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Research Article 

Modeling and Simulation of Current Source Inverter Fed Synchronous Motor in Complex 
Frequency Domain Taking the Transition Zone From Induction Motor to Synchronous 

Motor Mode into Account 
 

A.B. Chattopadhyay and Sunil Thomas 
Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani-

Dubai Campus, P.O. Box 345055, Plot No. UG 06, Dubai International Academic City, Dubai, U.A.E 
 

Abstract: Modeling of synchronous motor plays a dominant role in designing complicated drive system for 
different applications, especially large blower fans etc for steel industries. As synchronous motor has no inherent 
starting torque generally it is started as an induction motor with the help of a damper winding and it pulls into 
synchronism under certain conditions. The present paper exactly concentrates on this particular zone of transition 
from induction motor to synchronous motor mode for a current source inverter fed synchronous motor drive system. 
Due to complexity of synchronous motor in terms of number of windings and finite amount of air gap saliency, 
direct modeling of such transition zone in time domain becomes cumbersome at the first instance of modeling. That 
is why the modeling in complex frequency domain (s-domain) has been taken up using small perturbation model. 
Such a model clearly shows role of induction motor as noise function or disturbance function with respect to the 
open loop block diagram of synchronous motor. Such finding can be quantized in terms of important results and that 
is done in the present paper such that the results can help the designer for the successful design of a synchronous 
motor drive system. 
 
Keywords: Current source inverter, computer simulation, induction motor, small perturbation model, starting 

transients, synchronous machine 

 
INTRODUCTION 

 
Many constant speed applications such as fans, fuel 

pump and compressors comprising a considerable 
amount of total electrical appliances (Isfahani and 
Vaez-Zadeh, 2011) basically need a 3 phase 
synchronous motor. Even though permanent magnet 
synchronous motors are widely used in such 
applications, current source inverter fed normal 
synchronous motors can also be applied in many 
constant speed applications (Knight and McClay, 2000; 
Weifu  et al., 2012). The steady state stability study of a 
current source inverter fed synchronous motor was 
basically initiated in 1974 (Gordon et al., 1974) and 
after this as an extension, (Chattopadhyay et al., 2011) 
presented a detailed analysis of a current source inverter 
fed synchronous motor drive system taking damper 
windings into account in 2011(Chattopadhyay et al., 
2011). So far the research accuracy of the paper by 
(Chattopadhyay et al., 2011) is covered; it is not clear 
that exactly what is happening in the transition zone 
when the machine is jumping from induction motor 
action to synchronous motor action. Again the 
concentration on such detailed aspect is a matter of long 

discussion and in this context many researchers have 
tried to put sufficient light on the matter. The research 
paper (Xianhao et al., 2006) explains the analysis of 
magnetic fields and temperature fields for a salient pole 
synchronous motor in the process of steady state. They 
have used the d-q model of the synchronous motor but 
the role of field winding in transition from induction 
motor to synchronous motor is not reflected in the 
mathematical model.  

A similar observation is valid on the other work 
Wang and Ren (2003), and it represents a good state 
variable model and its mathematic simulations in time 
domain. The research paper (Sergelen, 2007; Najafi and 
Kar, 2007) carries important works on the mathematical 
modeling of a salient pole synchronous motor supplied 
by a frequency converter and also the effect of short 
circuit voltage profile on the transient performance of 
permanent magnet synchronous motors .An important 
work on non-linear control of an inverter motor drive 
system with input filter (Marx et al., 2008) draws 
attention. In this paper the author has given a detailed 
signal analysis of the DC-link voltage stability.   

Another interesting paper by Das and Casey (1999) 
and Al-Ohaly et al. (1997) clearly portrays the critical 
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aspects of starting a large synchronous motor. Even 
though this particular work does not involve much 
mathematical analysis but the range of the slip 
presented in this paper with reference to pull in torque 
of a synchronous motor really may help a designer to 
select a particular synchronous motor for any specific 
application. 

