
Research Journal of Applied Sciences, Engineering and Technology 7(13): 2724-2728, 2014

DOI:10.19026/rjaset.7.592

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: September 09, 2013 Accepted: October 03, 2013 Published: April 05, 2014

Corresponding Author: Ahmad A. Al-Rababah, Department of Computer Science and Software Engineering, Ha’il University,

KSA
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2724

Research Article
A New Model for Software Engineering Systems Quality Improvement

Ahmad A. Al-Rababah, Taghreed AlTamimi and Najat Shalash
Department of Computer Science and Software Engineering, Ha’il University, KSA

Abstract: In the continuing effort to improve the system analysis and design process, several different approaches
have been developed. This study will propose a new process methodology solves some problems in traditional
system development methodologies it will study the strength and limitation of existing system development
methodologies from traditional waterfall to iterative model including (Prototyping, Spiral, Rapid Application
Development, XP and RUP) to Agility. Propose a new methodology focus on produce a high quality product and
suitable for all kind of project. Compare the new methodology with others to view some features that is
differentiating it from previous methodologies.

Keywords: Multimedia technology, quality improvement, software process model, software quality, software

systems

INTRODUCTION

No model is universally superior. But it is more

focus on solving some problems that exist in previous

model by proposing new methodology. Waterfall model

effect from obligation in consistencies and system

obligations “locked in” after being very resolute (can’t

change) and restricted the user engagement (Aranda

et al., 2007; Weinberg, 2008). On the other hand,

methodology leaps that by using visualize prototyping

which gives the user more involvement and this leads to

accurate and clear requirement and can be changed by

using feedback between communication and

prototyping (Janzen and Saiedian, 2005; Aggarwal and

Singh, 2005).

RAD methodology: Produces low quality software

whereas this methodology produces high quality

software because it concentrates in loath analysis and

design not only on design at express of detailed analysis

as in RAD (Aggarwal and Singh, 2005; Pressman,

2005; Thayer and Christensen, 2005).

Spiral methodology: There is no deadline and cycles

continue with no clear termination condition, whereas

this methodology has a milestone after each phase and

deadline and this will determine accurately the budget

and skills which is needed (Dan and Russ, 2008;

Wiegers, 2005). Also the spiral need high skilled

project manager whereas this new methodology needs

less experienced project team and project manager

(Gottesdiener, 2005; O’Connor et al., 2009).

Agile methodology: As mentioned, success of agile
depends on knowledgeable customers and that not an
easy task to find such persons especially for complex
system. Whereas this methodology doesn’t suppose
that, it deals with all kinds of customer and agile relies
on team work, as opposed to individual role assignment
that characterizes this methodology (Schulmeyer, 2008;
Pressman, 2005; Lewis, 2005).

RUP methodology: Rup does not state clearly how to
deal with non functional requirement whereas this
methodology states clearly functioned and non
functional requirement (James, 2009; Abrahamson and
Baddoo, 2007; Karl, 2005).

MATERIALS AND METHODS

A new proposed model: As the prior section has

shown, each system development methodologies from

linear waterfall to agility methods have strength and

weakness (Pressman, 2005; Pine et al., 2008). As a

result the situations project needs and constraints that

you have to work with, determine the best methodology

for the project. But it should keep in mind that there is

no methodology is universally superior (Chandraseha-

khar, 2005; Timothy and Laganière, 2005).
This new methodology has many different phases,

it starts with communication between technologist and
users, then visualize model which can be mentioned in
details anon, so as to start the analysis phase that will
take into consideration a discovery of new requirements
with its suitable refinements, in order to keep the
mandatory part which will be considered in the next

Res. J. App. Sci. Eng. Technol., 7(13): 2724-2728, 2014

2725

Fig. 1: The proposed model for system quality improvement

phase (design) (Fig. 1), followed by parallel code and

check for errors. The latest phase is a deployment (Karl,

2005).

