution 
framework along with wavelet thresholding technique 
so as to remove low frequency noise from the image. 
This approach exploits the capabilities of both bilateral 
filter and wavelet thresholding using NormalShrink 

function for threshold selection. While bilateral filter 
works in approximation subbands, wavelet thresholding 
is to be applied in the detail subbands, where some 
noise components can be identified and hence can be 
removed effectively. The proposed work is tested on 
ultrasound images corrupted by poisson, gaussian and 
speckle and impulse noise. 

 

LITERATURE REVIEW 

 

The de-noising is a challenging task in the field of 

signal and image processing. There are two types of 

denoising approaches, one is wavelet approaches and 

the other is non-wavelet approaches. Wavelet shrinkage 

is a wavelet approach and the selection of threshold 

plays an essential role in wavelet denoising. The first 

category of threshold selection uses universal threshold 

method, in which the threshold is common for all the 

wavelet coefficients of the noisy image. The second 

category is subband adaptive in which the threshold 

value is estimated for each subband separately. 

VishuShrink (Donoho and Johnstone, 2002) uses 

universal threshold that results in overly smoothed 

images. SUREShrink (Donoho and Johnstone, 1995) 

uses independently chosen thresholds for each subband 

through the minimization of the Stein’s unbiased Risk 

Estimate. SUREShrink performs better than 

VishuShrink. In BayesShrink (Chang et al., 2000) the 

threshold is determined for each subband by modelling 

the wavelet coefficients within each subband as random 

variables with Generalized Gaussian Distribution 

(GGD). The NeighShrink thresholds the wavelet 

coefficients according to the magnitude of the square 

sum of all the wavelet coefficients within the 

neighbourhood pixels. But the average elapsed time by 

Neigh Shrink for coiflet wavelet bases in a single test is 

much more than the Bayes Shrink and Normal Shrink 

method (Rohit et al., 2011). The result shows that the 

Neigh Shrink gives the better result than the Bayes and 

Normal Shrink in terms of PSNR. However, in terms of 

the processing time, the Normal Shrink is faster than 

the remaining both (Rohit et al., 2011). 
A major strength of the wavelet thresholding which 

is a wavelet approach is its ability to treat different 
frequency components of an image separately, which is 
important, because noise in real scenarios may be 
frequency dependent. But, in wavelet thresholding the 
problem experienced is generally smoothening of 
edges. Bilateral filtering is a technique to smooth 
images while preserving edges. It can be traced back to 
1995 with the work of Aurich and Weule (1995) on 
nonlinear Gaussian filters. It was later rediscovered by 
Smith and Brady (1997) as part of their SUSAN 
framework and Tomasi and Manduchi (1998) who gave 
it its current name. Since then, the use of bilateral 
filtering has grown rapidly. Although the bilateral filter 
was first proposed as an intuitive tool, it shows some 
connections with some well established techniques. It is 
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shown that the bilateral filter is identical to the first 
iteration of the Jacobi algorithm (diagonal normalized 
steepest descent) with a specific cost function (Michael, 
2002). The bilateral filter is also related with the 
anisotropic diffusion. The bilateral filter can also be 
viewed as a Euclidean approximation of the Beltrami 
flow, which produces a spectrum of image 

enhancement algorithms ranging from the �� linear 

diffusion to the �� nonlinear flows. In nonlocal means 
filter, where similarity of local patches is used in 
determining the pixel weights. When the patch size is 
reduced to one pixel, the nonlocal means filter becomes 
equivalent to the bilateral filter (Ming and Bahadir, 
2008). Multi-resolution analysis has been proven to be 
an important tool for eliminating noise in signals, it is 
possible to distinguish between noise and image 
information better at one resolution level than another 
(Ming and Bahadir, 2008). So in my proposed work, 
bilateral filter is used in multi-resolution framework so 
as to remove low frequency noise as it is difficult to 
remove it at single resolution. Also, NormalShrink 
wavelet thresholding is used in detail subbands as it 
requires less processing time. 

 

THE PROPOSED SCHEME 

 

Assume a color image say g��, �� of size 	 × � ×
3 and convert it into gray scale image say 
��, �� of 

size	 × � × 1. For the implementation, ���, ��or 


��, �� should be a double precision matrix. Adding 

noise into the gray scale image for generating a noisy 

image for study purpose  

The noisy image signal so obtained is decomposed 

into its frequency subband with wavelet-decomposition. 

