
Research Journal of Applied Sciences, Engineering and Technology 7(7): 1456-1463, 2014     

DOI:10.19026/rjaset.7.419           

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2014 Maxwell Scientific Publication Corp. 

Submitted: June 05, 2013                        Accepted: June 21, 2013 Published: February 20, 2014 

 

Corresponding Author: Devaki Palaniappan, Department of CSE, Kumaraguru College of Technology, Coimbatore-641049, 

Tamil Nadu, India 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

1456 

 

Research Article 
Grid Scheduling with QoS Satisfaction and Clustering 

 
1
Devaki Palaniappan and 

2
Valarmathi Muniappan Lakshapalam 

1
Department of CSE, Kumaraguru College of Technology, Coimbatore-641049, Tamil Nadu, India 

2
Department of CSE, Government College of Technology, Coimbatore-641013, Tamil Nadu, India 

 

Abstract: The objective of the study is to device an Adaptive Machine Scoring Technique with Cluster (AMSTWC) 
to schedule the jobs/tasks in a grid environment which reduces the overall completion time (make span) and 
increases the resource Utilization. It also minimizes the execution time of the algorithm and with QoS satisfaction. 
The scheduling is done for computational as well as data grids. There are many heterogeneous Gridlets/machines 
which are geographically distributed. So, the searching time of the appropriate Gridlets, most suitable for the given 
job is more. This algorithm clusters the Gridlets depending on their configurations which reduces the search time of 
the Gridlets/machines which satisfies QoS. Task requirements are matched against the Machine capabilities 
available in Grid and AMSTWC selects the machine which has the highest resource score. AMSTWC result is 
compared with the existing algorithms in terms of make span, Resource Utilization, Flow Time and Execution time. 
AMSTWC performs better than the existing algorithms in most of the cases. 
 
Keywords: Execution time, flow time, gridlets, machine scoring, make span, resource utilization 

 
INTRODUCTION 

 
The engineering and science problems in real 

world are complex and involves various complicated 
computation and transferring of big volume of data 
through the network. In order to solve these problems 
we need more powerful computers. Utilizing and 
combining the resources scattered around the world is a 
good approach. Hence, the concept of grid computing 
was proposed. Grid computing has emerged as the next 
generation distributed computing that aggregates 
dispersed heterogeneous resources under different 
administrative domain, for solving various kinds of 
computational and data intensive applications. Grid 
makes a virtual organization by grouping heterogeneous 
computers for specific problem solving. To complete 
the job scheduled in different machines, the underlying 
network plays a major role. So, we need high network 
bandwidth and reliable network connection. 

Matching the resources for the user request and 
scheduling the job to the matched resource is an NP 
complete problem (Taura and Chien, 2000). Monitoring 
the progress of the job assigned is also difficult since 
the resources are across different administrative 
domains (Khateeb et al., 2009) and they are dynamic 
(Zomaya and Teh, 2001). Job scheduling and resource 
management in grid is a challenging job. Lots of 
heuristic algorithms adjust the scheduling strategies 
according to the nature of job (Kobra and Naghibzadeh, 
2007). This study concentrates on QoS satisfaction 

which is done by getting task requirements like RAM, 
Budget, network Bandwidth, Operating System and 
deadline from the user and search the resource suitable 
for the user’s task. QoS satisfaction is needed for the 
following reasons: 

 

• Multimedia applications require resources with 
high network bandwidth and RAM to transfer bulk 
of data. No need to have high computing power. 

• Problems involving partial differential equations to 
solve need computing power. 

• Any scientific/engineering problems involving 
complex computations need more computing 
power. 

 
Load balance is also an important issue in grid 

scheduling. The main purpose of load balance is to 
balance the load of each resource in order to enhance 
the resource utilization and increase the system 
throughput. Many load balancing algorithms have been 
proposed in grid environment (Cao et al., 2005; Suri 
and Singh, 2010), but they may not be suitable for 
change in system status. Based on this opportunity for 
improvement, a new scheduling algorithm is proposed 
to balance the load of a grid system with adaptive 
machine scoring while trying to minimize the make 
span and flow time of job execution. We assign a job to 
a resource depending on the resource’s characteristics 
while simultaneously considering the load of the 
machine and execution time of the algorithm. Execution 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(7): 1456-1463, 2014 

 

1457 

time of the algorithm is reduced in searching of 
resources by clustering the machines with same 
configurations. 