Based on the above said literature review, to the 
best of the authors understanding it reveals that 
researchers have not put sufficient light on the fact that 
exactly what happens to the mathematical model of a 
synchronous motor in time domain or complex 
frequency domain during the period when field winding 
is disconnected from the external resistance (generally 
6-7 times of main field winding resistance to avoid 
effects due to George’s phenomenon) and immediately 
thrown to the DC source. In the authors opinion 
investigation in such direction becomes very much 
crucial because before connecting the field winding to 
the DC source characterization of the machine can be 
done as 3 phase induction motor. Therefore, it will be 
very logical to get the semi induction semi synchronous 
machine character to be reflected in the resultant 
mathematical model. This particular work has been 
presented by the authors in the present paper. The 
strategy of formulation at this stage may not be 
necessary to feel the importance of the problem. But in 
the next section the mathematical methods will be 
explained in detail. 
 

MATERIALS AND METHODS 
 

The basic block diagram of the proposed scheme is 
shown in Fig. 1.  

To have a better feeling of the method of analysis, 
the primitive mac0068ine model of the  synchronous  
motor  is drawn and it is shown in Fig. 2. 

In the following analysis, saturation is ignored but 
provision is made for inclusion of saliency and one 
number of damper winding on each axis. Following 
Park’s transform, a constant stator current of value is at 
a field angle ‘β’ can be represented by direct and 
quadrature axis currents as: 
 

d si i cos   β=                                                          (1) 

 
 

q si i sinb       β=                                (2) 

 
Designating steady state value by the subscript ‘0’ 

and small perturbation by∆, the perturbation equations 
of the machines are: 

 

d s 0i i sinβ β∆ = − ∆                                    (3) 

 

q s 0i i cosβ β∆ = ∆                  (4) 

 
The transformed version of Eq. (3) and (4) are: 

 

( ) ( )d s 0I s  i sin s        β β∆ = − ∆                                        (5) 

 

( ) ( )q s 0I s  i cos s          β β∆ = ∆                                         (6) 

 
The generalized expression for electromagnetic 

torque of a primitive machine model is an established 
one and it is expressed as: 
 

e d q d qT i i   = Ψ − Ψ                

( ) ( )d d md f md kd q q q mq kq dL i L i L i  i  L i  L i  i    = + + − +  

( )d q d q md q f md kd q mq kq dL L  i i  L i i   L i i  L i i         = − + + −        (7)      

 
Small signal version of torque equation in time 

domain is expressed as: 
 

( ) ( )e d q d q 0 d q q d 0 md q f 0 md f q 0T   L L i i L L i i  L i i  L i i         ∆ = − ∆ + − ∆ + ∆ + ∆

m d k d q 0 m d k d 0 q m q k q d 0 m q k q 0 d      L i i  L i i L i i  L i i+ ∆ + ∆ − ∆ − ∆       (8) 

 
 Equation (8) after being transformed takes the 
shape as given by: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )e d q q0 d d q d0 q md f 0 q md q0 fT s  L L  i I s   L L i I s   L i I s  L i I s       ∆ = − ∆ + − ∆ + ∆ + ∆

                                     

( ) ( ) ( ) ( )md q0 kd md kd0 q mq d0 kq mq kq0 dL i I s   L i I s L i I s  L i I s       + ∆ + ∆ − ∆ − ∆  

 
( ) ( ) ( ) ( )d q q0 mq kq0 d d q d0 md kd0 md f 0 q   [ L L i L i ] I s   L L i L i  L i I s             = − − ∆ + − + + ∆   

 ( ) ( ) ( )md q0 f md q0 kd mq d0 kq   L i I s  L i I s   L i I s+ ∆ + ∆ − ∆              
(9) 

 
 

Fig. 1: Drive configuration for open-loop current-fed synchronous motor control 
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Fig. 2: Primitive machine model of a synchronous motor 
 

To tackle Eq. (9) in an easier form, it is expressed as: 
 

( ) ( ) ( ) ( ) ( ) ( )e 1 d 2 q 3 f 4 kd 5 kqT s c I s c I s c I s c I s c I s         ∆ = ∆ + ∆ + ∆ + ∆ + ∆    (10) 

 
where,  

 

( )1 d q q0 mq kq0c L L i L i           = − − 
                           (11a) 

 

( )2 d q d0 md kd0 md f 0c L L i L i  L i = − + +                    
(11b) 

 

3 md q0 c  L i=                                                       (11c) 

 

4 md q0 c  L i=                                                      (11d)   

 

