
Research Journal of Applied Sciences, Engineering and Technology 7(13): 2634-2638, 2014

DOI:10.19026/rjaset.7.579

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: June 17, 2013 Accepted: July 03, 2013 Published: April 05, 2014

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).
2634

Research Article
Evaluation of MATLAB Methods used to Solve Second Order Linear ODE

Yasin Al-Hasan
Albalqa Applied University, Amman, Jordan, Tel.: 00962777481434

Abstract: Most second-order Ordinary Differential Equations (ODES) arising in realistic applications such as
applied mathematics, physics, metrology and engineering. All of these disciplines are concerned with the properties
of differential equations of various types. ODES cannot be solved exactly. For these problems one does a qualitative
analysis to get a rough idea of the behavior of the solution. Then a numerical method is employed to get an accurate
solution. In this way, one can verify the answer obtained from the numerical method by comparing it to the answer
obtained from qualitative analysis. In a few fortunate cases a second-order ode can be solved exactly. Because of the
big efforts needed to solve second order linear ODES, some MATLAB methods were investigated, the result of
these methods were studied and some judgment were done regarding the results accuracy and implementation time.

Keywords: Homogenous, inhomogeneous, MATLAB method, modeling, ODES

INTRODUCTION

Many physical phenomena and processes are

modeled by second order ODE's such as Mechanical

Systems/Vibrations (springs, pendulums, etc.),

Electrical Circuits and One Dimensional Motion

(Bryant et al., 2008a, b; Fels and Olver, 1997).

Most second-order ODES arising in realistic

applications cannot be solved exactly. For these

problems one does a qualitative analysis to get a

rough idea of the behavior of the solution (Kruglikov,

2008). Then a numerical method is employed to get an

accurate solution. In this way, one can verify the

answer obtained from the numerical method by

comparing it to the answer obtained from qualitative

analysis. In a few fortunate cases a second-order ode

can be solved exactly. So it is important to minimize

the efforts needed to get the exact solution of second

order ODE and to minimize the time needed to solve

such equations.
The general second-order linear differential

equation with independent variable � and dependent
variable � = � (�) is given by Eq. (1):

�¨ + p (�) �˙ + � (�) � = � (�) (1)

where, we have used the standard physics notation
�˙ = ��/�� and �¨ = �2�/��2.

A unique solution of (1) requires initial values
(�0) = �0 and �˙ (�0) = �0.

The equation with constant coefficients-on which
we will devote considerable effort-assumes that p (�)
and � (�) are constants, independent of time. The
second-order linear ode is said to be homogeneous if �

(�) = 0 (Kruglikov and Lychagin, 2006a; Nurowski and
Sparling, 2003; Yumaguzhin, 2008).

Second order ODE is considered to linear
homogeneous (Hsu and Kamran, 1989; Ibragimov and
Magri, 2004; Kruglikov, 2008) if the right hand side
equal zero and inhomogeneous if not.

In practical life we can deal with different types
(Kruglikov and Lychagin, 2006b, 2008) of second order
linear equations depending on the roots of the
characteristic equation which represent the differential
equation and these roots may be:

• Real, distinct roots

• Complex conjugate, distinct roots

• Repeated roots

Table 1 shows some examples of these types and
these equations will be analyzed and implemented later
in the experimental part of this study.

METHODS AND TOOLS

The methods which were used in this study are
different MATLAB functions used to solve second
order linear ODES and SIMULINK models.

The following code was implemented several times
using various types of ODES and SIMULINK models:

Close all
Clear
tic, Solution_dsolve = dsolve ('3*D2y + 3*Dy +
9*y - 15*t', 'y (0) = 3', 'Dy (0) + 2 = 0'); toc
display ('Symbolic MATH dsolve function output
is: ')
disp (Solution_dsolve)

Res. J. App. Sci. Eng. Technol., 7(13): 2634-2638, 2014

2635

Table 1: Examples of second order linear ODE

Equation No. Roots Example

1 Real, distinct roots homogeneous �¨ + 5�˙ + 6� = 0 with � (0) = 2, �˙ (0) = 3
2 Real, distinct roots inhomogeneous �¨ + 5�˙ + 6� = 15t with � (0) = 2, �˙ (0) = 3
3 Real, distinct roots inhomogeneous �¨ + 5�˙ + 6� = 3 exp (4t) with � (0) = 2, �˙ (0) = 3
4 Complex conjugate, distinct roots homogeneous �¨ + � = 0 with � (0) = 1 and �˙ (0) = -2
5 Complex conjugate, distinct roots inhomogeneous �¨ + � = 15t with � (0) = 1 and �˙ (0) = -2
6 Complex conjugate, distinct roots inhomogeneous �¨ + � = 3 exp (4t) with � (0) = 1 and �˙ (0) = -2
7 Repeated roots homogeneous �¨ - 3�˙ - 4� = 0 with � (0) = 1 and �˙ (0) = 0
8 Repeated roots inhomogeneous �¨ - 3�˙ - 4� = 2t. � (0) = 1, �˙ (0) = 0
9 Repeated roots inhomogeneous �¨ - 3�˙ - 4� = 3�2� with � (0) = 1 and �˙ (0) = 0

