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Analysis of Nonlinear Discrete Time Active Control System with Boring Chatter 
 

Shujing Wu and Dazhong Wang 
Shanghai University of Engineering Science, Shanghai, China 

 
Abstract: In this work we study the design and analysis for nonlinear discrete time active control system with boring 
charter. It is shown that most analysis result for continuous time nonlinear system can be extended to the discrete 
time case. In previous studies, a method of nonlinear Model Following Control System (MFCS) was proposed by 
Okubo (1985). In this study, the method of nonlinear MFCS will be extended to nonlinear discrete time system with 
boring charter. Nonlinear systems which are dealt in this study have the property of norm constraints ║ƒ (v (k))║≤α 

+ β║v (k)║γ, where α≥0, β≥0, 0≤γ≤1. When 0≤γ<1. It is easy to extend the method to discrete time systems. But in 
the case γ = 1 discrete time systems, the proof becomes difficult. In this case, a new criterion is proposed to ensure 
that internal states are stable. We expect that this method will provide a useful tool in areas related to stability 
analysis and design for nonlinear discrete time systems as well. 
 
Keywords: Discrete time systems, disturbance, internal states, nonlinear control system 

 
INTRODUCTION 

 
Nonlinear control systems are those control 

systems where nonlinearity plays a significant role, 
either in the controlled process or in the controller 
itself. Nonlinear plants arise naturally in numerous 
engineering and natural systems, including mechanical 
and biological systems, aerospace and automotive 
control, industrial process control and many others. 
Nonlinear control theory is concerned with the analysis 
and design of nonlinear control systems. It is closely 
related to nonlinear systems theory in general, which 
provides its basic analysis tools (Binder et al., 2009). 
There has been much excitement over the emergence of 
new mathematical techniques for the analysis and 
control of nonlinear systems. In addition, great 
technological advances have bolstered the impact of 
analytic advances and produced many new problems 
and applications which are nonlinear in an essential 
way (Sastry, 1999). Based on genetic algorithms, we 
propose a practical design method for robust nonlinear 
controllers of uncertain nonlinear system. We 
demonstrate its applicability by tackling with the flight 
control problems of landing in a wind shear (Mori and 
Torisu, 2000). The fuzzy system is constructed to 
approximate the nonlinear system dynamics. Based on 
this fuzzy approximation suitable adaptive control laws 
and appropriate parameter update algorithms for 
nonlinear uncertain (or unknown) systems are 
developed to achieve H∞ tracking performance (Martin, 
2009).  

An iterative learning control method is proposed 
for nonlinear discrete-time systems with well-defined 

relative degree, which uses the output data from several 
previous operation cycles to enhance tracking 
performance (Sun and Wang, 2001). Present a control 
methodology for a class of discrete time nonlinear 
systems that depend on a possibly exogenous 
scheduling variable (Raul and Passino, 2003). 

One of the most important problems in control 
theory is concerned with system stability, especially 
with systems affected by external disturbances (Zhong 
et al., 2004). Finite-time stability of nonlinear discrete-
time systems is studied. Some new analysis results are 
developed and applied to controller design (Mastellone 
et al., 2004). 

In previous studies, a method of nonlinear Model 
Following Control System (MFCS) was proposed by 
Okubo (1985), Wang and Okubo (2008) and Akiyama 
(1998). In this study, the method of nonlinear MFCS 
will be extended to nonlinear discrete time system. 
Nonlinear systems which are dealt in this study have 
the property of norm constraints: 

 
( ( )) ( )f v k v k

γα β≤ +  
 
where α≥0, β≥0, 0≤γ≤1. When 0≤γ<1. It is easy to 
extend the method to discrete time systems. But in the 
case γ = 1 discrete time systems, the proof becomes 
difficult. In this case, a new criterion is proposed to 
ensure that internal states are stable. We expect that this 
method will provide a useful tool in areas related to 
stability analysis and design for nonlinear discrete time 
systems as well. 
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The expression of problems: A controlled object is 
described in (1), (2) and the accordant model is given in 
(3) and (4): 
 