5 mq d0c  L i           = −                   (11e) 

 
The small perturbation model of the transformed 

voltage balance equations of F-coil, KD-coil and KQ 
are expressed as: 
 

( ) ( ) ( ) ( ) ( )1 f f f ff f md d md kdU s  R I s  sL I s  sL I s  sL I s
c k

s
s s

+ = ∆ = ∆ + ∆ + ∆ + ∆
 (12) 

 
where,  
c  =  220 Volts 
S1  =  Slip  
k  =  (Nf/Na)*(415/√3) 
Nf  =  Number of turns in field winding 
Na  =  Number of turns in armature winding: 
 

( ) ( ) ( ) ( ) ( )kd kd kd kkd kd md d md f0 U s R I s  sL I s  sL I s  sL I s= ∆ = ∆ + ∆ + ∆ + ∆     (13) 

 

( ) ( ) ( ) ( )kq kq kq kkq kq mq qU s R I s sL I s  sL I s∆ = ∆ + ∆ + ∆             (14) 

 
where,  
c  =  220 Volts 
S1  =   Slip  
k  =  (Nf/Na)*(415/√3) 
Nf  =  Number of turns in field winding  
Na  =  Number of turns in armature winding 

As the damper winding on d-axis and q-axis are short-
circuited within themselves, ∆Ukd = 0 and ∆Ukq = 0. So 
in transformed version ∆Ukd(s) = 0 and ∆Ukq (s) = 0 as 
shown in Eq. (13) and (14). Furthermore in general, the 
voltage fed to the field winding is fixed. It is a well 
known fact that a synchronous motor cannot start for 
itself and the easiest way to start a synchronous motor 
is to start it as an induction machine with the help of 
damper windings. But the problem is that we have to 
investigate what will be status of field winding of the 
synchronous motor when the damper winding is in 
action. As already the winding was physically 
embedded (existing), and during the running of the 
machine one cannot take it out. In other words when 
damper winding is in action field winding effect has to 
be inactivated. Such inactivation may be done by the 
following methods: 

 
(a) Field winding completely Open Circuit 
(b) Field Winding Short Circuit in itself 

 
The  status of field winding in (a) can be looked 

upon as a transformer whose primary winding 
constitutes of 3 phase armature winding supplied from 
415 V (L-L) ac and whose secondary winding is the 
field winding being open circuited. As generally in a 
normal synchronous machine of normal design Nf/Na 
>> 1, where Nf is number of field windings and Na is 
number of armature windings. The induced voltage in 
the  open  field terminal will be large and it may lead to  
hazardous conduction so far as operator safety is 
concerned. Hence this case is rejected. 

Status of the field winding in (b): The induced emf 
in field winding due to transformer action will produce 
a single phase alternating current and in turn will 
produce a pulsating field in field winding. It is well 
known that a pulsating field m.m.f can be resolved as a 
combination of forward rotating and backward rotating 
m.m.f magnetic fields (strengths of each resolved 
component is half of the original pulsating m.m.f). The 
effect of backward rotating magnetic field will produce 
a torque opposite to the (asynchronous/induction) motor 
torque and it will dominate at some value of slip. Hence 
a situation may arise and motor may stall due to the 
negative effect of backward component. This 
phenomenon is known as George’s phenomenon.  

Hence such case cannot be completely accepted.  
However there is some remedial method. The field 
winding may be closed through an external resistance 
which is about 6-7 times of original field resistance; 
such that the magnitude of short circuit current 
diminishes and as a result effect of resolved backward 
component will be less or reduced. 
 
What happens to change on field voltage (∆Uf): In 
the current research problem ∆Uf cannot be equal to 
zero because originally it was an induction motor with 
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the field winding short circuited in it or closed through 
an external resistance of large value and at a later stage 
it was pulled into synchronism when dc supply is fed to 
the winding.  

