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INTRODUCTION

An  Abel-Grassmann's  groupoid (Protic and
Stevanovi¢, 2004), abbreviated as an AG-groupoid, is a
groupoid § whose elements satisfy the invertive law:

(ab)c = (cb)a, for all a,b,c € S. €))

It is also called a left almost semigroup (Kazim and
Naseeruddin, 1972; Mushtaq and Igbal, 1990). In
Holgate (1992) it is called a left invertive groupoid. In
this study we shall call it an AG-groupoid. It has been
shown in Mushtag and Yusuf (1978) that if an AG-
groupoid contains a left identity then the left identity is
unique. It has been proved also that an AG-groupoid
with right identity is a commutative monoid, that is, a
semigroup with identity element. It is a useful non-
associative algebraic structure, midway between a
groupoid and a commutative semigroup.

An AG-groupoid § is medial
Naseeruddin, 1972) that is:

(Kazim and

(ab)(cd) = (ac)(bd), for all a,b,c,d € S. @)

An AG-groupoid is called an AG-band if all its
elements are idempotents.

A commutative inverse semigroup (S, *) becomes
an AG-groupoid (S,.) under the relation ¢-b=b*qa™'
(Mushtaq and Yusuf, 1988).

In Stevanovi¢ and Proti¢ (2004) a binary operation
“o” on an AG-groupoid S has been defined as follows:
for all x,y e S there exist a such that xoy=(xa)y.

Clearly xoy=yox forall x,yeS§.

Now if an AG-groupoid S contains a left identity e
then the operation o becomes associative, because using
(1) and (2), we get:

(xoy)ez=(((xa)y)a)z = (za)(xa)y) = (e(za))((xa)y)
= (xa)((za)y) = (xa)(ya)z) = xo(ye 2).

Hence (S,o) is a commutative semi group.
Connection discussed above make this non-associative
structure interesting and useful.

PRELIMINARIES

Here we construct AG-groupoids by defining new
operations on vector spaces over finite fields. AG-
groupoids constructed from finite fields are very
interesting. It is well known that a multiplicative group
of a finite field is a cyclic group generated by a single
element. By using these generators we have drawn the
Cayley diagrams for such AG-groupoids which have
been constructed from finite fields. The diagrams are
either bi-partite (that is, their vertices can be colored by
using two minimum colors) or tri-partite (that is, they
can be colored using three minimum colors).

Here we begin with the examples of AG-groupoids
havingn o left identity.

Example 1: Let

§=1{1,2,3,4,5,6,7}, the binary

operation . be defined on S as follows:

AN = LWL W
Y, RS T R NEC N N
N R O — W oL 9o
< NSV B U T N R N RS |

I Y N -
B N N e R Y RV i 5]
w9 N RN = W W

Then (S, is an AG-groupoid without left identity.
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Following is an example of an AG-groupoid with
the left identity.

Example 2: Let §=1{1,2,3,4,5,6,7,8}, the binary
operation be defined on S as follows:

-1 23 45 6 78
117 8 1.2 3 4 5 6
216 78 1 2 3 45
3/5 6 781 23 4
414 5 6 781 23
513456 7 81 2
612 3 456781
711 23 45 6 78
818 1 2 3 45 6 7

Then (S,-) is an AG-groupoid with left identity 7.

A graph G is a finite non-empty set of objects called
vertices (the singular is vertex) together with a (possibly
empty) set of unordered pairs of distinct vertices of G
called edges. The vertex set is denoted by V (G), while
the edge set is denoted by E (G).

A graph G is connected if every two of its vertices
are connected. A graph G that is not connected is
disconnected. A graph is planar if it can be embedded in
the plane.

A directed graph or digraph D is a finite non-empty
set of objects called vertices together with a (possibly
empty) set of ordered pairs of distinct vertices of D
called arcs or directed edges.

A graph G is n -partite, n>1, if it is possible to
partition J/(G) into n subsets V,,V,,....V (called partite
sets) such that every element of £(G) joins a vertex of
V, to a vertex of V., i # j.For n=2, such graphs are

called bi-partite graphs.
Theorem 1: Let W be a sub-space of a vector space V'

over a field F of cardinal 2r such that r>1. Define the
binary operation o on W as follows:

uov=a'u+av, where & is a generator of
F\{0} and u,v e W . Then (W o) is an AG-groupoid.