Fig. 1: SIMULINK model second order ODE

figure;
subplot (211)
ezplot (Solution_dsolve)
title ('Solution found with DSOLVE '); grid
syms t s Y
ODE2nd = '3*D (D (y)) (t) + 3*D (y) (t) + 9*y (t) -
15*t';
lt_A = laplace (ODE2nd, t, s);
lt_A = subs (lt_A, {'laplace (y(t), t, s)', 'y (0)', 'D
(y) (0)'},{Y, 3, -2});
Y = solve (lt_A, Y);
display ('Laplace Transforms of the given 2

nd
 Order

ODE with ICs')
disp (Y)
tic, Solution_Laplace = ilaplace (Y); toc
display ('Solution found using Laplace
Transforms')
disp (Solution_Laplace)
subplot (212)
ezplot (Solution_Laplace); grid
title ('Solution found with Laplace Transforms')
hold off
t = 0: pi/100: 6*pi;
SDsol = eval (vectorize (Solution_dsolve));
LTsol = eval (vectorize (Solution_Laplace));
figure;
plot (t, SDsol, 'bx-'); grid
hold on; xlabel ('t'); ylabel ('solution values')
plot (t, LTsol, 'ro-');
ICs = [3, -2];
time SPAN = 0: pi/100: 6*pi;
options_ODE = odeset ('RelTol', 1e-6, 'AbsTol',
1e-8);
tic, [t, y_ODE45] = ode 45 (@compare ODEsols,
time SPAN, ICs, options_ODE); toc

plot (t, y_ODE45 (:,1), 'm+-');
tic, [t, y_ODE113] = ode113 (@compare OD
Esols, time SPAN, ICs, options_ODE); toc
plot (t, y_ODE113(:,1), 'k<-');
title ('Comparison analysis of ODE sols with
ODE45, ODE23, dsolve, Laplace Transforms and
SIMULINK')
sim ('ODEsols_COMPARE.mdl');

tic, SIM_sols = ODEsols_SIM.signals. values; time

= tout; toc

plot (time, SIM_sols, 'cd-');

legend ('dsolve', 'Laplace

Transforms', 'ODE45', 'ODE113', 'SIMULINK', 0)

hold off

function dydt = compareODEsols (t, y)

% this is a 2
nd
 order ODE IVP example

% 3*y''+ 3*y' + 9*y = 15*t with ICs: y (0) = 3, y'

(0) = -2;

dydt = [y (2); - (y (2) + 3*y (1)) + 5*t];

return

This program was used to solve the following ODE:

3*D2y + 3*Dy + 9*y = 15*t, 'y

(0) = 3', 'Dy (0) = -2') (2)

The following SIMULINK model was built for this

equation (Fig. 1) and implanted by the previous

program.

All the methods used in the previous code show the

same results as shown in Fig. 2, which means that the

solutions were accurate and meat the real analytical and

numerical solution.

Res. J. App. Sci. Eng. Technol., 7(13): 2634-2638, 2014

2636

Fig. 2: Different methods implementation results

Fig. 3: Experiment 1 result matching

Fig. 4: Experiment 2 result matching

Res. J. App. Sci. Eng. Technol., 7(13): 2634-2638, 2014

2637

Fig. 5: Comparisons between dsolve and other method

Experimental part: MATLAB provides us with

different methods of solving second order linear ODES

such as: dsolve, Laplace transforms, ODE 45, ODE 113

and SIMULINK.

But which method to use better? All of them give

accurate results as shown in Fig. 2, but which is the

fastest method?

Table 2 show the time needed to solve Eq. (2) by

each of the above mentioned methods.

The following experiments were performed:

Experiment 1: The following inhomogeneous ODE

was solved:

And below are the implementation results.

Figure 3 shows the matching between the 2 results.

Time for dsolve =

Elapsed time is 0.047000 sec

Symbolic MATH dsolve function output is:

1/10*cos (t) + 3/10*sin (t) + 1/20*exp (3*t)

-2/5exp (-2*t) + 9/4*exp (-t)

Laplace Transforms of the given 2
nd
 order ODE

with ICs

(2*S^4 - 11*s^2 - s^3 - 4*s - 14) /

(s-3) / (s^2 + 1) / (3*s + 2 + s^2)

Time for Laplace =

Elapsed time is 0.015000 sec

Solution found using Laplace transforms

1/10*cos (t) + 3/10*sin (t) + 1/20*exp (3*t) -

2/5*exp (-2*t) + 9/4*exp (-t)

Experiment 2: The following inhomogeneous ODE

was solved:

Table 2: Time to solve Eq. (2)

Method Execution time in sec

Dsolve 0.0610

Laplace 0.0305

ODE45 0.0530

ODE113 0.0400

SIMULINK 0.0001

And below are the implementation results.