Quantitatively, ∆Uf  should depend on a particular 
property of induction motor and that property must be 
‘SLIP’. Here the technique of mathematical modeling 
appears as a novel approach and this approach forms 
the foundation of the proposed analysis. The proposed 
modeling considers that field winding is closed within 
itself. In other words the presence of external large 
resistance has not been considered in modeling to make 
the mathematical treatment comparatively easy. 
However it does not affect the accuracy of the system 
as the external resistance can be lumped or clubbed 
with the field winding. 
From Eq. (12) and (13) it yields: 
 
 2 2

32
2 2

( )
    ( ) ( ) F (s) 

( ) ( )
md md kkd md kd

f d

kkd ff md kkd f kd ff kd f

s L L L sL R
I s I s

s L L L s L R R L R R−

 − −
∆ = ∆ −  + + + 

  (15) 

 
where,  
 

1
32

2
F (s) ( )[ ]  kd kkd

md

c s k
R sL

s L

+
= +                 (16) 

 
Similarly Eq. (12) and (13) yields: 

 
2 2

31 2 2

( )
( ) ( ) ( )

( ) ( )
md md ff md f

kd d

kkd ff md kkd f kd ff kd f

s L L L sL R
I s F s I s

s L L L s L R R L R R−

 − −
∆ = − ∆  + + + 

     

         

 =   
2

1 2
31( ) ( )

( ) d

d s d s
F s I s

D s

 +
− ∆ 

 

                           (17) 

 
where, 
 

( )1
31 2

c s k
( ) 1 f ff

kd kkd

md md

R L
F s R sL

s SL L

   +  
= − + +   

           

   (18) 

 

( )2
1 md md ffd  L L L= −                                        (18a) 

 

2 md fd L R  = −                                                     (18b) 

 
From Eq. (14) it is obtained: 

 

( ) ( )mq

kq q

kq kkq

sL
I s I s

R sL

 −
∆ = ∆  + 

                          (19) 

 

1 ( )
( ) q

e s
I s

Q s

 
= ∆ 

 

                                         (20) 

 
where, 

1 mqe L= −                                   (20a) 

 

( ) 1 2Q s f s f= +                            (20b) 

 

1 kkqf L=                                          (20c) 

 

2 kqf R=                               (20d) 

 
Substituting Eq. (15), (17), (19) in Eq. (10), it yields: 
 

2 2
1 2 1 2 1

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )e d q d d q

as a s d s d s e s
T s c I s c I s c I s c I s c I s

D s D s Q s

     + +
∆ = ∆ + ∆ + ∆ + ∆ + ∆     

    

2 2
3 1 3 2 4 1 4 2 5 1

1 2( ) ( )
( ) ( )d q

c a s c a s c d s c d s c e s
c I s c I s

D s Q s

   + + +
= + ∆ + + ∆   

  

+F3(s)  

                                     (21) 
where,  
 

F3(s) = F31(s)-F32(s)                                        (22) 
 

Equation (21) can be re expressed as: 
 

3 2 3 2
1 2 3 4 1 2 3 4

3 2
1 2 3 4

( ) ( ) ( ) ( )
( ) d q

e

m s m s m s m I s n s n s n s n I s
T s

l s l s l s l

 + + + ∆ + + + + ∆
∆ =  

+ + +  

+F3(s)    

                                                      (23) 
where, 

 

1 1 1 1 3 1 1 4 1 1m f c b c a f c d f  = + +                                 (23a) 

 

2 1 1 2 3 2 1 4 2 1 1 1 2 3 1 2 4 1 2m c f b c a f c d f c b f c a f c d f         = + + + + +                

                                                                         
(23b) 

 

3 1 2 2 3 2 2 4 2 2 1 3 1m c b f c a f c d f c b f= + + +                     (23c) 

 

4 1 3 2m c b f    =                                    (23d)  

 

1 1 2 1 5 1 1n f c b c e b= +                                             (23e) 

 

2 2 2 1 2 1 2 5 1 2n c f b c f b  c e b= + +                            (23f) 

 

3 2 2 2 3 2 1 3 5 1n c f b b c f b c e= + +                         (23g) 

 

4 2 2 3n c f b=                                                      (23h) 

 

1 1 1l b f=                                                        (23i) 

 

2 2 1 1 2l b f b f= +                                                 (23j) 

 

3 3 1 2 2l b f b f= +                                   (23k) 

 

4 3 2l b f  =                                                             (23l) 
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Substituting the expressions for ∆Id(s) and ∆Iq(s) 
from Eq. (3) and (4) in Eq. (23), we have: 
 