The objective of the proposed methodology is to 

minimize the overall completion time of the submitted 

tasks (make span) to the grid lets. It also maximizes the 

resource utilization for efficient usage of the available 

grid lets and searching of an appropriate resource (that 

satisfies the task requirements of OS, budget, Network 

Bandwidth and RAM) for the given job is minimized. 

 

LITERATURE REVIEW 

 

Different types of scheduling based on different 

criteria, such as static versus dynamic environment, 

multi-objectivity, adaptability, etc., are identified and 

heuristic and meta-heuristic methods for scheduling in 

Grids are proposed. The study reveals the complexity of 

the scheduling problem in Computational Grids when 

compared to scheduling in classical parallel and 

distributed systems and shows the usefulness of 

heuristic and meta-heuristic approaches for the design 

of efficient Grid schedulers. The requirements for 

modular Grid scheduling and its integration with Grid 

architecture is also proposed (Ajith and Fatos, 2010). 

Workflow scheduling is proposed. The problem of 

satisfying the QoS requirements of the user as well as 

minimizing the cost of workflow execution is proposed. 

On-demand resource provisioning, homogeneous 

networks and the pay-as-you-go pricing model is 

proposed. A two-phase algorithm which first distributes 

the overall deadline on the workflow tasks and then 

schedules each task based on its sub deadline is 

proposed (Saeid et al., 2013). 

The study proposes resource scheduling in grid 

computing using a global optimization algorithm which 

is Bacterial foraging optimization. Main objective is to 

minimize make span and cost (Rajni, 2012). Bacterial 

Foraging optimization is used to schedule the resources 

in grid and it is used for the practical application of 

protein sequence analyzer. The study proposed 

Optimization (BFO) for finding similar protein 

sequences in the existing databases. Usage of BFO 

reduces the time taken by a resource to execute the 

user’s requests and also the resources utilized are 

balanced (Vivekanandan and Ramyachitra, 2012). 

In order to utilize the power of the grid completely, 

an Adaptive Scoring Job Scheduling algorithm (ASJS) 

is proposed. The main objective is to minimize the 

make span. The computational and data intensive 

applications were used for scheduling. ASJS selects the 

fittest resource to execute a job according to the status 

of resources. Local and global update rules are applied 

to get the newest status of each resource. Local update 

rule updates the status of the resource and cluster which 

are selected to execute the job after assigning the job 

and the Job Scheduler uses the newest information to 

assign the next job. Global update rule updates the 

status of each resource and cluster after a job is 

completed by a resource. It supplies the Job Scheduler 

with the newest information of all resources and 

clusters such that the Job Scheduler can select the fittest 

resource for the next job. However, the resource 

discovery tree is constructed for each attribute will take 

more time to schedule (Ruay-Shiung et al., 2012). A 

reliable scheduling algorithm is proposed to overcome 

the hardware failure, program failure and storage 

failure. A hierarchical-driven scheduling is proposed 

(Xiaoyong et al., 2012). 

A Fault tolerant hybrid load balancing strategy 

which takes into account grid architecture, computer 

heterogeneity, communication delay, network 

bandwidth, resource availability, resource 

unpredictability and job characteristics is proposed. 

Objective is to arrive at job assignments that could 

achieve minimum response time and optimal computing 

node utilization (Jasma and Nedunchezhian, 2012). The 

study focuses on computing grid. The system load is 

taken as a parameter in determining a balance threshold 

and the scheduler adapts the balance threshold 

dynamically when the system’s load changes. First, the 

scheduling algorithm balances the system load with an 

adaptive threshold and second, it minimizes the make 

span of jobs (Yun-Han et al., 2011). A new Priority 

based Job Scheduling algorithm (PJSC) in cloud 

computing is proposed using multiple criteria decision 

making model (Shamsollah and Mohamed, 2012). 