As image is a two-dimensional entity so after wavelet 

decomposition it gets decomposed into approximate 

subband and detail subband. The detail subband 

comprises of horizontal, vertical and diagonal detail. 

The coarse-grain noise at the original level is difficult 

to identify and eliminate so the noise becomes fine 

grain as the image is decomposed and can be eliminated 

more easily. In two dimensions, a two-dimensional 

scaling function, ���, �� ��� three two- dimensional 

wavelets, ����, ��, ����, �� and, ����, �� are 

required. Each is the product of two one-dimensional 

functions. Excluding one dimensional results like 

��������, the four remaining products produce the 

separable scaling function: 

 

   ���, �� =  ��������                            (1)  

                                                     

and separable, directionally sensitive wavelets: 

 

  ����, ��  =  ��������                                      (2)   

                                            

  ����, �� =  ��������                           (3)                                              

 ����, ��=��������                                           (4)       

                                                  

where, ��  measures intensity variations along 

columns, �� measures intensity variations along rows, 

��  measures intensity variations along diagonals. The 

scaled and translated basis functions are given in Eq. 

(5) and (6): 

 

  ��,�,� ��, �� =  2�
� ��2�� – !, 2�� – ��             (5)    

                           

�"�,�,� ��, �� =  2�
� �"�2�� – !, 2�� – ��,          (6)   

         

 # = $%, &, '( 

 

where, index # identifies the directional wavelets in Eq. 
(2) to (4). The discrete wavelet transform of noisy 

image 
 ′��, ��of size 	 × � × 1 is then given by: 
 

)* +,-,!, �. = �
/01 2 2 
′��, ��13�45-03�65-  ��7,�,� ��, ��    

                                                                                     (7)          
                     

)"8 +,,!, �. = �
/01 2 2 
′��, ���"�,�,� ��, ��13�45-03�65- ,   

                               (8)         
                       
# = $%, &, '(, ,- is an arbitrary starting scale and the 

)* +,-,!, �. coefficients define an approximation of 


′��, �� at scale ,-. 

The )" 8 +,,!, �. coefficients add horizontal, 

vertical and diagonal details for scales j≤ ,-,we 

normally let ,-=0 and select N =M = 2: so that j = 0, 1, 

2…J−1 and m = n = 0, 1, 2….2� − 1. 
Applying bilateral filtering to the approximate 

subband )* +,-,!, �.. Mathematically, at a pixel 

location x, the output of the bilateral filter is calculated 
as follows: 

 

      <���= = �
> 2 ?

@||B@C||�
�DE� ?

@|F�B�@F�C�|�
�DG�4∈1�6� <���           (9)                              

 
where IJ and IK  are parameters controlling the fall-off 
of the weights in spatial and intensity domains, 
respectively N(x) is a spatial neighborhood of x and C 
is the normalization constant that assures that the filter 
preserves average gray value in constant areas of the 
image, respectively: 
 

L = 2 ?
@||B@C||�

�DE� ?
@|F�B�@F�C�|�

�DG�4∈1�6�                      (10)  

                               
Equation (9) performs bilateral filtering combining 

domain and range filtering based on geometric 
closeness and photometric similarity between the 
neighbourhood centre and nearby point. 

Now, applying Normal Shrink thresholding 

technique  to  the  detail  subband  )" 8 +,,!, �.. In  the  
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Fig. 1: Flowchart of the proposed work for 2 decomposition level 

 

proposed work, NormalShrink approach is used for 

thresholding, various parameters are used to calculate 

the threshold value (M1), which is adaptive to different 

subband characteristics: 

  

  M1 = NOP�
OBQ                                           (11)                               

 

where, the scale parameter β is computed once for each 

scale using the following equation: 

 

 R = Slog WXY
: Z                                         (12)   

                            

�[   =   The length of the subband a\ ]^_ scale.         

Ì�   = The noise variance, which is estimated from the 

subband HH1, using the formula 

 

 Ì� = a�bJ"c�+def�d.
-.hijk l�

                        (13)   

                               

and Ì4 is the standard deviation of the subband. This is 

the way to compute the estimation parameter of 

NormalShrink approach. Applying this thresholding 

approach on the horizontal, vertical and diagonal 

details, where some noise components can be identified 

and removed effectively. 