3 2 3 2
1 2 3 4 0 1 2 3 4 0

3 2
1 2 3 4

( )( sin ( )) ( )( cos ( ))
( ) ( )s s
e

ms ms ms m i s ns n s n s n i s
T s s

l s l s l s l

β β
β

 + + + − + + + +
∆ = ∆ + + + 

+F3(s)                             (24) 

 
Equation (24) can be re-expressed as: 

 
3 2

1 2 3 4
3 2

1 2 3 4

( ) ( )e

x s x s x s x
T s s

l s l s l s l
β

 + + +
∆ = ∆ + + + 

+ F3(s)          (25) 

 

1( ) ( ) ( )eT s T s sβ∆ = ∆ + F3(s)                             (25a) 

 
where, 
 

T1(s) = 
3 2

1 2 3 4
3 2

1 2 3 4

x s x s x s x

l s l s l s l

 + + +
 + + + 

               (26) 

 

1 1 s 0 1 s 0x n i cosb m i sinb= −                 (26a) 

 

2 2 s 0 2 s 0x n i cosb m i sinb= −                                  (26b) 

 

3 3 s 0 3 s 0x n i cosb m i sinb= −              (26c) 

 

4 4 s 0 4 s 0x  n i cosb m i sinb= −                                 (26d) 

 
The torque dynamic equation of a synchronous 

motor can be written as: 
 

e L

d
T T J

dt

ω
− =                  (27) 

 
where, 
ω  =  Motor speed in mechanical rad./sec. 
J  =  Polar  moment  of  inertia   of   motor   and  load  
  (combined) 
 

The small change in speed ‘ω’ equal to ∆ω can be 
related to small change in field angle, ∆β as given by: 
 

( )d

dt

β
ω

∆
∆ = −                 (28) 

 
The negative sign in equation physically indicates a 

drop in speed (ω) due to increase in field angle (β). 
Based on Eq. (28), the following expression can be 

written: 
 

2

2

( )
( ) ( )

d d d d
J J J

dt dt dt dt

ω
β β

∆  = − ∆ = − ∆  

                        (29) 

 

The small-perturbation model of Eq. (27) can be 
written as: 

 
 

Fig. 3: Block diagram representation of the system with 
disturbance function D(s) 

 

e LT T∆ − ∆ = ( )d
J

dt

ω∆                                               (30) 

 
Combining Eq. (29) and (30), it yields: 
 

e LT T∆ − ∆ =
2

2 ( )
d

J
dt

β− ∆                                       (31) 

 
The transformed version of Eq. (31), with initial 

condition relaxed, comes out to be: 
 

( ) ( ) ( )2
e LT s T s Js s                       β− = − ∆                                        

(32) 

 
Substituting the expression for ∆Te(s) from Eq. 

(25) in (32), we have: 
 

2
1 3( ) ( ) ( ) F (s) ( )LT s s Js s T sβ β∆ + ∆ + = ∆                   (33)  

 

32 2
1 1

1 1
( ) F (s) ( )

( ) ( )
LT s s

T s Js T s Js
β∆ − = ∆

   + +   

            (34) 

 

The block diagram representation of the system 
obtained from the above equation is shown in Fig. 3.  

The disturbance function can be taken separately 
and a detailed analysis in complex frequency domain is 
carried out as follows: 
 

3 31 32(s) F (s) F (s)F = −                (35) 

 
where,  
 

1
32 2

(s) (R )( )kd kd

md

c s k
F sL

s L

+
= +                            (36) 

 
and: 
 

 ( )1
31 2

(c s k)
(s) 1 f ff

kd kd

md md

R L
F R sL

s sL L

  +
= − + +  

  

         (37) 

 

( )1
31 2

(c s k)
(s) 1 f ff

kd kd

md md

R L
F R sL

s sL L

  +
= − + +  

  

            (38) 

 

Let 1 1k c s k= +    
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{ }2

1
31 2

(L R R L ) s
(s)

md f kd kkd f kd ff ff kkd

md

sL R R s L Lk
F

s sL

 − − + −
 =
        

(39) 

 

{ }21
31 3

(s) s ( L R R L )
ff kkd md kkd f kd ff f kd

md

k
F L L s L R R

s L
= − + − − −

                              (40) 
{ }11 1

31 2 3

L R R L1 1
(s)

md kkd f kd ffff kkd f kd

md md md

k Lk L L R R k
F

L s s L L s

− −    = − + −    
    

 

