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Abstract: The vertical electric furnace is a multi-variable complex system, conventional control methods are used to 
control it, to need modelling and decoupling. In this study, a model reference adaptive control using the Neural 
Network with Genetic Algorithm (GANN) for the temperature control of the vertical electric furnace is proposed. 
The neural model of the system is identified by the genetic algorithm. Another neural network is trained to learn the 
inverse dynamics of the system so that it can be used as a nonlinear controller. Because of the limitation of BP 
algorithm, the genetic algorithm is used to find the fitness weights and thresholds of the neural network model and 
the simulation results show that the model is satisfied and the control is effective. 
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INTRODUCTION 

 
The vertical electric furnace is a multi-variable 

control system. It is used to test the mechanical 
properties of the high temperature alloys with the 
aviation in the steel. The internal structure of the 
vertical electric furnace is shown as Fig. 1. According 
to the technical requirements, the test temperatures of 
different materials are not the same. Generally, the test 
temperature is in 100 to 980°C range. We demand that 
the test temperature stably rise from room temperature 
to the setting point and long-term stability in the 
settings and the errors are ±2°C.  

The outside wall of the ceramic bushing in the 
vertical electric furnace is heated by the upper and the 
lower resistance wires. Then, the steel specimen and 
clamp in the centre of the ceramic bushing are heated 
by multi-thermodynamic process. Two outcrop 
sheathed thermocouples of K (EU-2) type are installed 
two points that is away from 25 mm in the steel 
specimen surface. According to the technical 
requirements, the temperature error of the two points on 
the steel specimen surface must be less than ±4°C in 
400 to 900°C range. This means the steel specimen has 
a small temperature gradient in the length of 25 mm, or 
there is a symmetrical temperature field. 

The temperature of the vertical electric furnace is 
heated and kept by the resistance wires, but the drop in 
temperature depend on natural cooling. When the 
temperature of the vertical electric furnace has 
overshoots, it will not be able to use control method to 
cool. Thus, the vertical electric furnace only has a 
heating input control phase and large time delay yet. It 
is more difficult to control than two phase plant to 

obtain good control performance. Besides, the upper 
and the lower temperature regions of the vertical 
electric furnace exist in the characteristic of mutual 
coupling. In addition, the temperature control is non-
linear, so it is very difficult to obtain satisfactory 
control effect by using the conventional control 
methods and estimate an appropriate dynamic model 
for model-based controller design. Especially, the 
temperature control problem with heating input only 
has time-delay and asymmetric control   behavior. How 
to design a practical temperature controller with good 
response speed, smaller steady-state error and without 
overshoot for industrial implementation is still a 
challenge in the control research field. 

Hornik et al. (1989) reported that Artificial Neural 

Networks (ANNs) have shown an excellent ability to 

model any nonlinear function to a desired degree of 

accuracy. Because of this property, they are suitable for 

the identification and control of nonlinear plants. 

Genetic Algorithms (GAs) are a parallel global 

search technique that emulates natural genetic 

mechanics and biological evolution theory. Because 

they exploit strategies of genetic information and 

survival of the fittest to guide their search, it needs not 

calculate the gradient and assume that the search space 

is differentiable or continuous. Besides, they 

simultaneously evaluate many points in the parameter 

space, so it is more likely to converge toward the global 

solution. Genetic algorithms are very suitable for 

searching discrete, noisy, multimodal and complex 

space (Goldberg, 1989). They have been successfully 

applied to engineering in search and optimization 

problems because it has many remarkable features,  
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Fig. 1: The internal structure diagram of the vertical electric furnace 

 
which are reported by Goldberg (1989), Li et al. (2005), 
Teng et al. (2003) and Sharma et al. (2005). 