The image signal is reconstructed back using 

inverse wavelet transform. The original image 
��, �� 

is obtained via inverse discrete wavelet transform, using 

Eq. (7) and (8), is given by: 

 


��, �� = �
/01 2 2 )* +,-,!, �.��  ��7,�,� ��, ��  

 

+ �
/01 2 2 2 2 )"8 +,,!, �.��∞�5�7"5�,�,�   

  �"�,�,� ��, ��                                                     (14)                         

 

Once the image signal is recovered back then again 

bilateral filtering is to be applied on it. The Fig. 1 

shows the flowchart of the proposed work for 2- level 

of decomposition. 

 

PERFORMANCE EVALUATION 

 

In order to measure the performance of the 

proposed denoising method several parameters are 

available for comparison. Among the various 

parameters, Peak Signal to Noise Ratio (PSNR) and 

Mean Square Error (MSE) are calculated as the 

performance measurement criteria in this proposed 

work. The PSNR is defined as:  

 

PSNR (dB) =10 log�- W�kk×�kk
0no Z                        (15) 

 

where, MSE is the mean square error between the 

denoised and original image. It is calculated by taking 

the difference between two images say �" and 
"  pixel 

by pixel, square the result and finally average the 

results. MSE may be defined as: 

 

 MSE = 
�
0 2 ��# − 
#��0�                            (16) 
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Higher value of PSNR of denoised and original 

image implies that the performance of the denoising 

method is good and hence better image quality.  

 

RESULTS AND DISCUSSION 

 

Some experiments were conducted using 

ultrasound medical images that include gall bladder, 

among others, corrupted by different types of noise 

namely Gaussian, speckle, poisson and impulse noise 

with a noise of variance 0.02. These noisy images were 

denoised using proposed method and the PSNR results 

were calculated. Table 1 gives the PSNR comparison 

between the proposed method (multiresolution bilateral 

filtering with NormalShrink) and multiresolution 

bilateral filtering in combination with the BayesShrink 

thresholding for 1- level and 2- level of decomposition. 

At a noise variance of 0.02 and at 1- level 

decomposition, the proposed method gives 0.02 dB 

better result for ultrasound image corrupted by poisson 

noise than that of the multiresolution bilateral filtering 

with Bayes Shrink approach. However, for the case of 

impulse noise both the methods shows unsatisfactory 

results and also for the case of ultrasound image 

corrupted by Gaussian noise and speckle noise the 

multiresolution bilateral filtering with BayesShrink 

thresholding shows better results than the proposed 

method. On comparing the PSNR values at 1-level and 

2-level of decomposition for the same two methods 

discussed above at a noise variance of 0.02, the 

proposed method shows improved results that means 

with increase in decomposition levels the proposed 

method is effective in eliminating noise but gives 

overly smoothed images as shown in Fig. 2. At 2- level 

of decomposition, proposed method shows good results 

with speckle i.e., 2.15 dB increases in PSNR value by 

the   proposed   method  than  that  with  multiresolution  

bilateral filtering with BayesShrink and the proposed 

method outperforms for poisson noise with 3.48 dB 

increase in PSNR values. But on increasing the noise 

variance  to  0.04,  the   proposed   method   gives better  

result at 2-level of decomposition with the speckle and 

poisson noise. For speckle noise, there is 2.01 dB 

increases in PSNR value and 6.21 dB increase for the 

case of poisson noise but results in overly smoothed 

images due to the application of bilateral filter. 

Table 2 shows the PSNR comparison of different 

methods for different types of ultrasound noisy images 

with a noise of variance 0.02 and the corresponding 

results were displayed in Fig. 3. Observation of the 

result reveals that the multiresolution bilateral filter 

with BayesShrink thresholding gives better result for 

ultrasound image corrupted by Gaussian noise.  

If we take only the multiresolution characteristic 

into account than it was observed that multiresolution 

filter (BayesShrink) and the proposed method both 

outperforms than the single resolution bilateral filter. 