 

Architectural diagram: Users submit their jobs to grid 

portal. Task requirement block collects the 

requirements and gives them to Resource score 

calculator. Resource Score calculator gets Resource 

capability information from Grid Information Service 

(GIS) through Gird Broker and it calculates the 

resource score for all tasks of all resources. Then, 

Resource Score is passed to Grid job scheduler through 

Grid Broker to schedule. Finally, Grid broker assigns 

the task to the resources and execution is carried out in 

the resources. After completing the task, resource 

manager  reports  the  result  to  the requested users 

(Fig. 1). 

 

PROBLEM DEFINITION AND  

PROPOSED METHODOLOGY 

 

The problem is to minimize the overall completion 

time as well as increase the resource utilization while 

allocating m resources to do n tasks where (n>m). 

Allocation is done in an offline manner. To formulate 

the problem, define Ti where i = {1, 2, 3,… n} as n 

independent tasks permutation and Rj where j = {1, 2, 

3, … m} as  m  computing  resources.  Suppose that the   

Expected Time to Complete (ETCi, j) (Braun et al., 

1999) is the processing for task i when computing 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(7): 1456-1463, 2014 

 

1458 

 
Fig. 1: Architectural diagram 

 

time on resource j is known. The completion time C (x) 

represents the total time of completion of all n tasks. 

The objective is to minimize C (X) in Eq. (1): 

 

∑ ∑
= =

=
n

i

m

j

jiETCxC
1 1

min ],[)(                             (1) 

 

The minimal C (x) represents the length of 

schedule of whole tasks working on available resources. 

 

Methodology: The resource is selected for a task using 

resource score. For each task the resource score is 

calculated as in Eq. (2): 

 

j
sourceavalj

LBScore

ji
QoSScore

j
NBScore

ji
oremakespanSc

ji
esourceScor

Re

1

,
)1(

,
.

,
Re

++

+−+

= 



α

α

      (2) 

If the application is computationally intensive, then 
α = 1 else it is data intensive for which α = 0. The data 
intensive application can be found using the task 
requirement Network Bandwidth parameter. If the 
required network Bandwidth parameter is above the 
threshold, then the application is data intensive. 
Threshold is taken as 70% of the maximum bandwidth 
requested by the task. If the task network bandwidth 
request is above 70% of the maximum task request 
network bandwidth then α is 0 else α is 1. So, α decides 
whether the application is computationally intensive or 
data intensive.

 

Resource score is depending on make span Eq. (3). 
-if it is computational grid), network bandwidth 
satisfaction Eq. (4) -if it is data grid) QoS satisfaction 
Score Eq. (5) -QoS Score), Load Balance Score Eq. (6) 
LB Score) and Resource availability:

 

 

ji

ji
etc

oremakespanSc
,

,

1
=

                            (3) 
 

Make span score is high if the expected time to 

complete is low, in turn the resource score is high: 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(7): 1456-1463, 2014 

 

1459 

 
 
Fig. 2: Example of resource discovery tree 

 

jj kbandwidthRcapNetworNBScore =
                 (4) 

 

Network Bandwidth Score is purely depending on 

the Resource capability bandwidth score: 

 

j

ji

ij

ji

tRcap
RcapDLqDLT

qRAMTRcapRAM
QoSScore

cos

1
).1()Re.(

Re

1
,

ββ −+−+

−
=

  

(5) 

 

β is the weighted QoS and if β is high, then task is keen 

on deadline whereas if β is low, then the task is keen on 

Budget. QoS Score is depending on the RAM, Deadline 

and Budget requirements of the task satisfaction. If the 

resource capability of RAM is equal to Task 

Requirement of RAM, then the term

ij qRAMTRcapRAM Re−  in the above equation is 0. 

