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Abstract: Most second-order Ordinary Differential Equations (ODES) arising in realistic applications such as 
applied mathematics, physics, metrology and engineering. All of these disciplines are concerned with the properties 
of differential equations of various types. ODES cannot be solved exactly. For these problems one does a qualitative 
analysis to get a rough idea of the behavior of the solution. Then a numerical method is employed to get an accurate 
solution. In this way, one can verify the answer obtained from the numerical method by comparing it to the answer 
obtained from qualitative analysis. In a few fortunate cases a second-order ode can be solved exactly. Because of the 
big efforts needed to solve second order linear ODES, some MATLAB methods were investigated, the result of 
these methods were studied and some judgment were done regarding the results accuracy and implementation time. 
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INTRODUCTION 

 
Many physical phenomena and processes are 

modeled by second order ODE's such as Mechanical 

Systems/Vibrations (springs, pendulums, etc.), 

Electrical Circuits and One Dimensional Motion 

(Bryant et al., 2008a, b; Fels and Olver, 1997). 

Most second-order ODES arising in realistic 

applications cannot be solved exactly. For these 

problems one does a qualitative analysis to get a 

rough idea of the behavior of the solution (Kruglikov, 

2008). Then a numerical method is employed to get an 

accurate solution. In this way, one can verify the 

answer obtained from the numerical method by 

comparing it to the answer obtained from qualitative 

analysis. In a few fortunate cases a second-order ode 

can be solved exactly. So it is important to minimize 

the efforts needed to get the exact solution of second 

order ODE and to minimize the time needed to solve 

such equations. 
The general second-order linear differential 

equation with independent variable � and dependent 
variable � = � (�) is given by Eq. (1): 
 

�¨ + p (�) �˙ + � (�) � = � (�)                                (1) 
 
where,  we  have  used  the  standard physics notation 
�˙ = ��/�� and �¨ = �2�/��2. 

A  unique  solution of (1) requires initial values 
(�0) = �0 and �˙ (�0) = �0. 

The equation with constant coefficients-on which 
we will devote considerable effort-assumes that p (�) 
and � (�) are constants, independent of time. The 
second-order linear ode is said to be homogeneous if � 

(�) = 0 (Kruglikov and Lychagin, 2006a; Nurowski and 
Sparling, 2003; Yumaguzhin, 2008). 

Second order ODE is considered to linear 
homogeneous (Hsu and Kamran, 1989; Ibragimov and 
Magri, 2004; Kruglikov, 2008) if the right hand side 
equal zero and inhomogeneous if not. 

In practical life we can deal with different types 
(Kruglikov and Lychagin, 2006b, 2008) of second order 
linear equations depending on the roots of the 
characteristic equation which represent the differential 
equation and these roots may be: 
 

• Real, distinct roots 

• Complex conjugate, distinct roots 

• Repeated roots 
 

Table 1 shows some examples of these types and 
these equations will be analyzed and implemented later 
in the experimental part of this study. 
 

METHODS AND TOOLS 
 

The methods which were used in this study are 
different MATLAB functions used to solve second 
order linear ODES and SIMULINK models. 

The following code was implemented several times 
using various types of ODES and SIMULINK models: 
 

Close all 
Clear 
tic, Solution_dsolve = dsolve ('3*D2y + 3*Dy + 
9*y - 15*t', 'y (0) = 3', 'Dy (0) + 2 = 0'); toc 
display ('Symbolic MATH dsolve function output 
is: ') 
disp (Solution_dsolve) 
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Table 1: Examples of second order linear ODE  