Both multiresolution filter (BayesShrink) and the 

proposed method give 3.36 dB and 1.86 dB better 

results than the single resolution nature of bilateral filter 

for Gaussian noisy ultrasound image and also MBF 

(BayesShrink) gives 1.17 dB and proposed scheme 

gives 1.13 dB better results than single resolution 

Bilateral filter. On analysing the Table 2, the proposed 

method gives better result for ultrasound image 

corrupted by poisson noise with 0.02 dB increase in 

PSNR value but gives unsatisfactory results with the 

other noisy images corrupted by Gaussian, speckle and 

impulse noise than that of MBF (BayesShrink). 

However, the results were not so good in case of 

impulse noise for impulse noise corrupted ultrasound 

images. The Fig. 3 displays the application of different 

types of methods on the ultrasound images corrupted by 

gaussian, speckle and poisson and impulse noise. 

Considering the individual application of BayesShrink 

and NormalShrink thresholding, it reveals that both 

methods    results    in   lower    PSNR   values   out   of 

all other methods discussed and also the multiresolution  

  
Table 1: PSNR comparison of different types of ultrasound noisy image at 1 and 2 level of decomposition using MBF with BayesShrink and 

normal shrink thresholding with  noise variance of 0.02 and 0.04 

Noise 

0.02 variance 
----------------------------------- 

 0.02 variance 
----------------------------------- 

 0.04 variance 
----------------------------------- 

 0.04 variance 
-----------------------------------

1-level 
----------------------------------- 

2-level 
----------------------------------- 

1- level 
----------------------------------- 

2-level 
-------------------------------------

Bayes Normal Bayes Normal Bayes Normal Bayes Normal 

Gaussian 24.90 23.40 24.46 24.69 21.40 19.40 21.77 21.02 
Speckle 27.35 27.31 25.18 27.33 23.71 23.63 22.51 24.52 
Poisson 33.37 33.3 9 28.18 31.66 33.37 33.37 25.45 31.66 
Impulse 22.38 22.38 18.17 19.75 18.88 18.88 16.53 18.56 

 
Table 2: PSNR comparison of different algorithms for different types of ultrasound noisy image with noise of variance 0.02 

 Noise Bilateral filter Bayes shrink  Normal-Shrink MBF-(Bayes)   Proposed method 

Gaussian 21.54 21.93 20.22 24.90 23.40 
Speckle 26.18 24.65 24.58 27.35 27.31 
Poisson 34.53 30.76 30.59 33.37 33.39 
Impulse 21.46 21.54 21.54 22.38 22.38 
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                                                       (a)                            (b)                           (c)                         (d) 

 

Fig. 2: Results displayed from top to bottom for ultrasound images corrupted by (a) Gaussian noise, denoised image using 

multiresolution bilateral filter with BayesShrink and bottom one is the denoised image using multiresolution bilateral 

filter with NormalShrink, (b) speckle noise, (c) poisson noise and (d) impulse noise, at noise of variance 0.02, for 2- level 

of decomposition 

 

 

 

Fig. 3: Results obtained on applying different methods on ultrasound images corrupted by different types of noise at a variance of 

0.02, from (a) to (d), shows (a) Gaussian noise, (b) Bilateral filter, (c) BayesShrink, (d) NormalShrink. Images from (e) to 

(h) for Speckle noise, from (i) to (l) for Poisson noise and from (m) to (p) for Impulse noise 

 
bilateral filter gives better results than the single 
resolution bilateral filter. 

 
CONCLUSION 

 
In this study, we proposed an image denoising 

framework   which  combines  multiresolution  bilateral 
filtering and wavelet thresholding. In this framework, 
we decompose an image into low and high frequency 

parts and bilateral filtering is applied on the 
approximation subband and wavelet thresholding on the 
detail subbands. The algorithm is tested against 
ultrasound images of gall bladder corrupted by different 
types of noise namely gaussian, speckle, poisson and 
impulse. The result shows that bilateral filter performs 
better in multiresolution nature than that of the single 
resolution one and also from the other methods when 
compared. The proposed algorithm performs better with 
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speckle and poisson noise at 2- level of decomposition. 
However, the proposed algorithm does not give 
satisfactory results with other noise when compared 
with the MBF in combination with BayesShrink. On 
comparing the results for 1 and 2- decomposition level, 
the algorithm presented gives better result at 2- 
decomposition level i.e., with increase in 
decomposition levels this algorithm is effective in 
eliminating noise but results in overly smoothed 
images. 
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