Proof: Clearly w is closed. Next we will show that W
satisfies left invertive law:

xoy)oz=ala'x+ay)taz=a’"x+a 'y +az
3)

—ax+a 'y +az.

Now:

(Zoy)o X = a’(a"z+ay)+aoc = az"z+a"”y+(xx (4)

—z+a M y+taox=ax+a 'y +az.
From (3) and (4), we get:
(xoy)oz=(zoy)ox,forallx,y,zeW.

Hence (J#,0) is an AG-groupoid.

It is not a semigroup because:

xo(yoz)=a'x+a(a'y+az)=a'x+a "'y +a’z.

(%)
(3) and (5) imply that:

(xey)oz#xo(yoz), forsomex,y,zeW.

Also (W ,0) is not commutative because:

uov=a'u+av,and
vou=a'v+au,so

uov#vou,forsomeu,veW.
Hence (W ,0) is an AG-groupoid.

Remark 1: An AG-groupoid (W ) is referred to as an
AG-groupoid defined by the vector space (V- +).

Remark 2: If we take u,v € F', taking o as a generator
of F' and cardinal of F' is 2r, then (F o) is said to be an
AG-groupoid defined by Galois field.

An element a of an AG-groupoid S is called an
idempotent if and only if a = a’.

An AG-groupoid is called AG-band if all its
elements are idempotents.

CAYLEY DIAGRAMS

A Cayley graph (also known as a Cayley colour
graph and named after A. Cayley), is a graph that
encodes the structure of a group.

Specifically, let G=(X |R) be a presentation of
the finitely generated group G with generators X and
relations R. We define the Cayley graph T =T'(G, X) of
G with generators X as:

I'=(G,E)
where,

E={{u,a-u}|uecG,ae X} (Eisthesetof edges).

That is, the vertices of the Cayley graph are
precisely the elements of G and two elements of G are
connected by an edge if and only if some generator in X
transfers the one to the other. He has proposed the use of
colors to distinguish the edges associated with different
generators.

Remark 3: If we put the value of » =2 , in remark 2,
we get Galois field of order 4.

Further we need to construct a field of 4 elements,
for this take an irreducible polynomial x*>+x+1 in
Z,=140,1}. Then simple calculations yield that

GF(2*)={0,1,¢,#*} . The table of this field is given by:
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Fig. 1: Tri-pertite and planar graph

Example 3: Using GR2*)\ {0} =F\ {0} =(t : £ =1)={L,t,£’}
and uov=c’u+av, for all u,veF and a=teF,
we get the following table of an AG-groupoid:

We can draw the Cayley diagram for it as under, which
is a tri-partite, planar disconnected graph (Fig. 1).

Theorem 2: Let W be a sub-space of a vector space V'
over a field F' of cardinal p" for some prime p#2.
Define the binary operation @ on W as follows:

Pl

u®v=a >u+v, where a is a generator of
F\{0} and u,v e W . Then (W,®) is an AG-groupoid
with left identity 0.

Proof: Clearly W is closed. Next we will show that W
satisfies left invertive law:

x® ®Z=OI# a#x+ +z=

. P »a
Pxta T yrz=x+a

a y+z.

Now:

(z®y)®x = az(a Zz+y]

s (7

+x=a” z+a ? y+x

P71

=z+a’ y+x

P

=x+a ’ y+z

From (6) and (7), we get:
(x®Y)®z=(z®y)®x, forallx,y,zeW .

Hence (W,®) is an AG-groupoid.
It is not a semigroup because:
x®(y®z)=a%x+(a%y+z) (8)

Pl Pl

=a’x+a’ y+z
(6) and (8) simply that:
(x®y)®z#x®(y®z),forsome x,y,zeW .

Also (W,®) is not commutative because:

P71 Pl

p

u®v=a *u+v,andv®u=a > v+u,

sou ®v#vQ®u,forsomeu,velW

Now:

0®x= apT40+x=x, forallxeW .
Hence (W ,®) is an AG-groupoid with left identity 0

Example 4: Put p =3 and n=1, in theorem 2, then the
cardinal of F is 3 and u®v =cau+v, for all u,v and
fixed element & of F.