( 1) ( ) ( )x k Ax k Bu k+ = +
  

( , ( )) ( )fB f k x k d k+ +                 (1) 

 

0( ) ( ) ( )y k Cx k d k= +                 (2) 

 
( 1) ( ) ( )

m m m m m
x k A x k B r k+ = +                (3) 

 
( ) ( )

m m m
y k C x k=                                            (4)  

 
where, ( ) nx k R∈ , ( ) lu k R∈ , ( , ( )) fl

f k x k R∈ ,

( ) ly k R∈ , ( ) nd k R∈ ,
0 ( ) ld k R∈ , ( ) mn

mx k R∈ ,

( ) ml

mr k R∈ , ( ) l

my k R∈ . The available state is output

( ).y k  assuming ))(,())(( kxkfkvf = , v (k) = Cfx (k) 
and the nonlinear function f(v(k)) is available and 
satisfies the following constraint: 
 

( ( )) ( )f v k v k
γ

α β≤ +                 (5) 
 
where, α≥0, β≥0, 0≤γ<1. ||.|| is Euclidean norm. 

Assume that [C A B] is controllable and 
observable. Zeros of C [zI - A]-1

B are stable. 
Disturbance d (k) and d0 (k) are bounded and satisfy (6): 

 
0( ) ( ) 0, ( ) ( ) 0k kD z d k D z d k= =               (6) 

 
Dk(z) is a scalar characteristic polynomial of 

disturbances. Output error is given as below: 
 

( ) ( ) ( )me k y k y k= −                              (7) 
 

The aim of boring control system design is to 
obtain a control law which makes output error zero and 
keeps internal states bounded. 

 
Design of nonlinear discrete time system with boring 

charter: We consider shift operator z and the follows 
are established: 
 

1[ ] ( ) / ( )C zI A B N z D z−− =  
1[ ] ( ) / ( )

f f
C zI A B N z D z−− =  

1[ ] ( ) / ( )m m m m mC zI A B N z D z−− =  
 

where, ( )D z zI A= − , ( )m mD z zI A= − . Then the 

representations of input-output equation are described 
as followings: 

( ) ( ) ( ) ( )D z y k N z u k=  
( ) ( ( )) ( )fN z f v k w k+ +      

 
( ) ( ) ( ) ( )m m m mD z y k N z r k=    

0( ) [ ] ( ) ( ) ( )w k Cadj zI A d k D z d k= − +   
 
where, ( ( ))ri iN z σ∂ = , ( ( ))ri f fiN z σ∂ < , ( ( ))ri m miN z σ∂ =  

and ( ( ))r rN z NΓ =  ( ( )rΓ ⋅  is the coefficient matrix of the 
element with maximum of row degree), as well as 

0rN ≠ . Since the disturbances satisfy (6), then: 
 

( ) ( ) 0kD z w k =       
 
The first step of design, a monic and stable 

polynomial ( )T z  which has the degree of 
( 2 1 )d m in n nρ ρ σ≥ + − − −  is chosen. Then, the ( )R z , 

( )S z  can be derived from: 
 

( ) ( ) ( ) ( ) ( ) ( )m kT z D z D z D z R z S z= +                   (8) 
 
where the degree of each polynomial is: 
 

( )T z ρ∂ = , ( )m mD z n∂ = , ( )k dD z n∂ =

( ) m dR z n n nρ∂ = + − − , ( )D z n∂ =

( ) 1dS z n n∂ ≤ + −  
 
The output error ( )e k  is represented as below: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )m kT z D z e k D z R z N z u k=  

( ) ( ) ( ) ( ( ))k fD z R z N z f v k+  

( ) ( ) ( ) ( ) ( )m mS z y k T z N z r k+ −               (9) 
 
Let the right hand side of above equation equal 

zero, that ( )u k  will be described as follows: 
 

1 1( ) ( )[ ( ) ( ) ( )r ku k N Q z D z R z N z− −= − ( ) ] ( )rQ z N u k−  
1 1( ) ( ) ( ) ( ) ( ( ))r k fN Q z D z R z N z f v k− −−  
1 1( ) ( ) ( )rN Q z S z y k− −−  
1 1( ) ( ) ( ) ( )r m mN Q z T z N z r k− −+                            (10) 

 
where, ( ) [ ]iQ z diag z

δ= ,
i m in nδ ρ σ= + − + .  