Equation No. Roots Example 

1 Real, distinct roots homogeneous �¨ + 5�˙ + 6� = 0 with � (0) = 2, �˙ (0) = 3 
2 Real, distinct roots inhomogeneous �¨ + 5�˙ + 6� = 15t with � (0) = 2, �˙ (0) = 3 
3 Real, distinct roots inhomogeneous �¨ + 5�˙ + 6� = 3 exp (4t) with � (0) = 2, �˙ (0) = 3 
4 Complex conjugate, distinct roots homogeneous �¨ + � = 0 with � (0) = 1 and �˙ (0) = -2 
5 Complex conjugate, distinct roots inhomogeneous �¨ + � = 15t with � (0) = 1 and �˙ (0) = -2 
6 Complex conjugate, distinct roots inhomogeneous �¨ + � = 3 exp (4t) with � (0) = 1 and �˙ (0) = -2 
7 Repeated roots homogeneous �¨ - 3�˙ - 4� = 0 with � (0) = 1 and �˙ (0) = 0 
8 Repeated roots inhomogeneous �¨ - 3�˙ - 4� = 2t. � (0) = 1, �˙ (0) = 0 
9 Repeated roots inhomogeneous �¨ - 3�˙ - 4� = 3�2� with � (0) = 1 and �˙ (0) = 0 

 

 
 
Fig. 1: SIMULINK model second order ODE 

 
figure; 
subplot (211) 
ezplot (Solution_dsolve) 
title ('Solution found with DSOLVE '); grid  
syms t s Y 
ODE2nd = '3*D (D (y)) (t) + 3*D (y) (t) + 9*y (t) -
15*t'; 
lt_A = laplace (ODE2nd, t, s); 
lt_A = subs (lt_A, {'laplace (y(t), t, s)', 'y (0)', 'D 
(y) (0)'},{Y, 3, -2}); 
Y = solve (lt_A, Y); 
display ('Laplace Transforms of the given 2

nd
 Order 

ODE with ICs') 
disp (Y) 
tic, Solution_Laplace = ilaplace (Y); toc 
display ('Solution found using Laplace 
Transforms') 
disp (Solution_Laplace) 
subplot (212) 
ezplot (Solution_Laplace); grid 
title ('Solution found with Laplace Transforms') 
hold off 
t = 0: pi/100: 6*pi; 
SDsol = eval (vectorize (Solution_dsolve)); 
LTsol = eval (vectorize (Solution_Laplace)); 
figure; 
plot (t, SDsol, 'bx-'); grid 
hold on; xlabel ('t'); ylabel ('solution values') 
plot (t, LTsol, 'ro-'); 
ICs = [3, -2]; 
time SPAN = 0: pi/100: 6*pi; 
options_ODE = odeset ('RelTol', 1e-6, 'AbsTol', 
1e-8); 
tic, [t, y_ODE45] = ode 45 (@compare ODEsols, 
time SPAN, ICs, options_ODE); toc 

plot (t, y_ODE45 (:,1), 'm+-'); 
tic, [t, y_ODE113] = ode113 (@compare OD 
Esols, time SPAN, ICs, options_ODE); toc 
plot (t, y_ODE113(:,1), 'k<-'); 
title ('Comparison analysis of ODE sols with 
ODE45, ODE23, dsolve, Laplace Transforms  and 
SIMULINK') 
sim ('ODEsols_COMPARE.mdl'); 

tic, SIM_sols = ODEsols_SIM.signals. values; time 

= tout; toc 

plot (time, SIM_sols, 'cd-');  

legend ('dsolve', 'Laplace 

Transforms', 'ODE45', 'ODE113', 'SIMULINK', 0) 

hold off 

function dydt = compareODEsols (t, y) 

% this is a 2
nd
 order ODE IVP example 

% 3*y''+ 3*y' + 9*y = 15*t with ICs: y (0) = 3, y' 

(0) = -2; 

dydt = [y (2); - (y (2) + 3*y (1)) + 5*t ]; 

return 

 

This program was used to solve the following ODE: 

 

3*D2y + 3*Dy + 9*y = 15*t, 'y 

(0) = 3', 'Dy (0) = -2')                                           (2) 

 

The following SIMULINK model was built for this 

equation (Fig. 1) and implanted by the previous 

program. 

All the methods used in the previous code show the 

same results as shown in Fig. 2, which means that the 

solutions were accurate and meat the real analytical and 

numerical solution. 
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Fig. 2: Different methods implementation results 
 

 
 
Fig. 3: Experiment 1 result matching 

 

 
 

Fig. 4: Experiment 2 result matching 
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Fig. 5: Comparisons between dsolve and other method 

 
Experimental part: MATLAB provides us with 

different methods of solving second order linear ODES 

such as: dsolve, Laplace transforms, ODE 45, ODE 113 

and SIMULINK. 