This can be avoided by replacing with the term: 

 

qRAMTRcapRAM j Re

1

−
 

 

with the value 1 which is the highest possible value: 

 

jj LBfactorLBScore =
                            (6) 

 

LB Scorej is depending on the Load Balancing 

parameter of the Resourcej. The load balancing 

parameter of each resource is initially set to some value 

(may be 100). If any one Taski is assigned to the 

Resourcej, then the load balancing factor value of the 

Resourcej is decreased such that in next selection the 

Resource Score inturn is reduced. For each task the 

resource with the highest resource score is selected. The 

execution time of the algorithm is reduced because the 

hierarchical tree is constructed by clustering the 

resources as groups for the resource known as resource 

discovery tree as in Fig. 2 for the attribute Operating 

system. Algorithm which is using this tree is known as 

AMST with Clustering (AMSTWC). AMSTWOC 

algorithm is not using this clustering tree for searching 

resources. 

 

Bitmap representation for resource discovery tree: 

Let {R1, R2… Rn} be the set of resources and {A1, A2, 

… An} be the set of attributes of the resources (Ruay-

Shiung and Min-Shuo, 2010). In each level of the tree, 

one attribute is checked for the task requirement and the 

remaining tree is pruned from checking for further 

attributes in searching of resources method. The Bitmap 

Data structure used for the tree is in Fig. 2.  
In searching process for QoS satisfaction, if the 

task requirement is Unix OS then, the sub tree 2 and 
sub tree 3 searching is pruned in such a way that the 
searching time is reduced. This inturn reduces the 
algorithm’s execution time. 

  

Proposed algorithm 

AMSTWC algorithm: 

 

Step 1: Generate ETC matrix 

Step 2: Get the task requirement matrix and resource 

capability matrix from the Gird Information 

Service 

Step 3: Construct Resource capability tree 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(7): 1456-1463, 2014 

 

1460 

Step 4: For each taski do 
 

Find whether the taski is data intensive or 
computational intensive 
Calculate resource score of all resources for 
taski 
Select the resourcej which has the highest 
resource score value 
Assign the task to the selected resources. 
Update the resource load 
Until all tasks are assigned 

 
Step 5: Calculate make span, flow time and resource 

utilization and record the algorithm execution 
time 

Step 6: End 
 

EXPERIMENTAL RESULTS 

 

Performance metrics: 

 

• Make span: Overall completion time which is 
defined in Eq. (1) 

• Resource utilization: Resource utilization defined 
as the degree of utilization of resources with 
respect to the schedule. It is defined as follows: 
 

mmakespan

iComplete

izationsourceUtil machinesi

.

][

Re

∑
∈=

 
 

where Complete [i] is the completion time of last 
job on machine i and m is the number of machines. 
Objective is to maximize the resource utilization 
for all possible schedules 

• Flow time: Flow-time is the sum of the finishing 
times of jobs. Objective is to minimize the flow 
time. It is defined as: 

 

NjCF j ,...,1, ==∑  
 

• Algorithm execution time: Objective is to 
minimize the execution time of the proposed 
algorithm  
 

Benchmark description:  The  benchmark  by Braun 
et al. (1999) is a frequently used benchmark that is very 
effective in simulating grid systems and capturing most 
important characteristics of the job scheduling problem. 
In it, instances are classified according to three 
parameters (job heterogeneity, machine heterogeneity 
and consistency) into 12 different types of ETC 
matrices, each of them consisting of 100 instances. All 
instances are composed from 512 jobs and 16 
machines. They are labeled as u x yyzz where u means 
uniform distribution (in the matrix generation), x is the 
type of consistency (c-consistent, i-inconsistent and p 
means  partially  consistent),  yy  and zz indicate the job 

Table 1: Make span comparison 

Instance FCFS AMSTWOC AMSTWC

U C HIHI 1259.9880 1352.4290 1079.1540 
U C HILO 675.5530 859.8783 790.0265 
U C LOHI 663.8204 821.4559 743.5311 
U C LOLO 322.5635 415.9882 383.7268 
U I HIHI 2509.4260 2470.5580 1048.6060 
U I HILO 1288.3190 1387.8020 625.7496 
U I LOHI 1284.2090 1353.1150 610.6889 
U I LOLO 634.4175 685.9567 317.0915 
U P HIHI 1262.6720 1354.9960 1083.2330 
U P HILO 674.8792 867.3299 787.2625 
U P LOHI 665.8572 830.7629 745.0480 
U P LOLO 323.4126 422.9728 386.1405 