Figure 4 shows the matching between the 2 results.

Time for dsolve = Elapsed time is 0.031000 sec

Time for laplace = Elapsed time is 0.016000 sec

Experiment 3: The previous code was implemented

using various ODES such as mentioned in Table 1, 20

examples of each type of ODE were taken and

implemented, 20 SIMULINK models were built for

each type of ODE and Table 3 summarizes the results

of this experiment focusing on the executions time.

RESULTS AND DISCUSSION

The above mentioned methods are very accurate in

solving second order linear ODES as was shown in

Fig. 2 to 4.

From the results in Table 3 we can say that the best

method (with minimum implementation time) is

SIMULINK modeling, but it needs more efforts in

building the desired model (in experiment 3 it took 900

min to build and run 180 models).

Among the programming method the best one is

Laplace transforms and the worst method is dsolve

method.

Res. J. App. Sci. Eng. Technol., 7(13): 2634-2638, 2014

2638

Table 3: Summary results of experiment 3 (# of examples = 20)

ODE with

Avg. implementation time in sec

-- Avg. SIMULINK models

execution time in sec Dsolve Laplace ODE45 ODE113

Real, distinct roots homogeneous 0.053 0.0270 0.0461 0.0347 0.00019

Real, distinct roots inhomogeneous 0.095 0.0478 0.0827 0.0625 0.00015

Real, distinct roots inhomogeneous 0.710 0.3370 0.6170 0.4703 0.02304
Complex conjugate, distinct roots homogeneous 0.053 0.0260 0.0462 0.0348 0.00013

Complex conjugate, distinct roots inhomogeneous 0.054 0.0270 0.0464 0.0347 0.00016

Complex conjugate, distinct roots inhomogeneous 0.055 0.0270 0.0465 0.0348 0.00016
Repeated roots homogeneous 0.116 0.0560 0.1008 0.0762 0.00362

Repeated roots inhomogeneous 0.120 0.0620 0.1043 0.0790 0.00428

Repeated roots inhomogeneous 0.382 0.2000 0.3321 0.2540 0.01206

Avg.: Average

Figure 5 shows the comparisons between dsolve

method and other methods.

CONCLUSION

From the results obtained previously we can
conclude the following:

• The best performance can be achieved using
SIMULINK models, but extra efforts are needed to
build the model.

• Among the programming methods the best
performance can be achieved using Laplace
transforms and the worst performance can be
achieved by dsolve method.

• Comparing with dsolve method Laplace method
has a speedup of 2 times, ODE 113 has a speedup
of 1.525 times and ODE 45 has a speedup of 1.15
times.

REFERENCES

Bryant, R., M. Dunajski and M. Eastwood, 2008a.

Metris Ability of Two-Dimensional Pro-Ejective
Structures. arXiv: math/0801.0300 (2008).

Bryant, R., G. Manno and V.S. Matveev, 2008b. A

solution of a problem of Sophism Lie: Normal

forms of two-dimensional metrics admitting two

projective vectored. Math Ann., 340(2): 437-463.

Fels, M. and P. Olver, 1997. On relative invariants.

Math Ann., 308(4): 701-732.

Hsu, L. and N. Kamran, 1989. Classification of second-

order ordinary differential equations admitting Lie

groups of-bre-preserving point symmetries. Proc.

London. Math Soc., 58(2): 387-416.

Ibragimov, N. and F. Magri, 2004. Geometric proof of

lie's linearization theorem. Non-linear Dyna., 36:

41-46.

Kruglikov, B., 2008. Invariant characterization of

Liouville metrics and polynomial integrals.

J. Geomet. Phys., 58(8): 979-995.

Kruglikov, B.S. and V.V. Lychagin, 2008. Geometry of

Diferential Equations. In: D. Krupka and

D. Saunders, (Eds.), Handbook of Global Analysis,

Elsevier, pp: 725-772.

Kruglikov, B.S. and V.V. Lychagin, 2006a. Invariants

of pseudo group actions: Homolog-ical methods

and Finiteness theorem. Int. J. Geomet. Meth Mod.

Phys., 3(5-6): 1131-1165.

Kruglikov, B.S. and V.V. Lychagin, 2006b.

Compatibility, multi-brackets and inte-grability of

systems of PDEs. Report number: Preprint of

Tromso University no. 2006-49 ArXive:

math.DG/0610930.

Nurowski, P. and G.A. Sparling, 2003. Three-

dimensional Cauchy-Riemann structures and

second-order ordinary di®erential equations.

Classical Quantum Gravit., 20(23): 4995-5016.

Yumaguzhin, V., 2008. Di®erential invariants of

2{order ODEs, I, arXiv: math.DG/0804.0674 v1.