Communication: During the most of the history of

software engineering requirements gathering has been

considered to be a relatively easy part of the process.

However, within the last decade close to, it's become

more and more recognized as being the foremost very

important a part of the method, as long as the failure to

properly determine necessities mixes it just about not

possible for the finished piece of computer code to

satisfy the wants of the consumer or be finished on

time.

This phase provides an overview of entire

requirements document. This document describes all

Data, functional and behavioral requirements for

software.

Goals and objectives: Overall goals and software

objectives are described by interviewing stakeholders

and users.

Statement of scope: A description of software is

presented major input, processing functionality and

outputs are described without regard to implementation

detail.

Software context: The software is placed in a business

or product line context, strategic issues relevant to

context are discussed. The intent is for the reader to

understand the big picture. Any business or product line

constraint that will impact the marver in which the

software is to be specified, designed, implemented or

tested are noted here.

Visualize prototype: In this methodology it suggests a

new type of prototype called visualized prototype

which is based on using the concept of multimedia.

According multimedia issue of several different

media to Wikipedia, encyclopedia. Convey information

by (text, audio, graphics, animation, video and

interactivity), “Multimedia technology has played an

important role in modern computing because it offers

more natural and user friendly interaction with an

automated system. This is particularly turn for systems

utilizing graphical, icon or window-based input output.

Multimedia technology also facilitates “reuse” more

naturally, since the basic component and functions of

presentation and animation can be reused for several

different animation scenario. The visual requirement

representation prototype enable the user to view

software requirement in addition reading textual

representation of the requirement also using up saves

development time and money by improving

communication and collaboration between customers

and software engineer.

 “As previous results were: improvement the

accuracy and quality of requirement gathering,

dramatically reduces project risks, improves developer

effectiveness and increases end user satisfaction for

delivered application. “Dr. Bony Boehm experiments

showed that prototyping reduces program size and

programmer effort by 40% and simplify software

design”. Fully 30 to 40% of system requirement will

change without prototyping demonstration to the

customer what is functionally feasible and stretches

their imagination, leading to more creative input and a

more forward looking system.

But in this methodology if the requirements are

clear, stable and will not change, there is no need for

prototyping, so the coordination rule will be transferred

directly from communication to analysis.

Analysis phase: Analysis modeling uses a combination

of test and diagrammatic form to depict requirements

for dates, function and behavior in a way that is

relatively easy to understand and more important

straight forward to review for correctness, completeness

and consistency. A software engineer (sometimes called

and analyst) builds the model using requirements

elicited from the customer. To the validate software

requirements, it needs to examine these requests from a

number of different point of view analysis modeling

represents requirements in multiple “dimension”,

thereby increasing the probability that errors will be

found, that inconsistency will surface and that

omissions will be uncovered.

Information, function and behavioral requirements

are modeled using a number of different diagrammatic

formats. Scenario-based modeling represents the system

from wer’s point of view. Flow-oriented modeling

Communication Prototype Analysis Design

Test

Code

Deployment

Res. J. App. Sci. Eng. Technol., 7(13): 2724-2728, 2014

2726

provides an indication of how data objects are

transformed by processing functions. Class-based

modeling defines objects, attributes and relations ships.

Behavioral modeling depicts the staffs of the system

and its classes and the impact of events on these states.

Once preliminary models are created, they are refined

and analyzed to assess their clarity, completeness and

consistency the final analysis model is then validated by

stakeholders.

A wide array of diagrammatic forms may be

chosen for the analysis model each of these

representations provides a view of one or more of the

model elements. Analysis modeling work products

must be viewed for correctness, completeness and

consistency, the must reflect the needs of all

stakeholders and establish a foundation from which

design can be conducted.

Design phase: Design is what virtually every engineer

wants to do. It is the place where creativity rules- where

customer requirements, business needs and technical

consideration all come together in the formulation of a

product or system.