 
Table 2: Resource utilization comparison 

Instance FCFS AMSTWOC AMSTWC

U C HIHI 2.3577 5.8446 5.7578 
U C HILO 2.2808 5.1903 4.8409 
U C LOHI 2.3461 5.2623 5.0070 
U C LOLO 2.3254 5.2711 4.9162 
U I HIHI 2.5384 4.3202 6.3162 
U I HILO 2.5332 4.0423 5.9551 
U I LOHI 2.5904 4.0125 5.9949 
U I LOLO 2.5985 3.9603 5.8555 
U P HIHI 2.3194 5.9535 5.7237 
U P HILO 2.2830 5.1039 4.8196 
U P LOHI 2.8638 5.2171 4.9849 
U P LOLO 2.3583 5.1521 4.8513 

 
Table 3: Flow time comparison 

Instance FCFS AMSTWOC AMSTWC

U C HIHI 2642.5188 8010.8015 6081.4181 
U C HILO 1419.9860 4206.9229 3627.9109 
U C LOHI 1417.9228 4088.7806 3557.5905 
U C LOLO 695.6284 2074.2671 1801.2943 
U I HIHI 5974.4953 8983.8562 6407.8659 
U I HILO 3101.3846 4698.0150 3651.0477 
U I LOHI 3102.4057 4580.1369 3591.7916 
U I LOLO 1550.2728 2308.4572 1818.1428 
U P HIHI 2648.4907 7956.8925 6080.2258 
U P HILO 1419.4616 4176.0677 3614.8729 
U P LOHI 1554.1022 4066.2471 3553.0836 
U P LOLO 697.0421 2054.3731 1795.7396 

 
Table 4: Execution time comparison 

Instance FCFS AMSTWOC AMSTWC

U C HIHI 0.0320 14.5800 0.0052 
U C HILO 0.0640 14.3120 0.6100 
U C LOHI 0.0940 15.0020 0.6220 
U C LOLO 0.0000 14.7700 0.7540 
U I HIHI 0.0640 14.5140 0.4640 
U I HILO 0.0940 15.2000 0.5300 
U I LOHI 0.1900 14.2060 0.7220 
U I LOLO 0.0640 15.0600 0.6040 
U P HIHI 0.1280 14.0880 0.9080 
U P HILO 0.0920 14.7720 0.5980 
U P LOHI 0.2840 14.5000 0.8660 
U P LOLO 0.0620 14.5940 0.5340 

 
and machine heterogeneity (hi-high and lo-low). An 
ETC matrix is consistent when a machine is faster than 
others for all the jobs. Inconsistency means that a 
machine is faster for some jobs and slower for some 
others, while it is semi-consistent if it contains a 
consistent sub-matrix. The values are taken as an 
average for 100 runs for α = 1 (Computational Grid). 

In Table 1, for the computational grids out of 12 
combinations, our algorithm performs better for 6 
combinations (Bold) whereas for inconsistent case, our 
algorithm    performs    better   for   all  combinations of  



 

 

Res. J. Appl. Sci. Eng. Technol., 7(7): 1456-1463, 2014 

 

1461 

heterogeneity. Overall for 50% of the combinations our 
algorithm performs better. In Table 2, the resource 

utilization is better for all inconsistent cases. In Table 3, 
our algorithm performs poorly in all combinations of

