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INTRODUCTION 

 
An Abel-Grassmann's groupoid (Protić and 

Stevanović, 2004), abbreviated as an AG-groupoid, is a 
groupoid S  whose elements satisfy the invertive law: 

 
 .,, allfor  ,)()( Scbaacbcab ∈=                (1) 

 
It is also called a left almost semigroup (Kazim and 

Naseeruddin, 1972; Mushtaq and Iqbal, 1990). In 
Holgate (1992) it is called a left invertive groupoid. In 
this study we shall call it an AG-groupoid. It has been 
shown in Mushtaq and Yusuf (1978) that if an AG-
groupoid contains a left identity then the left identity is 
unique. It has been proved also that an AG-groupoid 
with right identity is a commutative monoid, that is, a 
semigroup with identity element. It is a useful non-
associative algebraic structure, midway between a 
groupoid and a commutative semigroup. 

An AG-groupoid S is medial (Kazim and 
Naseeruddin, 1972) that is: 

 

.,,, allfor  ,))(())(( Sdcbabdaccdab ∈=           (2) 

 

An AG-groupoid is called an AG-band if all its 

elements are idempotents. 

A commutative inverse semigroup (S, *) becomes 

an AG-groupoid (S,.) under the relation 1−∗=⋅ abba  

(Mushtaq and Yusuf, 1988). 

In Stevanović and Protić (2004) a binary operation 

“ o ” on an AG-groupoid S  has been defined as follows: 

for all Syx ∈,  there exist a  such that yxayx )(=o . 

Clearly xyyx oo =  for all Syx ∈, . 

Now if an AG-groupoid S  contains a left identity e 

then the operation o  becomes associative, because using 
(1) and (2), we get: 

).()))((()))(((

))))(((()))((()))((()(

zyxzyaxayzaxa

yxazaeyxazazayxazyx

oo

oo

===

===  

 
Hence (S,o ) is a commutative semi group. 

Connection discussed above make this non-associative 
structure interesting and useful. 
 

PRELIMINARIES 
 

Here we construct AG-groupoids by defining new 
operations on vector spaces over finite fields. AG-
groupoids constructed from finite fields are very 
interesting. It is well known that a multiplicative group 
of a finite field is a cyclic group generated by a single 
element. By using these generators we have drawn the 
Cayley diagrams for such AG-groupoids which have 
been constructed from finite fields. The diagrams are 
either bi-partite (that is, their vertices can be colored by 
using two minimum colors) or tri-partite (that is, they 
can be colored using three minimum colors). 

Here we begin with the examples of AG-groupoids 
having n    o left identity. 
 
Example 1: Let }7,6,5,4,3,2,1{=S , the binary 

operation . be defined on S  as follows: 

 

. 1 2 3 4 5 6 7

1 1 5 2 6 3 7 4

2 6 3 7 4 1 5 2

3 4 1 5 2 6 3 7

4 2 6 3 7 4 1 5

5 7 4 1 5 2 6 3

6 5 2 6 3 7 4 1

7 3 7 4 1 5 2 6
 

 

Then ),( ⋅S  is an AG-groupoid without left identity. 
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Following is an example of an AG-groupoid with 
the left identity. 

 
Example 2: Let }8,7,6,5,4,3,2,1{=S , the binary 

operation be defined on S as follows: 
 

765432188

876543217

187654326

218765435

321876544

432187653

543218762

654321871

87654321⋅  

 
Then ),( ⋅S  is an AG-groupoid with left identity 7. 

A graph G is a finite non-empty set of objects called 
vertices (the singular is vertex) together with a (possibly 
empty) set of unordered pairs of distinct vertices of G 
called edges. The vertex set is denoted by V (G), while 
the edge set is denoted by E (G). 

A graph G is connected if every two of its vertices 
are connected. A graph G that is not connected is 
disconnected. A graph is planar if it can be embedded in 
the plane. 

A directed graph or digraph D is a finite non-empty 
set of objects called vertices together with a (possibly 
empty) set of ordered pairs of distinct vertices of D 
called arcs or directed edges. 

A graph G is n  -partite, 1≥n , if it is possible to 

partition )(GV  into n subsets 
nVVV ,...,, 21
 (called partite 

sets) such that every element of )(GE  joins a vertex of 

iV  to a vertex of 
jV  , ji ≠ . For 2=n , such graphs are 

called bi-partite graphs. 
 
Theorem 1: Let W be a sub-space of a vector space V 
over a field F of cardinal 2r such that r>1. Define the 
binary operation o  on W as follows: 

 vuvu r αα +=o , where α  is a generator of 

}0{\F  and Wvu ∈, . Then ),( oW  is an AG-groupoid. 

 
Proof: Clearly W  is closed. Next we will show that W  

satisfies left invertive law: 
 

 ( )
.

)(

1

12

zyx

zyxzyxzyx

r

rrrr

ααα

ααααααα

++=

++=++=
+

+
oo      (3) 

 
Now: 
 

( )
.