Design creates a representation or model of the soft

ware, but unlike the analysis model (that focuses on

describing required data, function and behavior), the

design model provides detail about software date

structures, architecture, interfaces and components that

are necessary to implement the system. Software

engineers conduct each of the design tasks why is it

important. Design allows a software engineer to model

the system or product that is to be built. This model can

be assessed for quality and improved before code is

generated, tests are conducted and end-users become

involves in large numbers, Design is the place where

software quality is established.

Design steps: Design depicts the software in a number

of different ways. First, the architecture of the system

or product must be represented. Then, the interfaces

that connect the software to end-users, to other systems

and devices and to its own consistent components are

modeled. Finally the software components that are used

to construct the system are designed.

Each of these views represents a different design

action, but all must conform to a set of basic design

concepts that guide all software design work.

What is the work product? A design model that

encompasses architectural, interface, component-level

and deployment representation is the primary work

product that is produces during software design.

Implementing the design: The design model is

assessed by the software team in an effort to determine

whether it contains errors, inconsistencies, or missions;

whether better alternatives exist; and whether the model

can be implemented within the constraints schedule and

cost that have been established.

Parallel coding and quality testing: Coding is the

process whereby the physical design specification

created by the analysis team are turned into working

computer code by the programming team depending on

the size and complexity of the system, coding can be an

involved intensive activity.

As each program module is produced it can be

tested individually, then as part of the larger program

and then as apart to a larger system. The general idea is

that code is tested after it is written. If the code passes

the test, then it is integrated into the system. If it doesn't

pass, the code is reworked until it does pass.

Parallels helps to take small steps when writing

software, a practice that we’ve promoted for years-baby

steps are far more productive than headlong leaps. For

example, assume that add some new functional code,

compile and test it. It’s likely to be tests will be broken

by defects that exist in the new code. To find and fix

those defects, it’s much easier to hunt through two

instead of 2,000 new lines of code. The faster compiler

and regression test suite, the more attractive it is to

proceed in smaller and smaller steps. Generally it

prefers to add a few new lines of functional code,

typically fewer than 10, before recompile and rerun

tests.

RESULTS AND DISCUSSION

Deployment: The Deployment activity encompasses

three actions: delivery, support and feedback. There are

two type of coordination rule in this model:

First: Feedback from phase to another phase, which

means return back from design to analysis or from code

to design. The user community needs to be actively

involved throughout the project. And this involvement

may be a positive for the project, once victimization

this sort, communication and coordination skills take

center stage in project development and this what we

wish to realize, the requests for improvement once

every section cause a lot of qualities method, the

feedback will cause "scope creep", finding and fixing

software system downside once the delivery of system

is usually meet a hundred times dearer than finding and

fixing it throughout analysis and style.

Second: Recursive rule to the same phase, which

means that, involves repeated cycles of analysis, design

and test. Reanalysis redesign and recoded parallel with

retest until the system meets its usability goals and is

ready for release. The goal for the redesign, reanalysis

Res. J. App. Sci. Eng. Technol., 7(13): 2724-2728, 2014

2727

Fig. 2: Parallel coding and quality testing

and recode of any iteration is to be simple,
straightforward and modular. The iteration is based
upon user feedback, or error discovered or to achieve
better (structure, modularity, usability, reliability,
efficiency and achievement of goals). Design
modifications are created and new purposeful
capabilities are supplementary. Finding and fixing the
error through the same phase, more cheaply and better
than fixing them after leaving the phase to another
phase. It allows more involvement to user who is the
core of project. Reanalysis allows user validation prior
to design, so the design will be better.