 
Table 5: Make span comparison 

Instance 

α = 0.25 
----------------------------------------------- 

α = 0.50 
------------------------------------------------------ 

α = 0.75 
----------------------------------------- 

AMSTWOC AMSTWC AMSTWOC AMSTWC AMSTWOC AMSTWC

U C HIHI 1426.30 1087.5539 1416.8047 1103.4926 1404.5912 1102.4630 
U C HILO 846.20 773.5084 842.0430 770.8088 847.0673 775.0846 
U C LOHI 852.00 779.8318 844.4138 775.2478 810.8959 739.6598 
U C LOLO 432.50 395.5654 495.4829 454.8466 430.6891 398.6547 
U I HIHI 2345.40 1072.8944 2290.7594 1033.6105 2502.9849 1062.7280 
U I HILO 1210.10 609.9697 1238.5719 609.2914 1331.0644 628.8751 
U I LOHI 1227.50 615.3519 1076.4004 618.5126 1326.2185 609.7131 
U I LOLO 631.20 320.9927 707.8205 358.5829 650.5396 313.5738 
U P HIHI 1425.70 1086.7048 1419.6963 1102.0741 1413.0685 1106.5907 
U P HILO 852.50 772.9580 848.3231 766.5129 854.5760 772.3494 
U P LOHI 860.30 777.9089 850.9616 774.3339 822.0156 740.1947 
U P LOLO 435.36 395.1676 500.9713 455.5923 437.4567 399.6840 

 
Table 6: Flow time comparison 

Instance   

α = 0.25 
------------------------------------------------- 

α = 0.50 
----------------------------------------------------- 

α = 0.75 
----------------------------------------- 

AMSTWOC AMSTWC AMSTWOC AMSTWC AMSTWOC AMSTWC

U C HIHI 8178.9079 6211.47 8477.8669 6243.4972 7909.0243 6240.1572 
U C HILO 4416.1781 3623.26 4230.8560 3607.6844 4161.2473 3597.1623 
U C LOHI 4309.5603 3589.69 4238.9790 3627.6506 4043.1527 3545.9674 
U C LOLO 2106.0420 1816.41 2405.2613 2074.3583 2125.7148 1820.8035 
U I HIHI 8914.9038 6586.51 9209.1953 6537.7735 8869.0135 6628.4887 
U I HILO 4721.3804 3633.80 4546.6512 3599.9739 4575.3259 3633.4899 
U I LOHI 4630.4137 3610.82 4619.4274 3630.0330 4347.7126 3616.5828 
U I LOLO 2282.9987 1840.68 2594.1742 2087.5657 2346.0925 1827.9746 
U P HIHI 8138.0433 6205.57 8442.2686 6242.0354 7870.5897 6250.7389 
U P HILO 4390.2415 3620.69 4204.9147 3602.7117 4137.5984 3585.5128 
U P LOHI 4280.1268 3578.07 4218.3630 3624.3847 4021.4313 3537.7333 
U P LOLO 2092.3840 1813.59 2394.9079 2073.5457 2115.1261 1819.1749 

 

Table 7: Resource utilization comparison 

Instance 

α = 0.25 
-------------------------------------------------- 

α = 0.50 
-------------------------------------------------- 

α = 0.75 
----------------------------------------- 

AMSTWOC AMSTWC AMSTWOC AMSTWC AMSTWOC AMSTWC

U C HIHI 5.5641 5.8384 5.7860 5.7568 5.5222 5.7819 

U C HILO 5.3548 4.8695 5.2582 4.9447 5.1632 4.8967 
U C LOHI 5.2547 4.8410 5.1975 4.9125 5.1499 4.9881 

U C LOLO 5.0609 4.7852 5.0899 4.7908 5.1227 4.8520 

U I HIHI 4.3839 6.4185 4.5152 6.5074 4.1879 6.4807 
U I HILO 4.3904 6.0945 4.2526 6.0408 3.9706 5.9364 

U I LOHI 4.2249 6.0011 4.1985 5.9944 3.9050 6.0242 

U I LOLO 4.0513 5.8310 4.1368 5.9640 4.1100 6.0072 
U P HIHI 5.7045 5.8175 5.9054 5.7554 5.6235 5.7703 

U P HILO 5.3033 4.8749 5.2101 4.9590 5.1435 4.9324 

U P LOHI 5.2058 4.8545 5.1626 4.9193 5.0767 4.9685 
U P LOLO 5.0279 4.7891 5.0283 4.8039 5.0301 4.8405 

 