Obviously F = Z; = {0, 1, 2} mod 3,
F\{0}={1,2}=(2 : 2> =1), here @ =2, we get the
following table of an AG-groupoid {0,1,2} :

1
1
0
i

Now we can draw the Cayley diagram for the
formed example of an AG-groupoid (F,®), which is a

bi-partite, planar disconnected graph (Fig. 2).
1
@

e ¢

0 i

Fig. 2: Bi-partite, disconnected graph
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4 3
Fig. 3: Bi-partite, planar graph

Example 5: Put p=35 and n=1, in theorem 2, then we

get|F|=5and u®v=c’u+v.
Now clearly GF(5)=F =Z,=1{0,1,2,3,4} mod 5,

F\{0}=(2 : 2*=1), taking & as a generator which is 2,
in this case, then:

u®®v=2>u+v=4-u+v.

Hence we get the following AG-groupoid:

Q|01 2 3 4
olo 1 2 3 4
11401 2 3
213 401 2
32 3 4 0 1
411 2 3 4 0

The Cayley diagram for the above example is given by,
which is a bi-partite, planar disconnected graph (Fig. 3).

Theorem 3: Let W be a sub-space of a vector space V'

over a field F of cardinal r such that r>1. Define the
binary operation * on W as follows:

u*v=aqu+a’v, where o is a generator of
F\{0} and u,v e W . Then (W ) is an AG-groupoid.

Proof: Clearly W is closed. Next we will show that W
satisfies the left invertive law:

(x*y)*z =a(ax+a2y)+ adz=a'x+a’y+a’z. (9)
Now:

2 2
(z*y)*xza(az+a y)+a b (10)

=a’z+a’y+ra’x=a’x+a’y+a’z
From (9) and (10), we get:

S(x*y)xz=(z*y)*x,forallx,y,zeW.

t
@
0

3

1
Fig. 4: Tri-partite directed graph

Hence (W ) is an AG-groupoid.
It is not a semigroup because:

x*(y*z)=ax+a’(ay +a’z) (i
=ax+a’y+a’z

(9) and (11) imply that:
(x*xy)xz#x*(y*z),forsomex,y,zeW.

Also it is not commutative because:

urv=au+a’v,and v¥u =av+a’u,so

u*v#vy*y, for some u,veW.
Hence (w x) is an AG-groupoid.

Example 6: Let |F| = 4.

Obviously the field of order 4, is
GF2H\{0}=(t : t =1)={1,1,¢*}, further put ¢ =¢ in
uxv=au+a’v, for all y,veF, thus obtain the
following table for an AG-band {0,1,¢,%} :

This table now evolves the following diagram (Fig. 4).

Example 7: Let S ={1,2,3,4}, the binary operation . be
defined on S as follows:

1234

111423
213241
314132
412314

Then (§,) is an AG-band, (also given in (Proti¢
and Stevanovi¢, 2004)). This example is a particular
form of the theorem 3.
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Fig. 5: Bi-partite, disconnected planar graph

Example 8: Let us put the value of » =9 in theorem 3,
then | F |=9.

Now we need to construct a field of 9 elements, for
this take an irreducible polynomial #*+¢+2+0 in
Z, =1{0,1,2} . Then simple calculations yields:

GFGH\ {0t = F\ 0} =(1+v2=c : &* =1)
= {1,2,72,242,24+/2,2+ 22,1+ 24/2,1+ /2.

Now put the value of a=1++2 in ysv=qu+a’v ,
we get:

u*v:(1+\5)u+(l+\5)2 (12)
v:(1+\5)u+2ﬁv,forallu,veF.

Putting all the values of u, v from F in Eq. (12) we
get an AG-band:

We get the following bi-partite, disconnected,
planar directed graph (Fig. 5).

Remark 4: If we take finite fields instead of subspaces
W of vector spaces V, in theorems 1, 2 and 3, then we
can make the Cayley diagrams for these AG-groupoids
by using the definition of a Cayley graph.

Example 9: Let §={1,2,3,4,5,6,7,8}, the binary
operation . be defined on S as follows:

S N N N
I N N N N S TS
[ N N N N N N N
I N N T N N N S
O N N O N K9
S N N N N N o
N N N N N N N
S N N N N N N )

S T N N T S e I

It is non-commutative and non-associative because
8=1-8%#8-1=2, 2=2-1)-1=2-(1-1)=8.

Also it is easy to verify that left invertive law holds
in S. Hence (S,-) is an AG-groupoid.

Example 10: Let S ={1,2,3,4}, the binary operation .
be defined on S as follows:

1234

111 23 4
214333
313333
412 3 3 3

It is non-commutative and non-associative because,
4=1-4#4-1=2 and 2=(2-1)-1%2-(1-1)=4. Thus
(S, is an AG-groupoid with left identity 1.
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