               (41) 
Let:  

 
1

1
ff kkd

md

k L L
c

L

 
=  

 

                            (42) 

 

{ }1

2

L R R Lmd kkd f kd ff

md

k L
c

L

− −
=

                          (43) 

 
1

3
f kd

md

R R k
c

L

 
=  

 

                            (44) 

 
Hence: 
 

31 1 2 32 3

1 1 1
(s)F c c c

s s s

     = − + −     
     

              (45) 

 
Put s = jω 
 

31 1 2 32 3

1 1 1
(j )F c c c

j j
ω

ω ω ω
    = − + −    − −    

            (46) 

Since  
�

�� =  �    

 

31 1 2 32 3

32 1
2 3

31 31

1 1 1
(j )F jc c jc

cc c
j

A jB

ω
ω ω ω

ω ω ω

     = − −     
     

  = − + −   
   

= +

            (47)

  
   where, 
 

2
31 2

c
A

ω
= −   and 31

31 3

cc
B

ω ω
= −                            (48) 

 

( ) 1
32 2

11
2

(s) ( )

1 1

kd kkd

md

kkd
kd

md md

k
F R sL

s L

k Lk
R

L s L s

= +

   
= +   

   

             (49) 

 
Let, 1

4
kd

md

k R
c

L
=  and 1

5
kkd

md

k L
c

L
=                            (50) 

 
54

32 2
(s)

cc
F

s s
= +                (51) 

Put s = jω 

54
32 2

(j )
cc

F jω
ω ω

= − −
                                            (52)

  

 

32 32A jB= +                                                        (53) 

where, 
 

54
32 322

& B
cc

A
ω ω

= −  =                                             (54) 

 
3 31 32

3 3 3

(j ) F (j ) F (j )

(j )

F

F A jB

ω ω ω

ω

= −

= +
                                         (55) 

 
3 31 32

2 4 4 2
2 2 2

3 5 1 5 31
3 3 3

A A A

c c c c

c c c c cc
B

ω ω ω

ω ω ω ω ω

= −

−
= − + =

+
= − + = −

              (56)

  
2

1

3 2
21 2 3 4

3 2
1 2 3 4

(s) JsT

X s X s X s X
Js

l s l s l s l

+

 + + +
= + 

+ + + 

              (57) 

 

Put s = jω   
 

{ } { }

2
1

3 2
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3 2
1 2 3 4

3 2
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1 2 3 4
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ω
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ω

ω ω ω

ω ω ω
ω ω ω

ω ω ω ω ω ω ω

ω ω ω

ω
ω

=+
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− − + + 

 − − + +
=  

− − + + 

− − + + − − +
=

− − + +

=

(58) 

 
where, 
 

1 1 1

1 1 1

(j ) M

(j ) P

N jN

D jQ

ω

ω

= +

= +

                                                    (59) 

 

2 1 1
1

1 1

(s) Js |s j

M jN
T

P jQ
ω=

 +
+ =  

+ 

                                   (60) 

 
where, 
 

4 2 2
1 2 4 2 4

5 3 3
1 1 1 3 3

2
1 4 2

3
1 3 1

M l J l J X X

N l J X l J X

P l l

Q l l

ω ω ω

ω ω ω ω

ω

ω ω

= − − +

= − − +

= −

= −

                             (61)     

3
2

1
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F
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1 1
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D
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ω

− + +
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+
                       (63)
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Fig. 4: Magnitude of the |D(jω)|  plotted against ω 
 

 
 
Fig. 5: Angle of the |D(jω)| plotted against ω 
 

2 2
3 1 3 1 3 1 3 1

2 2
1 1

(A P Q ) (B P A Q )
| D(j ) |

B

M N
ω

− + +
=

+

           (64) 

 

1 13 1 3 1 1

3 1 3 1 1

B P A Q
(j ) tan tan

A P Q

N
D

B M
ω − −   +

∠ = −   −   

           (65) 