The hybrid control methods of the genetic 
algorithm and neural network are used for the complex 
system. In this study, the Model Reference Adaptive 
Control (MRAC) strategy is considered, due to its 
excellent robustness and stability (Wang et al., 2003; 
Araz and Salum, 2010). The MRAC strategy based on 
ANN consists in training a network to learn the process 
dynamics of the vertical electric furnace. Another ANN 
is trained to learn the inverse dynamics so that it can be 
used as a nonlinear controller. 

In general the inversion of nonlinear models is not 
an easy task and analytical solutions may not exist, so 
solutions have to be found numerically. One important 
point is that the inversion of the process model may 
lead to unstable controllers when the plant has unstable 
zeros.  

In this study, the Back-Propagation (BP) neural 
network is used to identify the model and inverse model 
of the vertical electric furnace. The power of the BP 
network has been demonstrated by a number of workers 
and research has indicated that a BP neural network has 
the potential to approximate any continuous nonlinear 
function with arbitrary accuracy, provided that there are 
enough hidden neurons. In order to overcome the 
disadvantage of BP algorithm, the improved genetic 
algorithm is used to train the neural network and 
present an interesting alternative to optimize the weight 
and threshold of BP structure. It is very efficient that 
the genetic algorithms are used to train the NN (Sharma 
et al., 2005). Based on the model and inverse model of 
the neural network, an effective MRAC method is 
proposed for the temperature control of the vertical 
electric furnace. 
 

NEURAL NETWORK MODELLING 

 
The NN modeling for the vertical electric furnace: 
Artificial neural networks have been increasingly used 

in many aspects of controlling and modelling in the 
industry (Hsu et al., 2005). The traditional use of neural 
network modelling is a black-box approach; i.e., a 
neural network is trained on the available process data. 
However, in the real world, quite often the available 
process data are not sufficient to develop a good neural 
network model. The main difficulties arise from lack of 
excitation in the training data, uneven distribution of 
the data samples, significant noise in the modeling data, 
etc. They will result in the inaccurate neural network 
model and the not converged process of learning 
algorithm.  

A normal network contents input layer, hidden 
layer, output layer, the hidden layer may not be only 
one. In BP network the output of every nodes in one 
layer only affect the output of the next layer. The nodes 
of different layers are connected by the weights.  

The BP NN is trained to learn the dynamics of the 
temperature of the vertical electric furnace using the 
genetic algorithm, as shown in Fig. 2.   
The output of the neural network is denoted by: 
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where, wji and vkj are the input-hidden weight and 

hidden-output weight respectively and f is activation 

function that it is used in the hidden layer and the 

output layer, as follows: 
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In the training scheme of the neural network, the 
determination of parameters usually involves the
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Fig. 2: BP NN is trained to learn the dynamics of the vertical electric furnace 

 

minimization of an error function that, typically, is the 

Mean Squared Error (MSE) between the actual outputs 

and the targets for the whole training set. For a multi-

output system, MSE is calculated using all the training 

examples over each network output, denoted by: 
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where,  

l, n = The number of NN outputs and the number of 

training data respectively 

y
p

ij = The actual output of the vertical electric furnace   

y
m

ij = The output of NN model  

 

Since GA is usually applied to maximize a fitness 

function, a transformation is required to convert the 

error function into a suitable fitness function. A 

common method for this purpose is given by: 

 

aMSE
f

+
=

1                 (4) 

 

where, a is a small positive constant (0<a<1) that is 

used to avoid dividing by zero. Thus, f can now be 

treated as the absolute fitness function of the genetic 

algorithm. 