)(

11

12

zyxxyz

xyzxyzxyz

rr

rrrr

αααααα

ααααααα

++=++=

++=++=
++

+
oo    (4) 

 
From (3) and (4), we get: 
 

.,, allfor  ,)()( Wzyxxyzzyx ∈= oooo  

 
Hence ),( oW  is an AG-groupoid. 

It is not a semigroup because: 
 

.)()( 21 zyxzyxzyx rrrr ααααααα ++=++= +
oo  

                  (5) 
(3) and (5) imply that: 
 

.,, somefor  ,)()( Wzyxzyxzyx ∈≠ oooo  

 
Also ),( oW  is not commutative because: 

 

., somefor  ,

so ,

and ,

Wvuuvvu

uvuv

vuvu

r

r

∈≠

+=

+=

oo

o

o

αα

αα
 

 
Hence ),( oW  is an AG-groupoid. 

 
Remark 1: An AG-groupoid ),( oW  is referred to as an 

AG-groupoid defined by the vector space ),,( +⋅V . 

 

Remark 2: If we take Fvu ∈, , taking α as a generator 

of F and cardinal of F is 2r, then ),( oF  is said to be an 

AG-groupoid defined by Galois field. 
An element a  of an AG-groupoid S is called an 

idempotent if and only if 
2aa = . 

An AG-groupoid is called AG-band if all its 
elements are idempotents. 
 

CAYLEY DIAGRAMS 
 
A Cayley graph (also known as a Cayley colour 

graph and named after A. Cayley), is a graph that 
encodes the structure of a group. 

Specifically, let 〉〈= RXG |  be a presentation of 

the finitely generated group G with generators X and 
relations R. We define the Cayley graph ),( XGΓ=Γ  of 

G with generators X as: 
  

),( EG=Γ  

where, 
 

.edges) ofset   theis ( },|},{{ EXaGuuauE ∈∈⋅=  

 
That is, the vertices of the Cayley graph are 

precisely the elements of G and two elements of G are 
connected by an edge if and only if some generator in X 
transfers the one to the other. He has proposed the use of 
colors to distinguish the edges associated with different 
generators. 
 
Remark 3: If we put the value of 2=r  , in remark 2, 
we get Galois field of order 4. 

Further we need to construct a field of 4 elements, 

for this take an irreducible polynomial 12 ++ xx  in

}1,0{Z2 = . Then simple calculations yield that

},,1,0{)2( 22 ttGF = . The table of this field is given by: 
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Fig. 1: Tri-pertite and planar graph 

 

           
 

Example 3: Using },,1{1:}0{\}0{\)2( 232 ttttFGF =〉=〈==  

and vuvu αα += 2
o , for all Fvu ∈,  and Ft∈=α , 

we get the following table of an AG-groupoid: 
 

22

2

2

2

2

10

01

011

100

10

ttt

ttt

tt

tt

tt∗

 

 
We can draw the Cayley diagram for it as under, which 
is a tri-partite, planar disconnected graph (Fig. 1). 
 
Theorem 2: Let W be a sub-space of a vector space V  

over a field F of cardinal np  for some prime 2≠p . 

Define the binary operation ⊗  on W as follows: 

 vuvu
np

+=⊗
−

2

1

α , where α is a generator of 

}0{\F  and Wvu ∈, . Then ),( ⊗W  is an AG-groupoid 

with left identity 0. 
 
Proof: Clearly W is closed. Next we will show that W 
satisfies left invertive law: 

 

 

.

)(

2

1

2

1

2

1

2

1

1
zyxzyx

zyxzyx

npnp
n

npnp

p ++=++

=+







+=⊗⊗

−−

−−

− ααα

αα
                   (6) 

 
Now: 
 

 

.

)(

2

1

2

1

2

1

2

1

2

1

1

zyx

xyz

xyzx

yzxyz

n
p

np

n
p

n

npnp

p

++=

++=

++=+









+=⊗⊗

−

−

−

−−

−

α

α

αα

αα

                  (7) 

From (6) and (7), we get: 

 

Wzyxxyzzyx ∈⊗⊗=⊗⊗ ,, allfor  ,)()( . 

 

Hence ),( ⊗W  is an AG-groupoid. 

It is not a semigroup because: 

 

 

.

)()(

2

1

2

1

2

1

2

1

zyx

zyxzyx
npnp

npnp

++=

++=⊗⊗
−−

−−

αα

αα                      (8) 

 

(6) and (8) simply that: 

 

Wzyxzyxzyx ∈⊗⊗≠⊗⊗ ,, somefor  ,)()( . 

 

Also ),( ⊗W  is not commutative because: 

 

Wvuuvvu

uvuvvuvu
npnp

∈⊗≠⊗

+=⊗+=⊗
−−

, somefor  , so

 , and , 2

1

2

1

αα  

 

Now: 

 

Wxxxx
np

∈=+=⊗
−

 allfor  ,00 2

1

α . 

 

Hence ),( ⊗W  is an AG-groupoid with left identity 0 

 

Example 4: Put p = 3 and 1=n  , in theorem 2, then the 

cardinal of F is 3 and vuvu +=⊗ α , for all vu,  and 

fixed element α  of F. 