Table 8: Execution time comparison 

Instance 

α = 0.25 

------------------------------------------------- 

α = 0.50 

--------------------------------------------------- 

α = 0.75 

----------------------------------------- 

AMSTWOC AMSTWC AMSTWOC AMSTWC AMSTWOC AMSTWC

U C HIHI 15.2740 0.0087 14.5400 0.0068 14.4500 0.0065 

U C HILO 14.4920 0.6280 14.5620 0.4980 15.0580 0.4340 

U C LOHI 14.9200 0.4700 14.7640 0.7140 14.7960 0.5600 

U C LOLO 14.7720 0.9340 14.1220 0.5320 14.7940 0.4380 

U I HIHI 14.5520 0.3160 14.5920 0.7800 14.7760 0.5600 

U I HILO 14.6340 0.9120 14.1900 0.7080 15.4440 0.5280 

U I LOHI 14.9680 0.6520 14.7180 0.8360 15.1540 0.5000 

U I LOLO 14.6240 0.7140 15.2300 0.5280 14.8820 0.4960 

U P HIHI 14.4420 0.6220 15.0060 0.6520 15.0920 0.6580 

U P HILO 14.8940 0.6620 15.1220 0.5680 15.4920 0.4720 

U P LOHI 15.0080 0.6780 14.7920 0.6760 14.7960 0.5980 

U P LOLO 14.9840 0.6900 14.3100 0.7240 15.0840 0.4980 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(7): 1456-1463, 2014 

 

1462 

 
 

Fig. 3: Make span comparison for U C HIHI 

 

 
 

Fig. 4: Make span comparison for U I HIHI 

 

 
 

Fig. 5: Flow time comparison for U C HIHI 

 

heterogeneity for flow time comparison. This is because 

the selection of resources is based on the task 

requirements. In Table 4, FCFS performs better in 

execution time since the machines are not checked for 

the requirement satisfaction. However, our algorithm 

performs 100% better than AMSTWOC. 

For different values of α, for example 0.25, 0.50 

and 0.75 (i.e., 75, 50 and 25% of data grids in the task 

request) the comparison is given in Table 5 to 8.  

In Table 5 to 8, our algorithm performs 100% 

better   than   AMSTWOC   in   all   the  metrics  for  all 

 
 

Fig. 6: Resource utilization comparison for U I HIHI 
 

 
 

Fig. 7: Execution time comparison for U P HIHI 

 
combinations of heterogeneity for various combinations 
of (75, 50 and 25%, respectively) data grids. Figure 3 
and 4 show the make span comparison between the 
existing and the proposed algorithm (AMSTWC) for 
high task and high machine heterogeneity-consistent 
and inconsistent combinations. For both the 
combinations, as the number of tasks increases, our 
proposed algorithm gives reduced make span time. 
Compared to consistent combination, the inconsistent 
combination gives better performance in terms of make 
span. Figure 5 shows the flow time performance for 
high task and high machine heterogeneity-consistent 
combination comparison, our algorithm yields better 
results compared to FCFS. Figure 6 shows high task 
and high machine heterogeneity-inconsistent 
combination comparison; our algorithm has better 
resource utilization. Figure 7 shows the algorithm 
execution time comparison for high task and high 
machine heterogeneity-partial consistent combination, 
our method gives more or less the same performance as 
that of FCFS even though our algorithm has the 
matching process time of an appropriate resource for 
the task submitted. 
Sample graphs are given in Fig. 3 to 7.  
 
CONCLUSION AND RECOMMENDATIONS 

 
The focus of our study is on QoS satisfied task 

scheduling with load balancing of resources. The 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(7): 1456-1463, 2014 

 

1463 

experimental results show that the proposed algorithm 
is performing well in terms of execution time, resource 
utilization and make span. Our algorithm is poor in 
flow time because the selected resources are QoS 
satisfied resources. So, the jobs are waiting until it gets 
the QoS satisfied resource. 