 
The overall mathematical treatment basically 

interprets the role of induction motor action just before 

switching to synchronous motor action in a convenient 
mathematical from in the complex frequency domain. 
The motivation to formulate this problem in s domain 
(complex frequency domain) is not intentional rather it 
is a natural tendency because this paper may be treated 
as an extension of Chattopadhyay et al. (2011) in that 
paper the whole intention of the author were to 
investigate the steady state stability aspects using small 
perturbation model and that is why the formulation was 
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Fig. 6: Magnitude of the transfer function plotted against ω 
 
finalized in‘s’ domain. As an extension to such 
motivation it reveals that investigations can be made on 
the same machine just before switching to synchronous 
motor action (running as an induction motor). The 
overall model in complex frequency domain in the form 
of small perturbation model taking the role of induction 
motor into account does not lead to stability assessment 
model, however the nature if the function D(s) can be 
investigated in the marginal condition after substituting 
s = jω. After such mathematical substitution the 
function D(jω) involves magnitude and phase angle plot 
against ‘ω’ and such behavior are similar to analog 
filter characteristics. Hence the role of induction motor 
action for a physical synchronous motor may be looked 
upon as an analog filter behavior in the pure frequency 
domain in the concerned mathematical model. Those 
magnitude and phase angle plots of D(jω) are shown in 
Fig. 4 and 5. As the role of D(s) can be looked upon as 
a disturbance function in relation to the model given by 

equation D(S) = 
��	
�

�
	
���
�. In the equation, one part T(s) 

= 
�

�
	
���
� can be treated as transfer function of the 

pure synchronous motor behavior of the same physical 
synchronous m/c similar to D(jω) formulation, T(s) can 
be converted to T(jω) after substitution of s = jω in the 
said function. The magnitude and phase angle plot of 
T(jω) against ‘ω’ are shown in Fig. 5 and 6. Even 
though the plots in Fig. 3 to 6 are based on the equation 
they need some physical explanation and the 
corresponding interpretation are presented in the next 
section. 

RESULTS AND DISCUSSION 

 

Magnitude of the |D(jω)| (Fig. 4) plotted against ω 
shows inverse functions and also a family of plot is 
obtained by varying slip. It is already known that: 
 

3
2

1

(j )
(j )

(j ) J(j )

F
D

T

ω
ω

ω ω
=

+
 

 
It may be recalled that during the period of 

induction machine action ���	�� + ���� ∆�	�� +��	�� =  ∆��	��, where each function has been 
expressed in the equations. Hence F3(s) can be treated 
as an equivalent to additional transformed load torque. 
This additional function has appearance due to the role 
of the induction motor when synchronous motor has 
started as an induction machine with the help of damper 
windings we know that roughly induction motor torque 
is an increasing function of slip in the steady state zone. 
The transformations from time domain has been 
obtained using Laplace operator and ultimately the 
formulation is obtained in the complex frequency 
domain (in terms of kernel s). Hence the physical 
transformation from synchronous machine to induction 
machine during the starting period should not be 
confused with the mathematical transformations from 
time  domain  to  Laplace  domain and hence the role of 
slip remains same in Laplace domain as in time domain. 
The function ���	�� + ���� in Laplace domain appears 
due to the induced dynamics of the physical 
synchronous machine when it is exactly running as 
synchronous machine. Therefore the parameter slip 
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Fig. 7: Angle of the transfer function plotted against ω 
 
from the view point of engineering conception should 
not affect this function and furthermore it is well known 
that slip is the indication of an asynchronous machine. 
 
Explanation of the magnitude plot of D(jω) vs ω at a 

particular value of slip: Again we shall recall the 

function 
�

�
	
���
�, it has been observed that ���	�� +
��2

 
at s = jω, has a numerator polynomial containing 

highest power ω3 and denominator ω5 hence such 
functions should show dominance near zero frequency. 
Now let us separately concentrate on the function F3(s) 
which has a real part containing highest power ω2 and 
negative imaginary parts containing highest power ω3. 

Hence D(jω) which is product of F3(jω) and 
�

�
	
���
�, -- 

must be dictated by profile of 
�

�
	
���
�, at  s=jω , when 

ω is varied. That is why in the plot of |D(jω)| vs ω 
shows inverse function at a particular value of sip with 
high dominance around zero frequency. 