Sometime the iterative on the same phase needed
any difficulty in design; coding and testing a
modification should signal the need for redesign or re-
coding. Modifications ought to match simply into
isolated and easy-to-find-modules. If they are doing
not, some plan is required. Modifications to tables
ought to be particularly simple to create. If any table
modification isn't quickly and simply done, plan is
indicated. Modifications ought to become easier to
create because the method progress. If they're not,
there's a basic downside like a style flaw or a
proliferation of patches therefore the plan is required.
Notice that, it's important to stay every development
iteration or feedback on the right track and practicality
might have to be born to stay development inside the
time box. Management plays a vital part in ensuring
everything is progressing according to schedule,
keeping the customer in involvement regarding changes
in the functionality and keeping the team motivate.
Implementation of quality ensures that the system must
be completed depending on agreed specifications, the
standard procedures and tasks without errors or
problems probabilities. The main advantages are
expected to get effectiveness services before production
and deployment should find fault before the application
and the impact on business. This minimizes disruptions;
reduce the cost of fixing defects and errors that will
lead to a qualified product Fig. 2.

CONCLUSION

This study introduced a new type of methodology

that treats some weakness in previous methodologies.

In this development methodology once coding has

begun, the testing can begin and proceed in parallel.

The prototype provided an analysis test bed and vehicle

to validated and evolve system requirement. At all

iterations on the same phase, the quality of software is

increased and that what will be achieved in this

methodology.

REFERENCES

Abrahamson, P. and N. Baddoo , 2007. Software

process model. Proceeding of 14th European

Conference. Euro SPI Potsdam, Germany.

Aggarwal, K.K. and Y. Singh, 2005. Software

Engineering. 2nd Edn., New Age International

Publishers, New Delhi.

Aranda, J., S. Easterbrook and G. Wilson, 2007.

Requirements in the wild: How small companies

do it. Proceeding of 15th IEEE International

Requirements Engineering Conference (RE 2007),

pp: 39-48.

Chandrasehakhar, K., 2005. Software Engineering &

Quality Assurance. BPB, 2005.

Dan, P. and M. Russ, 2008. Head First Software

Development. O'Reilly, Sebastopol, CA.

Gottesdiener, E., 2005. The Software Requirements

Memory Jogger: A Desktop Guide to Help

Software and Business Teams Develop and

Manage Requirements. GOAL/QPC, Salem, NH.

James, A.W., 2009. Exploratory Software Testing:

Tips, Tricks, Tours and Techniques to Guide Test

Design. Pearson Education Publisher, ISBN:

0321647858, 9780321647856.

Res. J. App. Sci. Eng. Technol., 7(13): 2724-2728, 2014

2728

Janzen, D. and H. Saiedian, 2005. Test-driven

development concepts, taxonomy and future

directions. Computer, 38(9): 43-50.

Karl, E.W., 2005. More About Software Requirements:
Thorny Issues and Practical Advice. Microsoft
Press.

Lewis, W., 2005. Software Testing and Continuous
Quality Improvement. 2nd Edn., CRC Press, Boca
Raton.

O'Connor , R., N. Baddoo and J.C. Gallego, 2009 .
Software process improvement. Proceeding of 16th
European Conference, Euro SPI 2009, Alcaba
(Madrid), Spain.

Pine, F.J., F. García and M. Piattini, 2008. Software
process improvement in small and medium
software enterprises: A systematic review.
Software Qual. Control, 16(2): 237-261.

Pressman, R.S., 2005. Software Engineering: A

Practitioner's Approach. 6th Edn., McGraw-Hill,

New York.

Schulmeyer, G., 2008. Handbook of Software Quality

Assurance. Artech House, Boston.

Thayer, R.H. and M.J. Christensen, 2005. Software

Engineering. 3rd Edn., The Development Process,

Wiley and Sons, New York.

Timothy, C.L. and R. Laganière, 2005. Object-oriented

Software Engineering: Practical Software

Development using UML and Java. 2nd Edn.,

McGraw-Hill, New York.

Weinberg, G., 2008. Perfect Software and Other

Illusions about Testing. Dorset House.

Wiegers, K., 2005. Software Requirements. 2nd Edn.,

Microsoft Press, 2005.