In future, we will adjust the score and add more 
parameters for the realistic environments. In real 
environments, because of more dynamic nature of grid, 
many more factors like reliability have impact on make 
span of the scheduling process. Reliability model may 
be included in future. 
 

REFERENCES 
 
Ajith, A. and X. Fatos, 2010. Computational models 

and heuristic methods for Grid scheduling 
problems.  Future  Gener.  Comput.  Syst.,  26: 
608-621. 

Braun, T., H.J. Siegal, N. Beck and L.L. Boloni, 1999. 
A comparison study of static mapping heuristics 
for a class of meta-tasks on heterogeneous 
computing systems. Proceeding of the 8th IEEE 
Heterogeneous Computing Workshop (HCW’99), 
pp: 15-29. 

Cao, J., D.P. Spooner, S.A. Jarvis and G.R. Nudd, 
2005. Grid load balancing using intelligent agents. 
Future Gener. Comput. Syst., 21: 135-149. 

Jasma, B. and R. Nedunchezhian, 2012. A hybrid 
policy for fault tolerant load balancing in grid 
computing environments. J. Netw. Comput. Appl., 
35: 412-422. 

Khateeb, A.A., R. Abdullah and A.N. Rashid, 2009. Job 
type approach  for  deciding  job scheduling in 
Grid computing  systems. J.  Comput.  Sci.,  5(10): 
745-750. 

Kobra, E. and M. Naghibzadeh, 2007. A min-min max-
min selective algorithm for grid task scheduling. 
Proceeding of the 3rd IEEE/IFIP International 
Conference in Central Asia (ICI 2007). 

Rajni, I.C., 2012. Bacterial foraging based hyper-
heuristic for resource scheduling in grid 
computing. Future Gener. Comput. Syst., 29(3): 
751-762. 

Ruay-Shiung, C. and H. Min-Shuo, 2010.A resource 

discovery tree using bitmap for grids. Future 

Gener. Comput. Syst., 26(1): 29-37. 

Ruay-Shiung, C., L. Chih-Yuan and L. Chun-Fu, 2012. 

An adaptive scoring job scheduling algorithm for 

grid computing. Informat. Sci., 207: 79-89. 

Saeid, A., N. Mahmoud and H.J.E. Dick, 2013. 

Deadline-constrained workflow scheduling 

algorithms for infrastructure as a service clouds. 

Future Gener. Comput. Syst., 29: 158-69. 

Shamsollah, G. and O. Mohamed, 2012. A priority 

based job scheduling algorithm in cloud 

computing. Proc. Eng., 50: 778-785. 

Suri, P.K. and M. Singh, 2010. An efficient 

decentralized load balancing algorithm for grid. 

Proceeding of the 2010 IEEE 2nd International 

Advance  Computing  Conference  (IACC),  pp: 

10-13. 

Taura, K. and A. Chien, 2000. A heuristic algorithm for 

mapping communicating tasks on heterogeneous 

resources. Proceeding of the 9th Heterogeneous 

Computing  Workshop,  Cancun  Mexico,  pp:  

102-118. 

Vivekanandan, K. and D. Ramyachitra, 2012. Bacteria 

foraging optimization for protein sequence analysis 

on the grid. Future Gener. Comput. Syst., 28(4): 

647-656. 

Xiaoyong, T., L. Kenli, Q. Meikang and H.M.S. Edwin, 

2012. A hierarchical reliability-driven scheduling 

algorithm in grid systems. J. Parallel Distrib. 

Comput., 72: 525-535. 

Yun-Han, L., L. Seiven and C. Ruay-Shiung, 2011. 

Improving job scheduling algorithms in a grid 

environment. Future Gener. Comput. Syst., 27(8): 

991-998. 

Zomaya, A.Y. and Y.H. Teh, 2001. Observations on 

using genetic algorithmsfor dynamic load-

balancing. IEEE T. Parallel Distrib. Syst., 12(9): 

899-912. 

 