The parameter vector θ of the genetic algorithm is 

described as: 

 

],[W V=Θ                                                             (5) 

 

where,  

W = (wij)
T
 (i = 1, …, 8, j = 1, …, 16) is the weights 

between input layer and hidden layer  

V = (vij)
T
 (i = 1,…, 16, j = 1, 2)  is the weights 

between hidden layer and output layer 
 

Each real parameter of the vector θ needs to be 
given a specified interval [θjmin, θjmax] so that the Lj-bit 
substring of the binary code is interpreted as the binary 

integer on the interval [0, 2
Lj] and this integer can be 

mapped to this interval according to the following: 
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where,  
binrep = The integer value represented by an Lj-bit 

string  

θj  = j
th

 real parameter of the vector θ 
 

In this study, the reproduction is implemented 
using stochastic remainder without replacement. 
Expected string count values are calculated as ���/
� ��
�
���

 

and integer parts are assigned the reproduction 
numbers of the strings and the fractional parts of the 
expected number values are treated as probabilities. 
One by one, whether the fractional parts will be able to 
reproduce one string is decided by the stochastic 
probability. This process continues until the population 
is full. 

An effective method of adaptive probabilities of 
crossover and mutation is used in the study. In this 
method, the crossover probability Pc and the mutation 
probability Pm are varied with the fitness values of the 
solution. Therefore, low values of Pc and Pm are 
assigned to high fitness solutions, while low fitness 
solutions have very high values of Pc and Pm. The 
method can maintain diversity in the population and 
sustain the convergence capacity of the GA. The 
expressions for Pc and Pm are given as: 
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Fig. 3: Flowchart of neural network training by the GA 
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where, k1, k2, k3, k4≤1.0, fmax is the maximum fitness 

value, 	

 
is the average fitness value, 	′

 
is the largest of 

the fitness values in the two stings to be crossed and f is 

the fitness value of the string to be mutated. 

 
 
Fig. 4: Error curve of the NN model 
 

 
 
Fig. 5: Actual output 1 versus model output 1 
 

 
 
Fig. 6: Actual output 2 versus model output 2 

 
The procedure of the NN model training by the GA 

is described as Fig. 3. 
 

SIMULATION RESULTS 
 

Once the model structure has been defined, the 
next step is to train this particular NN by the proposed 
method. In experiment, the data of inputs and outputs 
are acquired from the actual temperature of the vertical 
electric furnace, i.e., gather once data from the two 
inputs and outputs every 10 sec, collected a total of 5 
sets of data, each consisting of 720 data. After they are 
pretreated, the two sets of data are selected, which one 
set of data is used to train the NN, another is employed 
to enhance its generalization capabilities. Our method 
can automatically choose the best weights and 
thresholds for each generation. We set the initial 
weights between -1 and 1. The goal of error is 0.001,
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Fig. 7: BP NN is trained to learn the inverse dynamics of the vertical electric furnace 

 

learning rate is 0.005 and the largest training time is 
3000.  

The genetic parameters for the NN model training 
are chosen as follows: 

 
Population size N = 80 
Coefficients of crossover probability k1 = 0.9  and 
k2 = 1.0 
Coefficients of mutation probability k3 = 0.02 and 
k4 = 0.1 

 

After the NN model training algorithm is 

implemented, the error curve is obtained in the Fig. 4, 

the dotted line is shown as the error-goal and the solid 

line is shown as error-trained. From the Fig. 4, we can 

see that about 1024 epochs the sum-squared error 

reached error-goal. 

In the Fig. 5 and 6, ‘-o-‘ stands for the actual 

temperature of the vertical electric furnace, ‘-*-‘ stands 

for the model output. It is clearly seen that the NN 

model obtained by the proposed method produces a 

good approximation to temperature of the vertical 

electric furnace, the MES is 0.00019.  

 

The inverse NN modelling for the vertical electric 

furnace: In the model reference adaptive control 

strategy, another ANN needs to be trained to learn the 

inverse dynamics of the vertical electric furnace so that 

it can be used as a nonlinear controller. 

The BP NN is trained to learn the inverse dynamics 

of the vertical electric furnace using the genetic 

algorithm, as shown in Fig. 7.   

The output of the neural network for the inverse 

model is denoted by: 

 
 

Fig. 8: Error curve of the NN inverse model 
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The input vector of the neural network is denoted by: 
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where rt (k + 1) (t = 1, 2) is the input of the controller, 

replace with y
m

t (k + 1) because it can be not measured 

in the actual plant. 
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Fig. 9: The configuration of MRAC for the vertical electric furnace 

 

The other parameters are the same with the 

aforementioned those. The NN inverse model is trained 

by using the proposed genetic algorithm. 