Then the state space expression of u (k) is shown 
as follows: 

 

1 1 2 3( ) ( ) ( ) ( ( ))u k H k J y k J f v kξ= − − −  
3 3 4 4 4( ) ( ) ( )mH k J r k H kξ ξ− + +                           (11) 
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Here, 
 

1( )[ ( ) ( ) ( ) ( ) ]k rQ z D z R z N z Q z N− −  
1

1 1 1( )rN H zI F G−= −  
 

1 1
2 2 2 2( ) ( ) ( )[ ( )( ) ]rQ z S z N z H z zI F G J− −= − +  

 
1( ) ( ) ( ) ( )

k f
Q z D z R z N z−

 
1

3 3 3 3( )[ ( )( ) ]rN z H z zI F G J−= − +  
 

1( ) ( ) ( )mQ z T z N z−

 
1

4 4 4 4( )[ ( )( ) ]rN z H z zI F G J−= − +  
 
The followings must be satisfied: 
 

1 1 1 1( 1) ( ) ( )k F k G u kξ ξ+ = +              (12) 
 

2 2 2 2( 1) ( ) ( )k F k G y kξ ξ+ = +                           (13) 
 

3 3 3 3( 1) ( ) ( ( ))k F k G f v kξ ξ+ = +             (14) 
 

4 4 4 4( 1) ( ) ( )mk F k G r kξ ξ+ = +              (15) 
 
where, |zI - Fi| = |Q (z)|, (i = 1, 2, 3, 4). u (k) of (10) is 
obtained from e (k) = 0. Model following control 
system can be realized if system internal states are 
bounded. 
 
Boundness of internal states: In this study, γ = 1. 
System inputs are reference input signal rm (k) and 
disturbances d (k), d0 (k) which are all assumed to be 
bounded. The bounded can be easily proved if there is 
no nonlinear part f (v (k)). But if f (v (k)) exists, the 
bounded has relation with it. 

First, the overall system can represent by state 
space in below: 

 

( 1)z k +  

2 1 2 3

1 2 1 1 1 1 2 1 3

2 2

3

( )
0 0

0 0 0

A BJ C BH BH BH

G J C F G H G H G H
z k

G C F

F

− − − − 
 − − − − =
 
 
   

 
34

1 31 4
4

3

( ) ( ( ))
00

0

fB BJBH

G JG H
k f v k

G

ξ

−  
   −  + +
  
  

   

  

4 2 0

1 4 1 2 0

2 0

( ) ( )
( )

( )
0 ( )
0 0

m

BJ d k BJ d k

G J G J d k
r k

G d k

−   
   −   + +
   
   
                          (16) 

 

0( ) ( ) ( )y k Cx k d k= +              (17) 
 

where, 
1 2 3( ) ( ( ), ( ), ( ), ( ))T T T T Tz k x k k k kξ ξ ξ= . 4( )kξ  is 

bounded. Here, necessary part about boundness is 
considered. System can be simplified as follows: 

 
( 1) ( ) ( ( )) ( )s s sz k A z k B f v k d k+ = + +             (18) 

 
( ) ( )sv k C z k=                 (19) 

 
The contents of As, Bs, Cs, ds (k) are shown clearly 

in (16) and (17). In order to obtain desired conclusion, 
it is sufficient to prove that z (k) is bounded. 

Then, we prove that As is stable. As and its 
characteristic polynomial is calculated as follows: 

 
2 1 2 3

1 2 1 1 1 1 2 1 3

2 2

3

0 0
0 0 0

s

A BJ C BH BH BH

G J C F G H G H G H
A

G C F

F

− − − − 
 − − − − =
 
 
      (20) 

 
2| ( ) | ( ) ( ) ( )l l

s s m
zI A Q z V z T z D z− =              (21) 

 
where, Vs (z)  is   the   zeros   polynomial  of C [zI - A]-1 

B = W (z)-1 
U (z), that is ( )sV z =  | ( ) | / | |rU z N . As |Q 

(z)|, Vs (z), T (z), Dm (z) are all stable polynomials. 
Therefore, As is a stable system matrix.  