But which method to use better? All of them give 

accurate results as shown in Fig. 2, but which is the 

fastest method? 

Table 2 show the time needed to solve Eq. (2) by 

each of the above mentioned methods. 

The following experiments were performed: 

 

Experiment 1: The following inhomogeneous ODE 

was solved:  

 

 
 

And below are the implementation results. 

Figure 3 shows the matching between the 2 results. 

 

Time for dsolve =  

Elapsed time is 0.047000 sec 

Symbolic MATH dsolve function output is: 

1/10*cos (t) + 3/10*sin (t) + 1/20*exp (3*t)  

-2/5exp (-2*t) + 9/4*exp (-t) 

Laplace Transforms of the given 2
nd
 order ODE 

with ICs 

(2*S^4 - 11*s^2 - s^3 - 4*s - 14) / 

(s-3) / (s^2 + 1) / (3*s + 2 + s^2) 

Time for Laplace =   

Elapsed time is 0.015000 sec  

Solution found using Laplace transforms 

1/10*cos (t) + 3/10*sin (t) + 1/20*exp (3*t) - 

2/5*exp (-2*t) + 9/4*exp (-t)   

 

Experiment 2: The following inhomogeneous ODE 

was solved:  

Table 2: Time to solve Eq. (2) 

Method Execution time in sec 

Dsolve  0.0610 

Laplace 0.0305 

ODE45 0.0530 

ODE113 0.0400 

SIMULINK 0.0001 

 

 
 

And below are the implementation results. 

Figure 4 shows the matching between the 2 results. 

 

Time for dsolve = Elapsed time is 0.031000 sec 

 

Time for laplace = Elapsed time is 0.016000 sec 

 

Experiment 3: The previous code was implemented 

using various ODES such as mentioned in Table 1, 20  

examples of each type of ODE were taken and 

implemented, 20 SIMULINK models were built for 

each type of ODE and Table 3 summarizes the results 

of this experiment focusing on the executions time.  

 

RESULTS AND DISCUSSION 

 

The above mentioned methods are very accurate in 

solving  second order linear ODES as was shown in 

Fig. 2 to 4. 

From the results in Table 3 we can say that the best 

method (with minimum implementation time) is 

SIMULINK modeling, but it needs more efforts in 

building the desired model (in experiment 3 it took 900 

min to build and run 180 models).  

Among the programming method the best one is 

Laplace transforms and the worst method is dsolve 

method. 
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Table 3: Summary results of experiment 3 (# of examples = 20)  

ODE with  

Avg. implementation time in sec 

---------------------------------------------------------------------- Avg. SIMULINK models 

execution time in sec Dsolve Laplace ODE45 ODE113 

Real, distinct roots homogeneous 0.053 0.0270 0.0461 0.0347 0.00019 

Real, distinct roots inhomogeneous 0.095 0.0478 0.0827 0.0625 0.00015 

Real, distinct roots inhomogeneous 0.710 0.3370 0.6170 0.4703    0.02304 
Complex conjugate, distinct roots homogeneous 0.053 0.0260 0.0462 0.0348 0.00013 

Complex conjugate, distinct roots inhomogeneous 0.054 0.0270 0.0464 0.0347 0.00016 

Complex conjugate, distinct roots inhomogeneous 0.055 0.0270 0.0465 0.0348 0.00016 
Repeated roots homogeneous 0.116 0.0560 0.1008 0.0762 0.00362 

Repeated roots inhomogeneous 0.120 0.0620 0.1043 0.0790 0.00428 

Repeated roots inhomogeneous 0.382 0.2000 0.3321 0.2540 0.01206 

Avg.: Average 

 
Figure 5 shows the comparisons between dsolve 

method and other methods. 
  

CONCLUSION 
 

From the results obtained previously we can 
conclude the following: 
 

• The best performance can be achieved using 
SIMULINK models, but extra efforts are needed to 
build the model. 

• Among the programming methods the best 
performance can be achieved using Laplace 
transforms and the worst performance can be 
achieved by dsolve method. 

• Comparing with dsolve method Laplace method 
has a speedup of 2 times, ODE 113 has a speedup 
of 1.525 times and ODE 45 has a speedup of 1.15 
times. 
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