After the NN model training algorithm is 

implemented, the error curve of the inverse model is 

obtained in the Fig. 8, the dotted line is shown as the 

error-goal and the solid line is shown as error-trained. 

From the Fig. 8, we can see that about 5160 epochs the 

sum-squared error reached error-goal. It is clearly seen 

that training time of the NN inverse model needs longer 

by the proposed method. 

 

THE MODEL REFERENCE  

ADAPTIVE CONTROL 
 

The model and the inverse model using the neural 

network have been identified by above section. A 

model reference adaptive control based on the GA-NN 

is presented in this study. 

 

MRAC for temperature of vertical electric furnace: 

In the MRAC strategy, the model of the neural network 

is used as the estimator of the vertical electric furnace 

and the inverse model is employed as the controller. 

The configuration of MRAC for the temperature control 

the vertical electric furnace is shown as Fig. 9. The d is 

disturbance of the system. The reference model is 

selected as: 

 

ym (k + 1) = aym (k) + r (k)                          (11) 

 

where, a is constant. 

In Fig. 9, y1 (k), y2 (k), u1 (k) and u2 (k) are the two 

output and input of the vertical electric furnace 

respectively. r1 (k) and r2 (k) are the input of the control 

system. 

 

Simulation result: The traditional PID control is 

employed   in   order   to   compare   with  the  proposed  

 
 

Fig. 10: The response of the temperature control system 

 

 
 

Fig. 11: The response of the MRAC under the disturbance 

signal d = 60 

 

method MRAC in the study. In all disturbances d = 0, 

the parameter of  the  reference  model  is  selected  as  

a = 0.56. The input of the temperature is 500°C, a plot 

of the response of the system appears in Fig. 10. The 

green line and purple line are the output of the MRAC, 

which they denote the upper and the lower temperature 

regions of the vertical electric furnace respectively. The 

red line and blue line are the output of the PID control. 

It  is  clearly  seen  that  the  transient  and   steady-state 
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Fig. 12: The response of the system in parameters of the 

vertical electric furnace is increased by 25% 

 

 
 

Fig. 13: The response of the system in parameters of the 

vertical electric furnace is decreased by 25% 

 

response of the system has the advantage of the MRAC 

method over the traditional PID control. Thus, the 

response parameters of the system, as the overshoot, the 

settling time and the steady-state value is very satisfied. 

We now consider that the system has disturbance. 

Assume that the disturbance signal d is 10% of the 

system input, i.e., d = 60, the plot of the response of the 

system is shown in Fig. 11. It is clearly seen that the 

MRAC system proposed has a good capability of 

resisting disturbance. 

When the parameters of the temperature model of 

the vertical electric furnace is increased by 25%, the 

response of the system of the two control methods is 

shown in Fig. 12. After the parameters of the 

temperature model of the vertical electric furnace is 

decreased by 25%, the response of the system of the 

two control methods is shown in Fig. 13. It is clearly 

seen that the MRAC is robust. 

 

CONCLUSION 
 

The temperature of the vertical electric furnace is 

strongly coupled and disturbed, nonlinear and slow 

time-variant. It is difficult to control the temperature of 

the vertical electric furnace with conventional methods. 

The model reference adaptive control strategy based on 

the GA and NN is considered to control the temperature 

of the vertical electric furnace in this study. The model 

of the neural network of the system is identified. 

Another NN is trained to learn the inverse dynamics of 

the system. In order to overcome the disadvantage of 

BP learning algorithm, the genetic algorithm is used to 

train the neural networks to learn the dynamics and 

inverse dynamics of the system. The simulation results 

show that the method proposed for controlling the 

temperature of the vertical electric furnace is effective. 
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