In this case, � (�) and ( ( ))f v k  are scalars. To use 
regular transformation � (�) = T� ̅(k), (18) and (19) can 
be transformed to Kalman canonical form: 

 

11 12 13 14

22 24

33 34

44

0 0
( 1) ( )

0 0
0 0 0

A A A A

A A
z k z k

A A

A

 
 
 + =
 
 
   

 

1 1

2 2

3

4

( )
( )

( ( ))
0 ( )
0 ( )

s

s

s

s

B d k

B d k
f v k

d k

d k

  
  
  + +
  
  
                                         (22) 

 

2 4( ) 0 0 ( )v k C C z k =                (23) 
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where, 
1 2 3 4( ) [ ( ), ( ), ( ), ( )]T T T T Tz k z k z k z k z k= .  

Since
sA is stable matrix, then ( 1, 2,3, 4)iiA i =  also 

are stable. Obviously, 
3 4( ), ( )z k z k  are bounded. 2 ( )z k  

can be rewritten as follows: 
 

2 22 2 2 2( 1) ( ) ( ( )) ( )z k A z k B f v k d k+ = + +              (24) 
 

2 2( ) ( ) ( )vv k C z k d k= +              (25) 
 
where, 

2 ( ), ( )vd k d k  are bounded. Subsequently, the 

transfer function from f (v (k)) to v (k) can be calculated 
as:  
 

1
2 22 2( ) [ ]H z C zI A B−= −                   (26) 

 
It can be also calculated in terms of original system 

parameter: 
 

1 1( ) [ ] [ ]f f fH z C zI A B C zI A B− −= − − −  
1 1[ [ ] ] [ ] fC zI A B C zI A B− −⋅ − −             (27) 

 
Thus, v (k) can be rewritten as follows: 
 

( ) ( ) ( ( )) ( )vv k H z f v k d k= +               (28) 

 
where dv (k) is bounded. Let �� (k) = v (k) - dv (k), we can 
get ��(��(�)) = f (v (k)) = f (�� (k)) + dv (k): 
 

ˆ( )
( ) ˆ ˆ( ( ))

v k
H z

f v k
=  

1 2
1 2 1

1
2 1

n n

n n

n n

n

g z g z g z g

z h z h z h

′ ′− −
′ ′−

′ ′−
′

+ + + +
=

+ + + +
L

L

            (29) 

 
The state space observable canonical form of (29) 

can be written as following: 
 

1 1

2 2

0 0
1 0 ˆ ˆˆ ˆ( 1) ( ) ( ( ))

0
0 1 n n

h g

h g
z k z k f v k

h g′ ′

−   
   −   + = +
   
   

−   

L

O

O M M

  

 
ˆˆ ˆˆ( ) ( ( ))Az k g f v k= +                            (30) 

 
ˆˆ ˆ ˆ ˆ( ) [0, , 0,1] ( ) ( ) ( )

n
v k z k Cz k z k′= = =L              (31) 

Consider system (30), (31), assume that ˆ ˆ( ( ))f v k  
satisfies the constraint as below: 
 

ˆ ˆ ˆ| ( ( )) | | ( ( )) | , 0, 0f v k v k M Mβ β≤ + ≥ >           (32) 
 

If the 
1

( | | | |) 1
n

i i

i

S g hβ µ
′

=

≤ + ≤ <∑ , then �̂ (k) is bounded. 

 
Lemma: Consider system (30) and (31); assume that 
ˆ ˆ( ( ))f v k  satisfies the constraint as below (32). 