Obviously F = Z3 = {0, 1, 2} mod 3, 

〉=〈== 12:2}2,1{}0{\ 2F , here 2=α , we get the 

following table of an AG-groupoid }2,1,0{ : 

 

 
 

Now we can draw the Cayley diagram for the 

formed example of an AG-groupoid ),( ⊗F , which is a 

bi-partite, planar disconnected graph (Fig. 2). 

 

 
 

Fig. 2: Bi-partite, disconnected graph 
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Fig. 3: Bi-partite, planar graph 

 

Example 5: Put 5=p  and 1=n  , in theorem 2, then we 

get |F| = 5 and vuvu +=⊗ 2α . 

Now clearly }4,3,2,1,0{Z)5( 5 === FGF  mod 5,

〉=〈= 12:2}0{\ 4F , taking α  as a generator which is 2, 

in this case, then:  

 

.422 vuvuvu +⋅=+⋅=⊗  

 

Hence we get the following AG-groupoid: 

 

 
 

The Cayley diagram for the above example is given by, 

which is a bi-partite, planar disconnected graph (Fig. 3). 

 

Theorem 3: Let W be a sub-space of a vector space V 

over a field F of cardinal r such that r>1. Define the 

binary operation ∗  on W as follows: 

 vuvu 2αα +=∗ , where α is a generator of 

}0{\F  and Wvu ∈, . Then ),( ∗W  is an AG-groupoid. 

 

Proof: Clearly W is closed. Next we will show that W 

satisfies the left invertive law: 

 

( ) .)( 23222 zyxzyxzyx ααααααα ++=++=∗∗    
(9) 

 

Now: 

 

 
( )

.

)(

232232

22

zyxxyz

xyzxyz

αααααα

αααα

++=++=

++=∗∗

        

(10) 

 

From (9) and (10), we get: 

 

S .,, allfor  ,)()( Wzyxxyzzyx ∈∗∗=∗∗  

 
 

Fig. 4: Tri-partite directed graph 

 
Hence ),( ∗W  is an AG-groupoid. 

It is not a semigroup because: 
 

zyx

zyxzyx

43

22 )()(

ααα

αααα

++=

++=∗∗
                      (11) 

 
(9) and (11) imply that: 

 

.,, somefor  ,)()( Wzyxzyxzyx ∈∗∗≠∗∗  

 
Also it is not commutative because: 

 

., somefor  ,

so , and , 22

Wvuuvvu

uvuvvuvu

∈∗≠∗

+=∗+=∗ αααα  

 
Hence ),( ∗W  is an AG-groupoid. 

 
Example 6: Let |F| = 4. 

Obviously the field of order 4, is 

},,,1{1:}0{\)2( 232 ttttGF =〉=〈=  further put t=α  in 

vuvu
2αα +=∗ , for all ,, Fvu ∈  thus obtain the 

following table for an AG-band },,1,0{ 2tt : 

 

 
 
This table now evolves the following diagram (Fig. 4). 

 
Example 7: Let }4,3,2,1{=S , the binary operation . be 

defined on S as follows: 
 

 
 
Then ),( ⋅S  is an AG-band, (also given in (Protić 

and Stevanović, 2004)). This example is a particular 
form of the theorem 3. 
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Fig. 5: Bi-partite, disconnected planar graph 

 

Example 8: Let us put the value of 9=r  in theorem 3, 

then .9|| =F   

Now we need to construct a field of 9 elements, for 

this take an irreducible polynomial 022 +++ tt  in 

}2,1,0{Z3 = . Then simple calculations yields: 

 

.}21,221,222,22,22,2,2,1{

1:21}0{\}0{\)3( 82

++++=

〉==+〈== ααFGF  

 

Now put the value of 21+=α  in vuvu 2αα +=∗  , 

we get: 

 

 

., allfor  ,22)21(

)21()21( 2

Fvuvuv

uvu

∈++=

+++=∗                 (12) 

 

Putting all the values of u, v from F in Eq. (12) we 

get an AG-band: 

We get the following bi-partite, disconnected, 

planar directed graph (Fig. 5). 

 

Remark 4: If we take finite fields instead of subspaces 

W of vector spaces V, in theorems 1, 2 and 3, then we 

can make the Cayley diagrams for these AG-groupoids 

by using the definition of a Cayley graph. 

 

Example 9: Let }8,7,6,5,4,3,2,1{=S , the binary 

operation . be defined on S as follows: 

444444428

444444447

444444446

444444445

444444444

444444443

444444482

844444211

87654321⋅

 

 
It is non-commutative and non-associative because

,218818 =⋅≠⋅=  8)11(21)12(2 =⋅⋅≠⋅⋅= .  

Also it is easy to verify that left invertive law holds 
in S. Hence ),( ⋅S  is an AG-groupoid. 

 

Example 10: Let }4,3,2,1{=S , the binary operation . 

be defined on S as follows: 
 

 
 
It is non-commutative and non-associative because, 

214414 =⋅≠⋅=  and 4)11(21)12(2 =⋅⋅≠⋅⋅= . Thus 

),( ⋅S  is an AG-groupoid with left identity 1. 
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