Figure 5 represents the plot of ∟ D(jω) against ω 
based on Eq. (65). It may be reminded that in Eq. (65) 
the angle of F3(s) at s = jω can be estimated very 

roughly as �� �� ! 

"�� 


"
� 


"�
# such rough expression will 

help the designer to predict the nature of the variation. 
The above said variation has a decaying nature with 
respect to ω. however the other part of the D(jω) 

function which is T(jω) = 
�

�
	
���
� at s = jω has an 

oscillatory behavior of its phase angle with respect to ω. 
This oscillatory behavior of  ∟ T(jω) vs ω can be easily 

interpreted because this function can be treated roughly 
as tan-1(ω) and that is why it is bounded between some 
specific values of angle (3.14). This behavior is plotted 
in Fig. 7. The plot of ∟ D (jω) vs ω involves the 
behavior of ∟ T (jω) vs ω but the dominance of ∟ F3 
(jω) is more, that is why the overall plot of ∟ D(jω) vs 
ω shows a dragging nature and it is plotted in Fig. 7. 
With reference to equation ∆β(jω) = T(jω ) ∆TL-D(jω) 
at this stage only the interpretation of the plot of T(jω) 
remains as pending because the other 3 plots (Fig. 4 to 
7) have been interpreted. The pending interpretation for 
Fig. 6 is as follows:  
 

T(s) = 
�

�
	
���
�, 

 
at s = jω  , hence T(jω) =  

�
�
	�$���$�,  

 �
�
	�$���$�  has a denominator polynomial in ω, having 

highest power 5. Hence at the high frequency region, 
|T(jω)| decreases very fast. This plot is shown in Fig. 6. 
 

CONCLUSION 

 
• Role of Induction motor in Laplace domain appears 

as an equivalent “system” consisting of multi-
frequencies. 

• Filtering of the equivalent “NOISE” may not be 
needed due to natural attenuation. 

• To avoid or minimize George’s phenomenon 
during the transition zone, inclusion of external 
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resistance in the field circuit basically leads to a 
complicated mathematical formulation, but 
clubbing this resistance along with the original 
field winding resistance develops the problem 
formulation in a more straight forward manner. 

• With reference to Fig. 3, the time-frequency 
contour of the function (in s-domain), D(s) can be 
developed using STOCKWELL-Transform(S-
Transform) and such contour will be able to 
provide more design information to the designer. 
 

List of symbols: 

 

id  = Current in the D coil in p.u. 
iq  = Current in the Q coil in p.u. 
if  = Current in the F coil in p.u. 
ikd  = Current in the d axis damper coil (KD) in p.u. 
ikq  = Current in the q axis damper coil (KQ) in p.u. 
Ld  = Self-inductance of D coil in p.u. 
Lq  = Self-inductance of Q coil in p.u. 
Lmd  = Mutual inductance along d axis in p.u. 
Lmq  = Mutual inductance along q axis in p.u. 
Lff  = Self-inductance of F (field) coil in p.u 
Rf  = Resistance of the F (field) coil in p.u. 
Lkd = Self-inductance of the KD coil in p.u. 
Rkd  = Resistance of the KD coil in p.u 
Lkq  = Self-inductance of the KQ coil in p.u. 
Rkq  = Resistance of the KQ coil in p.u 
β  = Angle between the field (rotor) m.m.f. axis and 

armature (stator) m.m.f. axis 
 
The machine data are given as (Xianhao et al., 2006): 
 

J  = 8 p.u. 
Ld  = 1.17 p.u. 
Lmd  = 1.03 p.u. 
Lq  = 0.75 p.u. 
Lmq  = 0.61 p.u. 
Lkkd  = 1.122 p.u. 
Lkkq  = 0.725 p.u. 
Lff  = 1.297 p.u. 
Rkd  = 0.03 p.u. 
Rkq  = 0.039 p.u. 
Rf  = 0.0015 p.u. 
 
• When machine is at load: 
 
is  = 1 p.u. 
if0  = 0.97 p.u. 
ikd0  = 0 p.u. 
ikq0  = 0 p.u. 
β0  = 100 

 

• When machine is at no load: 
 
is  = 0.1 p.u. 
if0  = 0.9 p.u. 

ikd0 = 0 p.u. 
ikq0  = 0 p.u. 
β0  = 00 
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