If the any one following conditions holds, then �̂ 
(k) is bounded: 
 
Define: [ ]ij n nD def d ′ ′×=  
 

ˆ| |,1 , 1
ˆ| | | |, 1,2, ,

ij

ij

in i

a i j n
d

a g i nβ′

′≤ ≤ −
=  ′+ = L             (33) 

 
E I D= −                 (34) 

 
The matrix E is an M-matrix. 

( ) 1Dρ < , where ( )Dρ  is spectrum radius of D. 
 
Proof: Define [·]abs is a operator which take absolute of 
elements of vector or matrix. Construct Lyapnov 
function as following: 

 

1

ˆ ˆ( ) | ( ) |) [ ( )]
n

T

i i abs

i

V k r z k r z k
′

=

= =∑
                     (35) 

 
where  γi>0 (I = 1, 2, …., n). The difference of ( )V k  
along the trajectories of the system (30) and (31) is 
given by: 
 

ˆ( ) [ ( 1)] ( )T

abs
V k r z k V k∆ = + −  

ˆˆ ˆˆ ˆ{[ ( )] [ ( ( ))] [ ( )] }T

abs abs absr Az k gf v k z k= + −  
ˆ ˆ ˆ{[ ( )] [ ( )]T

abs n absr Az k gz kβ ′≤ +  

ˆ[ ] [ ( )] }a bs ab sM g z k+ −  

ˆ( )[ ( )]T

abs rr D I z k M≤ − +  

ˆ[ ( )]T

abs r
r E z k M= − +              (36) 

 
where, M  and 

rM  are positive constants. Because E  is 

M-matrix, there are vectors 
1 2[ , , , ]T

n
r r r r ′= L  and 

1 2[ , , , ], 0, ( 1, 2, , )T

n iq q q q q i n′ ′= > =L L  and satisfy: 
 

T Tr E q=                (37) 
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Fig. 1: Responses of the discrete-time system  
 
Hence, following conclusion can be obtained: 
 

ˆ( ) [ ( )]T

abs r
V k q z k M∆ ≤ − +  

 ( )
m r
V k Mµ≤ − +               (38) 

 
where, 0<µm<1, Mr>0. It is similar to (36) to prove that 
V (k) is bounded. Hence, ˆ( )z k  is bounded. 
From E = I - D, λ (E) = I - λ (D), λ (E) >0 Base on 
above lemma, the theorem can be described as 
following. 
 
Theorem: Consider the system: 
 

( 1) ( ) ( ( )) ( )z k Az k Bf v k d k+ = + +                    (39) 
 

0( ) ( ) ( )v k Cz k d k= +                (40) 

 
where, z (k) �R

n, v (k) �R, ( ( ))f v k R∈ , d (k) �R
n, d0 (k) 

� R2. A is a stable system matrix and disturbance of d 

(k) and d0 (k) are bounded. The nonlinear function f (v 

(k)) satisfies the following constraint: 
 

‖�(�(�))‖ ≤ � + �‖�(�)‖�   
 
where, 0, 0α β≥ ≥ . 

If the any one following conditions holds, then z 

(k) and v (k) are bounded. 
 
An illustrative example: An example is given as 
follows: 
 

0 1 0
( 1) ( ) ( )

0.2 1.5 1
x k x k u k

   
+ = +   −     

 
1 1

([1.5 0] ( )) ( )
0 1

f x k d k
   

+ +   
   

 

[ ] 0( ) 0.3 1 ( ) ( )y k x k d k= +  
 
Reference model is given as follows: 
 

0 1 0
( 1) ( ) ( )

0.15 0.8 1m m m
x k x k r k

   
+ = +   − −   

 

 
[ ]( ) 1 0 ( )m my k x k=  

 
The responses of system are shown in Fig. 1. It can 

be concluded that output signal follows the reference 
even though disturbance existed in system. 
 
 

CONCLUSION 

 

We have presented model following control for 
nonlinear discrete system with boring chatter time 
delay. The illustrative example and the simulation 
results show the benefits of this proposed design 
methods. Topics of future include: the discrete control 
system for the time-delays and the predictive control of 
the nonlinear discrete system with boring chatter will be 
discussed. 
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